NOTE ON CONSECUTIVE ABUNDANT NUMBERS

Paul Erdös*.

A positive integer N is called an abundant number if

$$
\sigma(N) \geqslant 2 N,
$$

where $\sigma(N)$ denotes the sum of the divisors of N including 1 and N. Abundant numbers have been recently investigated by Behrend, Chowla, Davenport, myself, and others; it has been proved, for example, that they have a density greater than 0 . I prove now the following

Theorem. We can find two constants c_{1}, c_{2} such that, for all sufficiently large n, there exist $c_{1} \log \log \log n$ consecutive integers all abundant and less than n, but not $c_{2} \log \log \log n$ consecutive integers all abundant and less than n.

* Received and read 13 December, 1934.

I prove the first part by using an idea due* to Chowla and Pillai. Write

$$
A=\prod_{p<\sharp \log n} p,
$$

where the p denote prime numbers, so that, for sufficiently large n,

$$
A<n
$$

as is obvious either from the prime number theorem or from elementary reasoning. Hence, if c_{3} is a suitable constant, and the c 's have this meaning throughout the paper,

$$
\frac{\sigma(A)}{A}=\prod_{p<\ddagger \log n}\left(1+\frac{1}{p}\right)>c_{3} \log \log n
$$

Write

$$
a_{1}=2.3, \quad a_{2}=5.7 \ldots p_{1}, \quad a_{3}=p_{2} \ldots p_{3}, \quad \ldots
$$

where a_{1} is an abundant number, p_{1} denotes the smallest prime such that a_{2}, the product of the primes from 5 to p_{1}, is an abundant number (clearly p_{1} exists), p_{2} is the prime following p_{1} and p_{3} is the smallest prime such that a_{3}, the product of the primes between p_{2} and p_{3}, is an abundant number, and so on. For each of the a 's, $\sigma(a) / a<3$, thus

$$
\frac{\sigma\left(a_{2}\right)}{a_{2}}=\left\{\frac{\sigma\left(a_{2}\right) / p_{1}}{a_{2} / p_{1}}\right\}\left(1+\frac{1}{p_{1}}\right),
$$

where the first factor on the right is less than 2. Hence, if x denotes the number of the a 's not exceeding A,

$$
x>c_{4} \log \log \log n .
$$

For

$$
\frac{\sigma\left(a_{1}\right)}{a_{1}} \frac{\sigma\left(a_{2}\right)}{a_{2}} \ldots \frac{\sigma\left(a_{x+1}\right)}{a_{x+1}} \geqslant \frac{\sigma(A)}{A}>c_{3} \log \log n
$$

and so

$$
3^{x+1}>c_{3} \log \log n
$$

and the result follows.
Now consider the simultaneous congruences

$$
y \equiv r-1 \quad\left(\bmod a_{r}\right) \quad(r=1,2, \ldots, x) .
$$

These obviously have a solution with $0<y<A<n$. Since any multiple of an abundant number is also an abundant number,

$$
y, y-1, y-2, \ldots, y-x+1
$$

are all abundant numbers. This proves the first part.

[^0]Suppose now that, for n sufficiently large, there exist consecutive integers $m, m-1, \ldots, m-k+1$ all abundant for some $m \leqslant n$ and for $k>c_{5} \log \log \log n$ for every constant c_{5}. Let q be the first prime such that $q c_{6}>4 \log q$, where

$$
\prod_{p<q}\left(1-\frac{1}{p}\right)>\frac{c_{6}}{\log q},
$$

the product being extended to the primes p. Denote by $b_{1}, b_{2}, \ldots, b_{z}$ the integers between m and $m-k+1$ not divisible by a prime $q_{1}, q_{2}, \ldots \leqslant q$. Then, by the sieve of Eratosthenes, $i . e$. excluding multiples of q_{1}, q_{2}, \ldots, and the inequality above,

$$
z>\frac{c_{6} k}{\log q} .
$$

Since

$$
\frac{\sigma(b)}{b}<\prod_{p \mid b}\left(1+\frac{1}{p-1}\right)
$$

we have

$$
2^{z} \leqslant \prod_{r=1}^{z} \frac{\sigma\left(b_{r}\right)}{b_{r}}<\prod_{p>q}\left(1+\frac{1}{p-1}\right)^{[k / p]+1},
$$

since at most $[k / p]+1$ of the b are divisible by a prime p. For the primes p up to $q<p \leqslant k$, we write

$$
\begin{gathered}
{\left[\frac{k}{p}\right]+1 \leqslant \frac{2 k}{p},} \\
\left.\prod_{q<p \leqslant k}\left(1+\frac{1}{p-1}\right)^{2 k / p}<\prod_{q<p \leqslant k}\left(1+\frac{1}{p(p-1)}\right)^{2 k}<e^{2 k<p \leqslant k} \sum_{q}^{\Sigma} 1 / p(p-1)\right\}
\end{gathered} e^{2 k / q} .
$$

For the primes $p>k$, we note that each integer less than n has less than $\log n / \log 2$ different prime factors, and so the product $b_{1} b_{2} \ldots b_{z}$ has less than $z \log n / \log 2$ different prime factors.

Since the number of primes not greater than $4 z \log ^{2} n$ is greater than $z \log n / \log 2$ for sufficiently large n,

$$
\prod_{\substack{p>k \\ p \mid b_{1} \ldots b_{2}}}\left(1+\frac{1}{p-1}\right)<\prod_{p<4 z \log ^{2} n}\left(1+\frac{1}{p-1}\right)<c_{7}(2 \log \log n+\log z) .
$$

Hence

$$
2^{z}<c_{7} e^{2 k / q}(2 \log \log n+\log z)
$$

and so

$$
2^{c_{6} k / \log q}<c_{7} e^{2 k / q}(2 \log \log n+\log z)
$$

But

$$
c_{6} q>4 \log q,
$$

and so, since $z<k$,

$$
2^{c_{6} k / 2 \log q}<c_{7}(2 \log \log n+\log k)<2 c_{7}{ }^{2} \log k \log \log n
$$

for $a+b<a b$ if $a>2, b>2$.

But $2^{c_{6} k / 4 \log q}>c_{7} \log k$ for sufficiently large k, and so we should have $2^{c_{6} k / 4 \log q}<2 c_{7} \log \log n$, which is not true if

$$
k>\frac{4 \log q \log \log \log n}{c_{6} \log 2} .
$$

This proves the theorem.
By the same method we can prove that, for every $\epsilon>0$, a constant $c_{8}=c_{8}(\epsilon)$ exists such that, if $n>n(\epsilon)$, then among $c_{8} \log \log \log n$ consecutive integers less than n, there is at least one, say m, such that $\sigma(m) / m<1+\epsilon$. We can also prove by a longer method that, if

$$
\frac{f(n)}{\log \log \log n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty,
$$

then the abundant numbers have the same density in the interval $n, n+f(n)$ as in the interval $1, n$.

The University, Manchester.

[^0]: * "On the error terms in some asymptotic formulae in the theory of numbers", Journal London Math. Soc., 5 (1930), 95-101.

