NOTE ON SEQUENCES OF INTEGERS NO ONE OF WHICH IS DIVISIBLE BY ANY OTHER

Paul Erdös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 10 (1935).]
t
Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of integers, say (A), such that a_{m} is not a divisor of a_{n} unless $m=n$. Chowla, Davenport, and I proposed the question whether the density of every sequence (A) is zero. Besicovitch \dagger proved that this was not so by showing that, if d_{a} is the density of integers having a divisor between a and $2 a$, then $\underset{a \rightarrow \infty}{\liminf } d_{a}=0$.

We can easily prove that the upper density of any sequence (A) does not exceed $\frac{1}{2}$. In fact, (A) cannot contain $n+1$ elements $a_{1}, a_{2}, \ldots, a_{n+1}$ at most equal to $2 n$. For, if $a_{m}=2^{a_{n}} b_{m}$, where b_{m} is odd, and so has at most n different values, two of the b 's must be equal. If these correspond to indices m_{1}, m_{2}, clearly $a_{m_{1}}$ is divisible by $a_{m_{2}}$ if $m_{1}>m_{2} \ddagger$.

We prove now that the lower density of (A) is zero§. This follows from the

Theorem. $\sum_{n=1}^{\infty} \frac{1}{a_{n} \log a_{n}}$ converges.
More generally, we show that if p_{n} denotes the greatest prime factor of a_{n}, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{a_{n}} \prod_{p \leqslant p_{n}}\left(1-\frac{1}{p}\right) \leqslant 1, \tag{1}
\end{equation*}
$$

where the product refers to the primes not greater than p_{n}. It follows that

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} \log a_{n}}<c,
$$

where c is a constant independent of the sequence, since

$$
\prod_{p \leqslant p_{n}}\left(1-\frac{1}{p}\right)>\frac{c}{\log p_{n}} \geqslant \frac{c}{\log a_{n}} .
$$

For suppose that (1) is not true; then, for some integer N,

$$
\sum_{n=1}^{N} \frac{1}{a_{n}} \prod_{p \leqslant p_{n}}\left(1-\frac{1}{p}\right)>1 .
$$

[^0]Consider the a 's to be arranged according to the magnitude of their greatest prime factors. Let n be a sufficiently large integer, and denote by $n(a)$ the number of integers not greater than n divisible by at least one of the a 's, and by $n\left(a_{k}\right)$ the number of integers not greater than n divisible by a_{k} but by no a_{i} with $i<k$. Clearly

$$
\begin{equation*}
n(a)=\sum_{k=1}^{\infty} n\left(a_{k}\right)>\sum_{k=1}^{N} n\left(a_{k}\right) . \tag{2}
\end{equation*}
$$

The $n\left(a_{k}\right)$ integers include among their number the integers not greater than n of the form $a_{k} x$, where all the prime factors of x are greater than p_{k}. The number of integers $m \leqslant n / a_{k}$, not divisible by any prime $p \leqslant p_{k}$, is, by the usual argument based upon the sieve of Eratosthenes, at least

$$
n\left(a_{k}\right) \geqslant \frac{n}{a_{k}} \prod_{p \leqslant p_{k}}\left(1-\frac{1}{p}\right)-2^{k},
$$

and this is, a fortiori, a lower bound for $n\left(a_{k}\right)$. Hence, from (2),

$$
n>n(a)>\sum_{k=1}^{N} \frac{n}{a_{k}} \prod_{p \leqslant p_{k}}\left(1-\frac{1}{p}\right)-\sum_{k=1}^{N} 2^{k} .
$$

This gives a contradiction for large n since N is independent of n.
We conclude by proving that in Besicovitch's theorem lim inf may be replaced by $\lim , i . e$. for every $\epsilon>0$, and $a>a(\epsilon)$ say, the density of integers having a divisor between a and $2 a$ is less than ϵ.

We require the following lemma, easily proved by the method of Turán*.

Lemma. The normal number of prime factors less than a of an integer is $\log \log a$.

This means that, for arbitrary $\epsilon>0, \delta>0$, and $a>a(\epsilon, \delta), n \geqslant a$, the number of integers not greater than n having either more or less respectively than $(1+\epsilon) \log \log a,(1-\epsilon) \log \log a$ prime factors less than a is less than δn.

We divide the integers lying between a and $2 a$ into two classes. Put in the first the integers $b_{1}, b_{2}, \ldots, b_{y}$ having at most $\frac{2}{3} \log \log a$ prime factors and in the second those, say $c_{1}, c_{2}, \ldots, c_{z}$, having more than ${ }_{3}^{2} \log \log a$ prime factors.

[^1]The number of integers not greater than n divisible by a b is less than

$$
\sum_{i=1}^{y} \frac{n}{b_{i}}<\frac{n}{a} y<\frac{1}{i} \epsilon n,
$$

for from the lemma, replacing a and n by $2 a$, we have $y<\frac{1}{3} \epsilon a$.
The integers divisible by a c can be arranged in two sets. In the first are those of the form $c_{i} x$, where $x<n / c_{i}$ and has at most $\frac{2}{3} \log \log a$ prime factors less than a. The number in this set is less than

$$
\frac{1}{3} \epsilon \sum_{i=1}^{z} \frac{n}{c_{i}}<\frac{1}{3} \epsilon \frac{n z}{a}<\frac{1}{3} \epsilon n .
$$

The second set includes the integers of the form $c_{i} x$, where x has more than $\frac{2}{3} \log \log a$ prime factors less than a. Hence these integers have more than $\frac{4}{3} \log \log a$ prime factors less than a and so the number of them is less than $\frac{1}{3} \in n$. This proves the theorem.

I have since proved the following generalisation of Besicovitch's theorem:

The density of the integers having a divisor between n and $n^{1+\varepsilon_{n}}$, where $\boldsymbol{e}_{n} \rightarrow 0$ as $n \rightarrow \infty$, tends to zero as n tends to infinity.

The University,
Manchester.

[^0]: * Received 30 November, 1934; read 13 December, 1934.
 \dagger "On the density of certain sequences ", Math. Annalen, 110 (1934), 336-341.
 \ddagger This proof is due to M. Wachsberger and E. Weissfeld.
 § A different proof has been given by Behrend, Journal London Math, Soc.. 10 (1935). 42-44,

[^1]: * "On a theorem of Hardy and Ramanujan", Journal London Math. Soc., 9 (1934), 274-276.

