
Iterative Algorithms with an

Information Geometry Background

I. Csiszár, Rényi Institute, Budapest

Iterative projection algorithms that minimize

Kullback information divergence (I-divergence)

include iterative scaling, the EM algorithm,

Cover’s portfolio optimizing algorithm, etc.

Such algorithms will be considered from an ”in-

formation geometric” point of view; extensions

to Bregman distances will also be addressed.
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Overview

(i) Information geometry: I-divergence is an

analogue of squared Euclidean distance, bet-

ter suited than the latter for vectors with

nonnegative components

(ii) I-projection to an intersection of affine fam-

ilies in Rk
+ is the limit of iterated projec-

tions to these sets. Iterative scaling and

generalized iterative scaling (or SMART)

algorithms as special cases.

(iii) Minimum I-divergence between two con-

vex sets via alternating projections. EM

algorithm, portfolio optimization.

(iv) Iterative projection algorithms with Breg-

man distances. Dysktra’s algorithm.

(v) Does the belief propagation algorithm ad-

mits an iterative projection interpretation?
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Information Geometry

I-divergence (or relative entropy) for probabil-

ity vectors p = (p1, . . . , pk), q = (q1, . . . , qk):

D(p‖q) =
k∑

j=1

pj log
pj

qj

here 0 log0 = 0 log 0
0 = 0,0 log t

0 = +∞(t > 0).

Key measure in information theory and statis-

tics of the difference of probability distributions

(though does not satisfy symmetry or triangle

inequality).

Extension to arbitrary p, q in Rk
+

D(p‖q) =
k∑

j=1

[
pj log

pj

qj
− pj + qj

]
.
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Nonnegative, equal to 0 if and only if p = q.

Finite if and only if p ¿ q (p is dominated by

q), i.e,

S(p) = {i : pi > 0} ⊆ S(q) = {i : qi > 0} .

I-projection of q ∈ Rk
+ to a convex, closed set

C ⊂ Rk
+:

ΠC(q) = argmin
p∈C

D
(
p‖q

)
.

Well defined if C contains any p ¿ q, thus

always if q is strictly positive (and C 6= ∅).
In many applications C consists of probability

vectors, and q has equal components.

Then ΠC(q) equals the maximizer of

H(p) = −
k∑

j=1

pj log pj

subject to p ∈ C, the maximum entropy distri-

bution in C.

For q strictly positive, log q = (log q1, . . . , log qk)
is regarded as dual representation of q.
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Lemma 1. If q is strictly positive and C con-

tains some strictly positive p, the I-projection

ΠC(q) is the unique strictly positive r ∈ C at

which r the vector log q− log r is normal to C,
〈
p− r, log q − log r

〉
≤ 0 ∀p ∈ C.

For C equal to an affine family A, here the

equality must hold, thus log q − log r⊥A.

An affine family (also called mixture family) is

the intersection with Rk
+ of an affine subspace

of Rk.

Proof: log q − log r = −∇pD
(
p‖q

)
/p=r.

q

r

p

C

q

r
p

A
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Simple identity, analogue of cosine theorem:

D
(
p‖r

)
+D

(
r‖q

)
= D

(
p‖q

)
+

〈
p− r, log q − log r

〉

for p ∈ Rk
+ arbitrary, q, r strictly positive.

This and Lemma 1 imply the next assertion un-

der the hypotheses of Lemma 1. Importantly,

these hypotheses can be dispensed with.

Lemma 2. For any closed convex C ⊂ Rk
+

and q ∈ Rk
+ such that ΠC(q) exists, it equals

the unique r ∈ C satisfying

D
(
p‖q

)
≥ D

(
p‖r

)
+ D

(
r‖q

)
∀p ∈ C.

For C equal to an affine family the equality

holds: Pythagorean theorem.

Dual counterpart of affine families in Rk
+:

An exponential family consists of those strictly

positive r ∈ Rk
+ whose dual representation be-

longs to a given affine subspace of Rk.
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Key concept in statistics, of course with atten-

tion restricted to probability vectors. Typically,

one row of A below is (1, . . . ,1), then r ∈ E
implies αr ∈ E for all α > 0, and restricting at-

tention to the probability vectors in E means a

simple normalization.

Mutually orthogonal affine and exponential fam-

ilies:

A =
{
p ∈ Rk

+ : Ap = b
} (

A k × ` matrix, b ∈ Rk
)

E =
{
r : log r = ϑA + c, ϑ ∈ R`

} (
c ∈ Rk fixed

)

Lemma 3. If A above contains some strictly

positive p then C ∩ E = {r} with r satisfying

the Pythagorean identity

D
(
p‖q

)
= D

(
p‖r

)
+ D

(
r‖q

)
∀p ∈ A, q ∈ E.
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If no strictly positive p ∈ C exists (but C 6= 0)
then C∩c`(E) = {r}, again with r satisfying the
above identity. Thus in both cases, r = ΠA(q)
for all q ∈ E.

E
q

A

r

p

E
q

A

r

p

When A ∩ E = {r}, the Pythagorean identity
implies that r is both the I-projection of any
q ∈ E to A and the reverse I-projection

argmin
q∈E

D
(
p‖q

)

of any p ∈ A to E. In statistics, a maximum
likelihood (ML) estimate equals the reverse I-
projection of the empirical distribution to the
model family. Thus, algorithms to compute I-
projections to affine families also serve to com-
pute ML estimates for exponential families.
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Iterative I-projection algorithm

Let A1, . . . ,Am be affine families in Rk
+. Let

Πn denote I-projection to An or, if n > m, to

Ai with 1 ≤ i ≤ m, i ≡ n (mod m).

Algorithm: p0 = q, pn = Πn

(
pn−1

)
, n ≥ 1.

Theorem 1: (iterative I-projection).

If A =
m⋂

i=1

Ai contains some p ¿ q then the

algorithm is well-defined, and pn → ΠA(q) as

n →∞.

Note that no strict positivity assumption is

needed, though strict positivity of q always suf-

fices if A 6= 0.
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Proof: (Csiszár 1975, using ideas of Ireland-

Kullback 1968)

For p ∈ A with p ¿ q

D
(
p‖pn−1

)
= D

(
p‖pn

)
+

(
pn‖pn−1

)
, n = 1,2, . . .

by Lemma 2 (Pythagorean theorem).

All terms are finite by induction. Summing for

n = 1, . . . , N gives

(∗) D
(
p‖q

)
= D

(
p‖p0

)
=

= D
(
p‖pN

)
+

N∑

n=1

D
(
pn‖pn−1

)

Hence D
(
p‖pN

)
is nonincreasing, pN is bounded,

pNi → p∗ for a subsequence, clearly p∗ ¿ q.

Also, D
(
pn‖pn−1

)
→ 0, thus the subsequences

pNi+1, . . . , pNi+m−1 also converge to p∗, and

therefore p∗ ∈ A.
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Then D
(
p∗‖pN

)
is nonincreasing,

lim
N→∞

D
(
p∗‖pN

)
= lim

i→∞D
(
p∗‖pNi

)
= 0

thus pN → p∗, and (∗) with p = p∗ gives

D
(
p∗‖q

)
=

∞∑

n=1

D
(
pn‖pn−1

)
.

Hence p∗ = ΠA(q) follows.

Conceptually important: D
(
p‖pN

)
is nonincreas-

ing for each p ∈ A. Fejér monotonicity of the

sequence pN relative to A.
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Special case: iterative scaling

The following widely used algorithm goes back

to Kruithof (1937) and Deming-Stephan (1940).

Given a k×` matrix Q = (qij) with nonnegative

elements, and vectors b = (b1, . . . , bk) ∈ Rk
+

c = (c1, . . . , c`) ∈ R`
+ as required marginals of

an adjustment of Q.
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Algorithm: P0 = Q.
For n ≥ 1 define Pn =

(
pn
ij

)
by

pn
ij =





pn−1
ij

bi

pn−1
i•

n odd

pn−1
ij

cj

pn−1
•j

n even

with notation

pi• =
∑̀

j=1

pij p•j =
k∑

i=1

pij

Ireland-Kullback (1968) pointed out that the
iterative steps are I-projections, in step n the
I-projection of Pn−1 is taken to the affine fam-
ily of matrices whose first marginal in b, respec-
tively second marginal is c.

Corollary: Pn converges to the I-projection
of Q to the family of matrices P = (pij) with
marginals b and c, provided some matrix in this
family satisfies pij = 0 whenever qij = 0.
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Multidimensional iterative scaling is also widely

used. Given a d-dimensional array of nonneg-

ative numbers

qi1...id, 1 ≤ i1 ≤ k1, . . . ,1 ≤ id ≤ kd,

and m marginals of perhaps different dimen-

sions of a requested adjustment of this array,

the adjustment is performed by a cyclic itera-

tion. In each step one of the m marginals is

adjusted by scaling, which amounts to an I-

projection as before. As noted previously, such

algorithms are suitable also for computing ML

estimates, specifically for log-linear models in

the analysis of multidimensional contingency

tables.
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Generalized iterative scaling

The iterative I-projection theorem appears of

limited value for computing I-projection to A =⋂m
i=1Ai when no explicit formulas are available

for I-projection to the individual Ai’s.

Actually, with a twist, the theorem admits to

design an effective algorithm for computing I-

projections to any affine family A that consist

of vectors p with
k∑

j=1

pj = constant (as in most

applications).

In that case, it may be assumed that in the

representation

A =
{
p : Ap = b

}
,

the columns of the k × ` matrix A = (aij) are

probability vectors.
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Then, for any p, q in Rk
+ and matrices P, Q de-

fined by pij = pjaij, qij = qjaij, it holds that

D
(
p‖q

)
= D (P‖Q). Hence, minimizing D

(
p‖q

)

for p ∈ A is equivalent to minimizing D (P‖Q)

for matrices P ∈ Ã1 ∩ Ã2

Ã1 =
{
P = (pij) ∈ Rk`

+ : p•j = bj, j = 1, . . . , `
}

Ã2 =
{
P ∈ Rk`

+ : pij = p•jaij,

i = 1, . . . , k, j = 1, . . . , `
}
.

Applying the I-projection algorithm to the lat-

ter problem, I-projections to Ã1 are performed

simply by scaling, and I-projections to Ã2 also

admit an explicit formula. Simple calculation

gives that the 2n’th step (the n’th projection

to Ã2) results in a matrix
(
pn
j aij

)
where

pn
j = pn−1

j

∏̀

i=1


 bi〈

ai, pn−1
〉




aij

, n ≥ 1, p0
j = qj.
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Corollary: This iteration gives pn → ΠA(q),

provided A contains some p with p ¿ q.

The last iteration is known as generalized itera-

tive scaling (Darroch-Ratcliff 1972) or SMART

algorithm. The above derivation is from Csiszár

1989.

Remark: In cases when iterative scaling ap-

plies, generalized iterative scaling does not give

the same algorithm. For example, to compute

the I-projection of a matrix Q to the family of

matrices with given marginals b, c, a general-

ized iterative scaling algorithm is P0 = Q,

pn
ij = pn−1

ij

√√√√ bi

pn−1
i•

· cj

pn−1
•j

, n ≥ 1.
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Extensions of Theorem 1

(i) Non-cyclic iteration also works

(ii) Relaxation: pn is a convex combination of

pn−1 and Πn(pn−1), in dual representation

Πn(pn−1)

p
n

p
n−1

p
n+1

Πn+1(p
n)

An+1

An

(iii) Affine families are replaceded by halfspaces

or any closed convex sets Ci. I-projection

iteration still converges to some p∗ ∈ ⋂m
i=1 Ci

(if nonempty), thus solves the convex fea-

sibility problem. A modified algorithm is

available (Dysktra 1985) that converges to

I-projection to
⋂m

i=1 Ci.
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Alternating minimization algorithm

Given: Convex compact subsets B, C of Rk
+

such that there exist p ∈ B, q ∈ C with p ¿ q.

Denote S(C) = {i : qi > 0 for some q ∈ C}

Algorithm: q0 ∈ C arbitrary with S(q0) = S(C).

pn =argmin
p∈B

D(p‖qn−1) I-projection,

pn =argmin
q∈C

D(pn‖q) reverse I-projection.

The latter minimizer need not be unique if

S(pn) is a proper subset of S(C); then either

minimizer may be taken as qn.
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Theorem 2 (alternating minimization):

D(p1‖q0) ≥ D(p1‖q1) ≥
≥ D(p2‖q1) ≥ D(p2‖q2) ≥ . . .

converges to Dmin = min
p∈B,q∈C

D(p‖q), and pn

converges to a limit p∗ ∈ B such that for all
accumulation points q∗ of the sequence qn

D(p∗‖q∗) = Dmin

The proof shows that the sequence pn is Fejér
monotone relative to the set of those p ∈ B to
which there exists q ∈ C with D

(
p‖q

)
= Dmin:

D
(
p‖pn

)
is nonincreasing for each such p.

Theorem 2 is relevant also for the convex fea-
sibility problem: B ∩ C 6= ∅ if and only if
D

(
pn‖q

)
→ 0, or when both pn and qn con-

verge to the same limit.

Moreover, if B ∩C 6= ∅ then the sequence pn is
Fejér monotone relative to B ∩ C.
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Key geometric ingredients of the proof

(i) Three points property:

for p ∈ B, q ∈ C, r = ΠB(q)

D
(
p‖q

)
≥ D

(
p‖r

)
+ D

(
r‖q

)
(Lemma 2)

(ii) Four points property:

for p ∈ B with minp∈B D
(
p‖q

)
finite, q at-

taining that minimum, and any p′ ∈ B,

q′ ∈ C

D
(
p′‖q′

)
+ D

(
p′‖p

)
≥ D

(
p′‖q

)
(new)

B p

p′

C
q

q′
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Theorem 2 is a special case of a more general

result concerning alternating minimization of

any function d(x, y) of abstract variables (x, y)

(Csiszár - Tusnády 1984).

There, the three and four point properties were

postulates on d(x, y) that involved an auxiliary

nonnegative function δ(x, y).

In the present case d = D, also δ = D. The

same properties hold also for d = D̃ defined by

D̃
(
p‖q

)
=

k∑

i=1

pi log
pi

qi

(
p ∈ Rk

+, q ∈ Rk
+

)

which D̃ can take also negative values (again

with δ = D).
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Alternating minimization

and generalized iterative scaling

Generalized iterative scaling (GIS) is based on
iterating I-projections to the affine families Ã1
and Ã2 defined there. Due to the special form
of Ã1, I-projection and reverse I-projection to
Ã1 are identical operations, given by scaling.

Hence GIS is equivalent to alternating mini-
mization for B = Ã2, C = Ã1.

In the inconsistent case when

A =
{
p ∈ Rk

+ : Ap = b
}

= ∅
the original GIS convergence result does not
apply, but Theorem 2 does: when Ã1∩Ã2 = ∅,
alternating minimization achieves, in the limit,
the minimum I-divergence between B = Ã2
and C = Ã1.

Equivalently, the sequence pn defined by GIS
converges to a limit p∗ that minimizes D

(
Ap‖b

)
.
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EM algorithm

Goal: estimate an unknown probability distri-
bution from partially observable drawings when
ML estimation from fully observable drawings
would be ”easy”. Specifically, ML estimate of
the marginal distribution governing the partial
observations is required.

Model: Let C be a family of probability distri-
butions on pairs (i, j),1 ≤ i ≤ k,1 ≤ j ≤ `, given
by probability matrices Q = (qij). For N inde-
pendent drawings (i1, j1), . . . , (iN , jN) from an
unknown Q ∈ C, only the second components
are observed.
Denote (i1, . . . , iN) = x, (j1, . . . , jN) = y, let
P̂ and p̂ be the empirical distributions of the
(unobserved) full sample (x, y) and of the (ob-
served) partial sample y:

p̂ij =
1

n
|{t : it = i, jt = j}| ,

p̂j =
1

n
|{t : jt = j}| = p̂•j.

24



Algorithm: Q0 ∈ C arbitrary, for n ≥ 1

E-step: Pn = EQn−1

(
P̂ |y

)
,

conditional expectation

M-step: Qn = arg min
Q∈C

D (Pn‖Q) ,

ML estimate pretending that Pn is the empir-

ical distribution of (x, y).

By simple algebra, pn
ij = qn

ij
p̂j

qn−1
•j

.

Hence

D
(
Pn‖Qn−1

)
= D

(
p̂‖qn−1

)

(where qn−1 =
(
qn−1
•1 , . . . , qn−1

•`
)
) and Pn equals

the I-projection of Qn−1 to the family

B =
{
P = (pij) : p•j = p̂j, j = 1, . . . , `

}
.

By definition, Qn is the reverse I-projection

of Pn to C; by assumption, it is ”easy” to

compute.
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It follows that the sequence of divergences

D
(
Pn‖Qn−1

)
= D

(
p̂‖qn−1

)

is always nonincreasing.

In ideal case, it converges to

min
P∈B,Q∈C

D (P‖Q) = min
{
D

(
p̂‖q

)
: q

marginal of some Q ∈ C
}
.

If the second minimum is attained by a unique

q∗ (which is then the ML estimate of the marginal

distribution governing the observable part of

the sample), the convergence of D
(
p̂‖qn

)
to

this minimum implies qn → q∗.
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By Theorem 2, this ideal situation always ob-

tains if the set C of feasible distributions is

convex and closed, provided the initial Q0 ∈ C

has maximal support. Moreover, in this case

the sequence Pn is always convergent.

In practice, the EM algorithm is widely used

even though the set of feasible distributions is

seldom convex. Then the iteration may get

stuck at a local minimum, but running the al-

gorithm several times with different initial Q0

typically leads to satisfactory results.
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Example (decomposition of mixtures)

Suppose a sample y = (j1, . . . , jN) with em-

pirical distribution p̂ has been drawn from a

mixture distribution q =
∑k

i=1 piri where

ri = (ri1, . . . , ri`), i = 1, . . . , k

are known probability vectors, and the weight

vector p = (p1, . . . , pk) is unknown.

To compute the ML estimate of p via the EM

algorithm, pretend y consists of the second

components of drawings (i1, j1), . . . , (iN , jN)

from an unknown member of the family C of

distributions Q = (qij) with qij = pirij.

The reverse I-projection of any P = (pij) to

this family C is given by qij = pi•rij, hence the

M-step of the EM algorithm is qn
ij = pn−1

i• rij.
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Combining this with the explicit form of the

E-steps given before, we obtain that

qn
ij = pn

i rij with pn
i = pn−1

i

∑̀

j=1

rij
p̂j

k∑

h=1

pn−1
h rhj

As the above set C is convex and closed, now

the ”ideal case” of the EM algorithm obtains.

It follows that pn defined by the last iteration

converges to a limit p∗ such that q∗ =
∑

p∗i ri

minimizes D
(
p̂‖q

)
; this holds even in the non-

identifiable case when different weight vectors

p may yield the same mixture q.
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Portfolio optimization

A portfolio is a probability vector p = (p1, . . . , pk),
where pi represents the fraction of the total in-
vested capital invested in stock i ∈ {1, . . . , k}.

If one dollar invested in stock i returns Xi dol-
lars by the end of the investment period, the

portfolio with E


log

k∑

i=1

piXi


 = maximum

achieves the highest long-term gain (subject
to certain simplifying hypotheses).

Algorithm to compute the log-optimal portfo-
lio when the joint distribution of the random
variables Xi is known (Cover 1984):

p0 : any strictly positive distribution,

pn
i =pn−1

i E




Xi
k∑

j=1

pn−1
j Xj




, n ≥ 1
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Effectively the same iteration as that for de-

composition of mixtures, with the role of p̂j

and rij now played by Xi(ω) and p(ω) (assum-

ing the random variables Xi are defined on a

finite sample space (Ω, p)).

The difference is the absence of an analogue

of the assumption that the vectors ri are prob-

ability vectors. Still, a convergence proof can

be given along the same lines, via alternating

minimization. In particular, pn converges to a

log-optimal p∗ even in the case when unique-

ness of the log-optimal portfolio does not hold.
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Bregman projections

Key geometric properties of I-divergence are

shared by Bregman distances.

Let f be a convex, lower semicontinuous func-

tion on Rk, strictly convex and differentiable in

the interior of

domf = {x : f(x) < +∞} .

This interior S = int(domf), called the zone

of f , is assumed nonempty.

The Bregman distance (1967) of an x ∈ domf

from an y ∈ S is

Df

(
x, y

)
= f(x)− f(y)−

〈
(∇f)(y), x− y

〉

Finite, nonnegative, equals 0 only if x = y.
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f

Df (x, y)

y x

Bregman projection of y ∈ S to a closed convex

set C intersecting domf :

ΠC,f(y) = argmin
x∈C

Df(x, y)

In practice, mostly separable Bregman distances

are used, thus with

f(x) =
k∑

i=1

fi(xi), typically f1 = · · · = fk

33



Examples

f(x) domf Df(x, y)
1

2
‖x‖2 Rk ‖x− y‖2

1

2
‖x‖2 Rk

+ ‖x− y‖2
k∑

i=1

(xi logxi − xi) Rk
+ D

(
x‖y

)

−
k∑

i=1

logxi int
(
Rk

+

) k∑
i=1

[
log

yi

xi
+

xi

yi
− 1

]

k∑
i=1

[xi logxi + (1− xi) log(1− xi)]

[0,1]k
k∑

i=1

[
xi log

xi

yi
+ (1− xi) log

1− xi

1− yi

]

For separable f , the definition of Bregman dis-

tances and projections could be extended to y

on the boundary of S = int(domf) (as for I-

divergences) but no natural extension appears

possible for general f . Below, the second vari-

able of Df(x, y) is always restricted to y ∈ S.
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Dual representation of y ∈ S: the gradient vec-

tor (∇f)(y).

With this, the analogues of Lemma 1-2 hold

for Bregman distances, provided the convex set

C (intersecting S) satisfies zone consistency:

ΠC,f(y) ∈ S for each y ∈ S.

May fail, for example, if f(x) = 1
2‖x‖2 for x ∈

Rk
+ and +∞ otherwise. The (Euclidean) pro-

jection ΠC,f(y) of a strictly positive y ∈ Rk to a

convex or even affine set C ⊂ Rk
+ need not be

strictly positive even though C contains strictly

positive vectors.

One reason why I-divergence is preferable to

Euclidean distance for vectors in Rk
+.

Assume henceforth that f is steep: for yn in

S approaching a boundary point of S, the dual

representations (∇f)(yn) can not be bounded.
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Then each C intersecting S is zone consistent,

and the analogues of Lemmas 1-2 hold.

In particular, for an affine family A (intersec-

tion with domf of an affine subspace of Rk)

with A ∩ S 6= ∅, the Bregman projection ΠA,f(y)

of an y ∈ S equals the unique z ∈ A ∩ S satis-

fying (∇f)(y)− (∇f)(z)⊥A, or equivalently

Df(x, y) = Df(x, z) + Df(z, y) ∀x ∈ A

Convex functions f with the postulated prop-

erties are called of Legendre type. The convex

conjugate

f∗(a) = sup
x

[〈a, x〉 − f(x)]

of such f is also of Legendre type, and the

map y → (∇f)(y) is one-to-one from S onto

the interior of the effective domain of f∗. The

inverse map is a → (∇f∗)(a).

36



Analogue of an exponential family: those y ∈ S

whose dual representation (∇f)(y) belongs to

a given affine subspace of Rk.

An f-exponential family orthogonal to the affine

family

A = {x ∈ domf : Ax = b}
is

Ef =
{
y : (∇f)(y) = ϑA + c for some ϑ ∈ R`

}

=
{
y = (∇f∗)(ϑA + c) for some ϑ ∈ R`

}

(c ∈ Rk, fixed)

Such orthogonal families A and Ef intersect in

a singleton {z}, whenever A ∩ S 6= ∅, and the

Pythagorean identity

Df(x, y) = Df(x, z) + Df(z, y) ∀x ∈ A, y ∈ Ef

holds (partial analogue of Lemma 3).
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Iterative Bregman projection algorithm

Analogue of iterative I-projection algorithm.

Let A1, . . . ,Am be affine families in domf , each

intersecting S = int(domf). Denote Πn Breg-

man projection to An, with cyclic convention.

Let y ∈ S.

Algorithm: x0 = y, xn = Πn(xn−1), n ≥ 1.

Analogue of Theorem 1:

xn → ΠA,f(y), if
m⋂

i=1

Ai = A 6= ∅.

Identical proof, if some technical conditions

(obvious for I-divergence) are satisfied.
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Conditions, for xn, yn in S

(i) Df(x, yn) bounded for some x ∈ domf ⇒ yn

bounded

(ii) yn → y, hypothesis of (i) ⇒ y ∈ domf ,

Df(y, yn) → 0

(iii) xn → x ∈ domf , yn → y ∈ domf ,

Df(xn, yn) → 0 ⇒ x = y
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Extensive literature of Bregman projection al-

gorithms, goes back to Bregman 1967.

Censor-Lent 1981 formalized ”standard” tech-

nical conditions for convergence proofs. Func-

tion satisfying them: Bregman functions.

Bauschke-Borwein 1997 proposed a slightly dif-

ferent class, called Bregman/Legendre func-

tions: Legendre functions f satisfying the con-

ditions on the previous page.

When x ∈ S or y ∈ S then (ii), (iii) hold for

all Legendre functions; for separable Legendre

function f , (ii), (iii) hold is full. Moreover, (i)

implies that domf∗ is open; in turn, if domf∗
is open then (i) holds for x ∈ S, and for all

x ∈ domf if f is separable.
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The results of Bauschke-Borwein 1997 imply

convergence of the iterated Bregman projec-

tions xn = Πn(xn−1) to the Bregman projec-

tion ΠA,f(y) if f is Bregman/Legendre, in par-

ticular if f is separable Legendre with domf∗

open; or if A =
m⋂

i=1

Ai intersects S and f is

any Legendre function with domf∗ open. It

appears unknown whether the last condition

can be dispensed with.

Many extensions are available, similar to those

for iterative I-projections.

Byrne-Censor 2000 studied alternating mini-

mization of Bregman distances. Established

three and four points properties of Df(x, y) if

it is jointly convex in (x, y), and proved ana-

logue of Theorem 2 for jointly convex Bregman

distances.
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Dysktra algorithm for Bregman

projections

Let C1, . . . , Cm be closed convex sets in Rk,

each intersecting S, let y ∈ S. Denote Breg-

man projection to Cn by Πn (cyclic conven-

tion). Iteration of these projection converges

to a point in
m⋂

i=1

Ci = C (subject to technical

conditions) but in general not to ΠC,f(y).

Modified algorithm, ”Bregman version” of the

algorithms of Dysktra 1983, 1985 designed for

Euclidean and I-projections: xn is the projec-

tion to Cn of a ”deflected version” of xn−1 ob-

tained in step n−1;xn−1 is deflected by adding

to its dual representation a vector zn−m deter-

mined in step n−m, after the previous projec-

tion to Cn.
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Algorithm: x0 = y, the initial values of the

deflecting vector are 0. For n ≥ 1,

xn =Πn

(
(∇f∗)

(
(∇f)(xn−1) + zn−m

))

zn =zn−m − (∇f)(xn) + (∇f)(xn−1)

The convergence xn → ΠC,f(y) was proved by

• Censor-Reich 1998 for the case when the

sets Ci are halfspaces

• Bregman-Censor-Reich 1999, and Bauschke-

Lewis 2000 for general convex, closed sets

Ci, under different technical conditions. Both

assumed f Legendre; the hypotheses of

Bregman et al. included domf closed, those

of Bauschke-Lewis domf∗ = Rk.

The last hypothesis was needed to make sure

that the iteration is well defined. Bregman et

al. were able to dispense with it by a slight

modification of the algorithm.
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Iterative projections and belief

propagation

Belief propagation or sum-product algorithm

admits efficient decoding at transmission rates

close to the Shannon limit. Originally an exact

algorithm with finite number of steps (Pearl

1988), more powerful current versions are it-

erative, more heuristically than mathematically

justified, remarkably successful in practice.

Given: a function of form g(x) =
K∏

k=1

gk(x) of

x = (x1, . . . , xN), where N is very large but

each factor gk(x) depends only on a few coor-

dinates, say xi with i ∈ Gk.

Goal: compute the one-dimensional marginals

of g, thus sum g(x) for all x with one compo-

nents xi fixed; often, the components xi are

binary.
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The belief propagation (BP) algorithm involves

iterated ”message exchanges” between nodes

of the factor graph a bipartite graph whose

nodes represent the variables xi, 1 ≤ i ≤ N and

the factors gk, 1 ≤ k ≤ K.

Each message sent by a node is computed

from previous received messages by product

and sum operations.

Recent development:

Regalia-Walsh 2008 gave an equivalent descrip-

tion of the BP algorithm as a cyclic iteration

resembling Dyskra’s algorithm, but more com-

plex than the latter, involving both I-projections

and reverse I-projections.

It remains to be seen whether this relationship

of BP to information projections algorithms is

merely formal or will provide essential insights

contributing to a better understanding of the

mathematical intricacies of BP.
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