Here (7) follows from (b); (8) from (i) of the lemma and (c); (9) from (5) and (c) ; and (10) from (6) and (c).

Finally, making ϵ tend to zero and using property (d) again, we have

$$
\bar{M}(\xi) \leqslant[0, \xi]_{\bar{f}} .
$$

Hence the result of the theorem.
In conclusion, I may point out that Theorem II may be generalized by a weakening of the hypothesis (d).
(1) In the first place, continuity of $[\alpha, \beta]_{f}$ with respect to the pair of variables α, β may be replaced by upper semi-continuity. This generalization requires no change in the proof.
(2) This continuity (or upper semi-continuity) with respect to (α, β) is used only to show that the set A_{δ} is closed. A slight change in the proof shows that (d) may be replaced by
(d^{\prime}) if α is fixed and $0 \leqslant \alpha<a$, then $[\alpha, \beta]_{f}$ is an upper semicontinuous function of β in the range $\alpha<\beta \leqslant a$.

8 Bateman Street,
Cambridge.

A GENERALIZATION OF A THEOREM OF BESICOVITCH

$$
\text { P. Erdös } \dagger \text {. }
$$

Let us denote by δ_{a} the density of the integers which have a divisor between a and $2 a$. Besicovitch t has proved that $\liminf _{a \rightarrow \infty} \delta_{a}=0$. I have proved \S that $\lim \delta_{a}=0$. I now prove the following more general

Theorem. Let ϵ_{a} be an arbitrary function of a such that $\lim _{a \rightarrow \infty} \epsilon_{a}=0$, and let d_{a} be the density of the integers having a divisor between a and $a^{1+\epsilon_{a}}$. Then $\lim _{a \rightarrow \infty} d_{a}=0$.

It can easily be proved that, if ϵ_{a} does not tend to 0 , then $\varlimsup d_{a}>0$.
We may suppose without loss of generality that $a^{\epsilon_{a} \rightarrow \infty}$, for, if not, we can find $\epsilon_{a}{ }^{\prime}$ such that $\epsilon_{a} \leqslant \epsilon_{a}{ }^{\prime}, \epsilon_{a}{ }^{\prime} \rightarrow 0, a^{\varepsilon_{a}} \rightarrow \infty$, and then the theorem for ϵ_{a} follows from the theorem for $\epsilon_{a}{ }^{\prime}$.

[^0]We introduce the following notation:

1. A_{1}, A_{2}, \ldots denote the integers which are composed entirely of primes not greater than $a^{\varepsilon_{a}}$;
2. $x=\log \left(1 / \epsilon_{a}\right)$;
3. B_{1}, B_{2}, \ldots denote those integers in the interval $\left(a^{1-e_{a} x}, a^{1+\varepsilon_{a}}\right) \dagger$ which are composed entirely of primes greater than $\alpha^{\varepsilon_{a}}$;
4. $B_{1}{ }^{*}, B_{2}^{*}, \ldots$ denote those B 's which have not more than $\frac{2}{3} x$ different prime factors;
5. $B_{1}{ }^{+}, B_{2}{ }^{+}, \ldots$ denote those B 's which have more than $\frac{2}{3} x$ but not more than $\frac{4}{3} x$ different prime factors;
6. $B_{1}^{(r)}, B_{2}^{(r)}, \ldots$ denote those B 's which have exactly r different prime factors, where $r \leqslant \frac{4}{3} x$;
7. c 's denote suitable positive constants;
8. $p_{1}, p_{2}, \ldots, p_{s}$ denote the primes in the interval ($a^{\varepsilon_{a}}, a^{1+\varepsilon_{a}}$);
9. C_{1}, C_{2}, \ldots denote the integers composed entirely of the primes $p_{1}, p_{2}, \ldots, p_{s}$;
10. N is a sufficiently large number.

We require six lemmas.
Lemma 1. The number of integers $m \leqslant N$ which are divisible by an $A>a^{x \varepsilon_{a}}$ is less than $c_{1} N / x$.

Proof. Denote by $A(m)$ the greatest A which divides m. We have (in analogy with Legendre's formula for n !)

$$
\prod_{i=1}^{N} A(i)<\prod_{p \leqslant a^{e_{a}}} p^{N /(p-1)}=\exp \left(N \sum_{p \leqslant a^{e_{a}}} \frac{\log p}{p-1}\right)<a^{c_{1} N e_{a}}
$$

since

$$
\sum_{p \leqslant y} \frac{\log p}{p-1}<c_{1} \log y
$$

Hence, if we denote by U the number of integers $m \leqslant N$ for which $A(m)>a^{x_{e_{a}}}$, we have

$$
\begin{gathered}
a^{c_{1} N e_{a}}>a^{U x e_{a}} ; \\
U<c_{1} N / x .
\end{gathered}
$$

and thus

[^1]Lemma 2. The number of integers $m \leqslant N$ divisible by a $C>a^{1 / e_{a}}$ is less than $c_{2} N \epsilon_{a}$.

Proof. Denote by $C(m)$ the greatest C which divides m; we have, by Legendre's formula,

$$
\prod_{i=1}^{N} C(i)<\prod_{p \leqslant a^{1+\varepsilon_{a}}} p^{N / p-1}=\exp \left(N \sum_{p \leqslant a^{1+\varepsilon_{a}}} \frac{\log p}{p-1}\right)<\exp \left(c_{2} N \log a\right)=a^{c_{2} N} .
$$

Hence, if we denote by V the number of integers $m \leqslant N$ for which $C(m)>a^{1 / \epsilon_{a}}$, we have
and thus

$$
\begin{gathered}
a^{c_{2} N}>a^{V / \epsilon_{a}} \\
V<c_{2} N \epsilon_{a}
\end{gathered}
$$

Lemma 3.

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}<\epsilon_{a^{\frac{1}{10}}} .
$$

Proof. First we estimate $\sum_{i=1}^{\infty} \frac{1}{B_{i}^{(r)}}$.
If $B_{i}^{(r)}=p_{1}^{\alpha_{1}} p_{2}^{a_{2}} \cdots p_{r}^{\alpha_{r}}$, where $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\ldots<p_{r}^{\alpha_{r}}$, then $p_{r}^{\alpha_{r}}>\left(B_{i}^{(r)}\right)^{1 / r}$, and

$$
\begin{equation*}
p_{1}^{r_{1}} p_{2}^{2_{2}} \cdots p_{r-1}^{a_{r-1}}<\left(B_{i}^{(r)}\right)^{(r-1) / r}<a^{\left\{\left(1+\varepsilon_{u}\right)(r-1)\right\} / r} . \tag{1}
\end{equation*}
$$

The sum of the reciprocals of the $B_{i}^{(r)}$'s of which the first $r-1$ prime factors are $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r-1}^{a_{r}-1}$ is evidently not greater than $\frac{1}{p_{1}^{a_{1}} \ldots p_{r-1}^{a_{r-1}}} \Sigma^{\prime} \frac{1}{p_{r}^{a_{r}}}$, where Σ^{\prime} means that $p_{r}^{\alpha_{r}}$ runs through the interval

$$
\left(\frac{a^{1-\epsilon_{a} x}}{p_{1}^{a_{1}} \cdots p_{r-1}^{a_{r-1}}}, \quad \frac{a^{1+\varepsilon_{\alpha}}}{p_{1}^{a_{1}} \cdots p_{r-1}^{a_{r-1}}}\right) .
$$

Now it is known that, for $y \geqslant 3$,

Hence

$$
\sum_{p^{\alpha} \leqslant y} \frac{1}{p^{\alpha}}=\log \log y+c_{3}+O\left(\frac{1}{\log y}\right) .
$$

$$
\begin{aligned}
\sum_{u \leqslant p \leqslant u v} \frac{1}{p^{\alpha}} & =\log \log (u v)-\log \log u+O\left(\frac{1}{\log u}\right) \\
& =\log (\log u+\log v)-\log \log u+O\left(\frac{1}{\log u}\right)<\frac{\log v}{\log u}+O\left(\frac{1}{\log u}\right),
\end{aligned}
$$

since $\log (1+x) \leqslant x$ for $x \geqslant 0$.
Hence, taking

$$
u=\frac{a^{1-e_{n} x}}{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r-1}^{\sigma_{r-1}}} \quad \text { and } \quad v=a^{\varepsilon_{\alpha}(1+x)}
$$

we have

$$
\Sigma^{\prime} \frac{1}{p_{r}^{q_{r}^{r}}}<\frac{\epsilon_{a}(1+x) \log a}{\log \left(a^{1-\epsilon_{a} x} / p_{1}^{\alpha_{1}} \cdots p_{r-1}^{r_{r}^{r-1}}\right)}+O\left(\frac{1}{\log \left(a^{1-\epsilon_{a} x} / p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{r-1}^{x,-1}\right)}\right)
$$

and so, from (1),

$$
\Sigma^{\prime} \frac{1}{p_{r}^{a_{r}}}<\frac{\epsilon_{u}(1+x) \log a}{\log a^{1-\epsilon_{a} x-\left\{\left(1+\varepsilon_{u}\right)(r-1)\right\} / r}}+O\left(\frac{1}{\log a^{1-\epsilon_{a} x-\left\{\left(1+\epsilon_{a}\right)(r-1)\right\} / r}}\right) .
$$

Now $(1+x) \epsilon_{a} \log a$ tends to infinity because $a^{\epsilon_{a}}$ tends to infinity, and so we may write

$$
\Sigma^{\prime} \frac{1}{p_{r}^{a_{r}}}<\frac{2 \epsilon_{a}(1+x) \log a}{\log a^{1-\epsilon_{a} x-\left\{\left(1+\varepsilon_{a}\right)(r-1)\right\} / r}}
$$

for $a>a_{0}$, say. Thus

$$
\Sigma^{\prime} \frac{1}{p_{r^{r}}^{r}}<\frac{2 \epsilon_{a}(1+x)}{1-\epsilon_{a} x-\left\{\left(1+\epsilon_{a}\right)(r-1)\right\} / r}=\frac{2 r \epsilon_{a}(1+x)}{1-\epsilon_{a}(r x+r-1)} .
$$

Now $r \leqslant \frac{4}{3} x$, and so $\epsilon_{a}(r x+r-1) \leqslant \epsilon_{a} 3 x^{2}<\frac{1}{2}$ for sufficiently large a. Hence

$$
\Sigma^{\prime} \frac{1}{p_{r}^{2_{r}}}<4 \epsilon_{a} r(x+1)<8 \epsilon_{a} x^{2} .
$$

From this, we have

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{(r)}}<8 \epsilon_{a} x^{2} \sum_{p_{1}^{a_{1}} \cdots p_{r-1}^{a_{r-1}}<a 1+\epsilon a} \frac{1}{p_{1}^{\alpha_{1}} p_{2}^{a_{2}} \cdots p_{r-1}^{a_{r-1}}} & <8 \epsilon_{a} x^{2}\left\{\left(\sum_{p, \alpha} \frac{1}{p^{\alpha}}\right)^{r-1} /(r-1)!\right\} \\
& <8 \epsilon_{a} x^{2} \frac{(x+1)^{r-1}}{(r-1)!}
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{p, a} \frac{1}{p^{2}} & =\log \log a^{1+\varepsilon_{a}}-\log \log a^{\epsilon_{a}}+O\left(\frac{1}{\log a^{\epsilon_{a}}}\right) \\
& =\log \left(1+\epsilon_{a}\right)-\log \epsilon_{a}+O\left(\frac{1}{\log a^{\epsilon_{a}}}\right)<x+1
\end{aligned}
$$

Hence

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}=\sum_{r=1}^{[3 x]} \sum_{i=1}^{\infty} \frac{1}{B_{i}^{(r)}}<8 \epsilon_{a} x^{2} \sum_{r=1}^{\left[\frac{2}{2}\right]} \frac{(x+1)^{r-1}}{(r-1)!}<\frac{1}{3} \epsilon_{a} x^{3} \frac{(x+1)^{\left[\frac{2}{2} x\right]}}{\left(\left[{ }_{3}^{2} x\right]\right)!},
$$

since $(x+1)^{r-1} /(r-1)$! increases with r for $r<x+1$.
From the inequality $\quad n!>\frac{n^{n}}{e^{n}}$
we have

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}<6 \epsilon_{a} x^{3} \frac{(x+1)^{\frac{2}{3} x+1} e^{\frac{2}{2} x+1}}{\left({ }_{3}^{2} x\right)^{\frac{3}{3 x}}} .
$$

Now

$$
(x+1)^{x}<e x^{x}
$$

and so

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}<6 e^{2} \epsilon_{a} x^{3}(x+1) \frac{x^{3 x} e^{\frac{3}{3 x}}}{\left(\frac{2}{3} x\right)^{\frac{3}{3} x}}=6 e^{2} \epsilon_{a} x^{3}(x+1) e^{\frac{3 x}{}\left(\frac{3}{2}\right)^{3 x} .}
$$

Further \dagger,

$$
\left(\frac{3}{2}\right)^{\frac{1}{2}}<e^{\frac{4}{27}}
$$

Hence

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}<6 e^{2} \epsilon_{a} x^{3}(x+1) e^{\frac{29}{i f x}}
$$

but

$$
\epsilon_{a}=e^{-x},
$$

and so

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{*}}<6 e^{2} x^{3}(x+1) \epsilon_{a^{2 \geqslant}}^{\frac{2 丷}{2}}<\epsilon_{a}^{\text {号 }}
$$

for $a>a_{0}$, which proves Lemma 3 .
Lemma 4.

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{+}}<x^{3} .
$$

Proof. As in Lemma 2, we have

$$
\sum_{i=1}^{\infty} \frac{1}{B_{i}^{+}}=\sum_{r>3}^{r \leqslant{ }_{3}^{4} x} x \sum_{i=1}^{\infty} \frac{1}{B_{i}^{(r)}}<8 \epsilon_{a} x^{2} \sum_{r>\} x}^{r \leqslant t} x \frac{(x+1)^{r-1}}{(r-1)!}<8 \epsilon_{a} x^{2} e^{x+1}=8 e x^{2}<x^{3} .
$$

Lemma 5. The number W of integers $m \leqslant N$ which are divisible by not more than $\frac{2}{3} x$ of the p_{i} 's is less than $N \epsilon_{a}{ }^{\frac{13}{30}}$.

Proof. We split these integers m into two classes. Put in the first class those for which $C(m)>a^{1 / \varepsilon_{a}}$. The number of these is, by Lemma 2, less than $c_{2} N \epsilon_{a}$.

For the integers of the second class $C(m) \leqslant a^{1 / \varepsilon_{a}}$.
The number Z of integers $m \leqslant N$ for which $C(m)=C_{i} \leqslant a^{1 / e_{a}}$ is equal to the number of integers less than or equal to N / C_{i} not divisible by any p_{i}. For this number we have, from the sieve of Eratosthenes, the inequality

$$
Z<\frac{N}{C_{i}} \prod_{p_{i}}\left(1-\frac{1}{p_{i}}\right)+2^{s}<c_{4} \frac{N \epsilon_{a}}{C_{i}}
$$

since $C_{i} \leqslant a^{1 / \epsilon_{a}}$ and the number of the p_{i} 's is independent of N. Hence

$$
W<c_{2} N \epsilon_{a}+c_{4} N \epsilon_{a} \sum_{C_{i} \leqslant a^{1 / \epsilon_{a}}}^{\prime} \frac{1}{C_{i}}
$$

where the dash means that C_{i} runs through the C 's having not more than

$$
\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}\left(\frac{3}{2}\right)^{2}<\frac{9}{4} \frac{6}{5}=2 \frac{7}{10}<e .
$$

$\frac{2}{3} x$ prime factors. Thus

$$
W<c_{2} N \epsilon_{a}+c_{4} N \epsilon_{a}\left(\sum_{p, \alpha} \frac{1}{p^{\alpha}}+\frac{\left(\sum_{p, a} \frac{1}{p^{\alpha}}\right)^{2}}{2!}+\frac{\left(\sum_{p, a} \frac{1}{p^{\alpha}}\right)^{3}}{3!}+\ldots+\frac{\left(\sum_{p, \alpha} \frac{1}{p^{\alpha}}\right)^{\left[\frac{\beta 3}{} x\right]}}{\left[\frac{2}{3} x\right]!}\right)
$$

where p runs through $p_{1}, p_{2}, \ldots, p_{s}$.
Finally, exactly as in the proof of Lemma 3,

$$
W<c_{2} N \epsilon_{a}+c_{4} N \epsilon_{a}\left((x+1)+\frac{(x+1)^{2}}{2!}+\ldots+\frac{(x+1)^{\left[\frac{[3}{3} x\right]}}{\left[\frac{2}{3} x\right]!}\right)<N \epsilon_{a^{\frac{1}{30}}}
$$

Lemma 6. The number of integers $m \leqslant N$ divisible by $\frac{4}{3} x$ or more of the p_{i} 's (multiple factors counted multiply) is less than ηN for every $\eta>0$, if $N>N(\eta)$.

The proof follows easily by Turán's method \dagger, so that it will be sufficient to sketch it.

The number of integers less than or equal to N divisible by a $p_{i}{ }^{2}$ is less than

$$
\sum_{p_{i}} \frac{N}{p_{i}^{2}}<\frac{\eta}{2} N
$$

hence it will be sufficient to consider the m 's containing the p_{i} 's to the first power only.

Let $f(m)$ be the number of p_{i} 's contained in m. We prove that

$$
\begin{equation*}
\sum_{m=1}^{N}[f(m)-x]^{2}<c_{5} N x \tag{2}
\end{equation*}
$$

where c_{5} is independent of N and x. Evidently

$$
\begin{equation*}
\sum_{m=1}^{N}[f(m)-x]^{2}=\sum_{m=1}^{N} f(m)^{2}-2 x \sum_{m=1}^{N} f(m)+N x^{2} \tag{3}
\end{equation*}
$$

We can easily show that

$$
\begin{equation*}
\sum_{m=1}^{N} f(m)^{2}=2 \sum_{\substack{p_{i}, p_{k} \\ p_{i} \neq p_{k}}}\left[\frac{N}{p_{i} p_{k}}\right]+\sum_{p_{i}}\left[\frac{N}{p_{i}^{2}}\right] \leqslant N\left(\sum_{p_{i}} \frac{1}{p_{i}}\right)^{2}=N x^{2}+O(N x) \tag{4}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\sum_{m=1}^{N} f(m)=\sum_{p_{i}}\left[\frac{N}{p_{i}}\right]=N x+O(N) . \tag{5}
\end{equation*}
$$

Substituting from (4) and (5) in (3), we immediately obtain (2).
From (2) we deduce that the number of integers less than or equal to N for which $f(m)>\frac{4}{3} x$ is less than $9 c_{5} N / x<\frac{1}{2} \eta N$ for sufficiently large x; thus Lemma 6 is proved.

Proof of the theorem. We divide the integers of the interval ($a, a^{1+\epsilon_{a}}$) into two classes. In the first class are the integers which are divisible by

[^2]an $A>a^{x e_{a}}$. By Lemma 1 the number of integers $m \leqslant N^{\prime}$ divisible by an integer of the first class is less than $c_{1} N / x$. The second class contains the other integers in the interval in question. Every integer I of the second class is divisible by a B_{i}, for, if A_{I} is the largest A contained in I, then I / A_{I} contains no prime less than or equal to $a^{\varepsilon_{a}}$, since these have been absorbed by I_{A}; also $I / A_{I}>a^{1-\epsilon_{a} x}$, since $A_{I}<a^{x_{a}}$; hence I / A_{I} is a B. We divide these B 's into three classes. Put in the first the B_{i}^{*} 's, in the second the $B_{i}{ }^{+}$'s, and in the third the B 's having more than $\frac{4}{3} x$ prime factors.

The number of integers not greater than N divisible by a B^{*} is less than

$$
\sum_{i=1}^{\infty} \frac{N}{B_{i}^{*}}<N \epsilon_{a^{\frac{1 \pi}{i n}},}
$$

by Lemma 3 .
We subdivide the integers less than or equal to N divisible by a $B_{i}{ }^{+}$into two sets, putting in the first those of the form $t B_{i}^{+}$, where $t \leqslant N / B_{i}^{+}$and t has at most $\frac{2}{3} x$ different prime factors among the p_{i} 's. The number of integers in the first set is less than

$$
\epsilon_{a^{30}}^{\text {30 }} \sum_{i=1}^{\infty} \frac{N}{B_{i}^{+}}<x^{3} \epsilon_{a^{3}}^{\text {3o }},
$$

by Lemma 4 , since, by Lemma 5 , the number of t 's is less than $\left(N / B_{i}{ }^{+}\right) \epsilon_{a^{35}}$. The second set includes the integers of the form $t B_{i}{ }^{+}$, where t has more than ${ }_{3}^{2} x$ different prime factors among the p_{i} 's. These integers have more than ${ }_{3}^{4} x$ prime factors (multiple factors counted multiply) among the p_{i} 's, and so, by Lemma 6 , their number is less than ηN.

Similarly the number of integers $m \leqslant N$ divisible by a B of the third class is less than ηN.

Hence the number of integers not greater than N having a divisor in the interval $\left(a_{1}, a^{1+\epsilon_{a}}\right)$ is less than

$$
N\left(\frac{c_{1}}{x}+\epsilon_{a^{\frac{3}{20}}}+x^{3} \epsilon_{a^{\frac{2}{20}}}+\eta\right) ;
$$

thus their density is less than
which is arbitrarily small. This proves the theorem.
By a more precise argument we can prove that the density in question is less than $\epsilon_{a}^{\epsilon_{0}}$.

The University, Manchester.

[^0]: \dagger Received 10 June, 1935; read 20 June, 1935.
 \ddagger Math. Annalen, 110 (1934), 336-341.
 § Journal London Math. Soc. 10 (1935), 126-128.

[^1]: \dagger We consider the upper bound to be included in the interval but not the lower bound.

[^2]: \dagger Journal London Math. Soc., 9 (1934), 274-276.

