92 A NEW PROOF OF A THEOREM OF HARDY AND LITTLEWOOD.

Here (7) follows from (b); (8) from (i) of the lemma and (c); (9) from (5) and (c); and (10) from (6) and (c).

Finally, making ϵ tend to zero and using property (d) again, we have

 $\overline{M}(\xi) \leqslant [0, \xi]_{\overline{f}}.$

Hence the result of the theorem.

In conclusion, I may point out that Theorem II may be generalized by a weakening of the hypothesis (d).

(1) In the first place, continuity of $[\alpha, \beta]_f$ with respect to the pair of variables α, β may be replaced by upper semi-continuity. This generalization requires no change in the proof.

(2) This continuity (or upper semi-continuity) with respect to (α, β) is used only to show that the set A_{δ} is closed. A slight change in the proof shows that (d) may be replaced by

(d') if a is fixed and $0 \leq a < a$, then $[a, \beta]_f$ is an upper semicontinuous function of β in the range $a < \beta \leq a$.

8 Bateman Street,

Cambridge.

A GENERALIZATION OF A THEOREM OF BESICOVITCH

P. Erdös†.

Let us denote by δ_a the density of the integers which have a divisor between *a* and 2*a*. Besicovitch[‡] has proved that $\liminf_{a\to\infty} \delta_a = 0$. I have proved[§] that $\lim_{a\to\infty} \delta_a = 0$. I now prove the following more general

THEOREM. Let ϵ_a be an arbitrary function of a such that $\lim_{a \to \infty} \epsilon_a = 0$, and let d_a be the density of the integers having a divisor between a and $a^{1+\epsilon_a}$. Then $\lim_{a \to \infty} d_a = 0$.

It can easily be proved that, if ϵ_a does not tend to 0, then $\overline{\lim} d_a > 0$.

We may suppose without loss of generality that $a^{\epsilon_a} \rightarrow \infty$, for, if not, we can find ϵ_a' such that $\epsilon_a \leq \epsilon_a'$, $\epsilon_a' \rightarrow 0$, $a^{\epsilon_a'} \rightarrow \infty$, and then the theorem for ϵ_a follows from the theorem for ϵ_a' .

[†] Received 10 June, 1935; read 20 June, 1935.

[‡] Math. Annalen, 110 (1934), 336-341.

[§] Journal London Math. Soc. 10 (1935), 126-128.

A GENERALIZATION OF A THEOREM OF BESICOVITCH.

We introduce the following notation:

1. A_1, A_2, \ldots denote the integers which are composed entirely of primes not greater than a^{ϵ_a} ;

2. $x = \log(1/\epsilon_a);$

3. B_1, B_2, \ldots denote those integers in the interval $(a^{1-\epsilon_a x}, a^{1+\epsilon_a})$ [†] which are composed entirely of primes greater than a^{ϵ_a} ;

4. B_1^* , B_2^* , ... denote those B's which have not more than $\frac{2}{3}x$ different prime factors;

5. B_1^+ , B_2^+ , ... denote those B's which have more than $\frac{2}{3}x$ but not more than $\frac{4}{3}x$ different prime factors;

6. $B_1^{(r)}$, $B_2^{(r)}$, ... denote those B's which have exactly r different prime factors, where $r \leq \frac{4}{3}x$;

7. c's denote suitable positive constants;

8. $p_1, p_2, ..., p_s$ denote the primes in the interval $(a^{\epsilon_a}, a^{1+\epsilon_a})$;

9. C_1, C_2, \ldots denote the integers composed entirely of the primes p_1, p_2, \ldots, p_s ;

10. N is a sufficiently large number.

We require six lemmas.

LEMMA 1. The number of integers $m \leq N$ which are divisible by an $A > a^{x\epsilon_a}$ is less than $c_1 N/x$.

Proof. Denote by A(m) the greatest A which divides m. We have (in analogy with Legendre's formula for n!)

$$\prod_{i=1}^{N} A(i) < \prod_{p \leqslant a^{\epsilon_a}} p^{N/(p-1)} = \exp\left(N \sum_{p \leqslant a^{\epsilon_a}} \frac{\log p}{p-1}\right) < a^{c_1 N \epsilon_a},$$
$$\sum_{p \leqslant y} \frac{\log p}{p-1} < c_1 \log y.$$

since

Hence, if we denote by U the number of integers $m \leq N$ for which $A(m) > a^{x_{\epsilon_a}}$, we have $a^{c_1 N \epsilon_a} > a^{U x \epsilon_a}$;

and thus
$$U < c_1 N/x$$

[†] We consider the upper bound to be included in the interval but not the lower bound.

P. Erdös

LEMMA 2. The number of integers $m \leq N$ divisible by a $C > a^{1/\epsilon_a}$ is less than $c_2 N \epsilon_a$.

Proof. Denote by C(m) the greatest C which divides m; we have, by Legendre's formula,

$$\prod_{i=1}^{N} C(i) < \prod_{p \leqslant a^{1+\epsilon_a}} p^{N/p-1} = \exp\left(N \sum_{p \leqslant a^{1+\epsilon_a}} \frac{\log p}{p-1}\right) < \exp\left(c_2 N \log a\right) = a^{c_2 N}.$$

Hence, if we denote by V the number of integers $m \leq N$ for which $C(m) > a^{1/\epsilon_a}$, we have

 $a^{c_2 N} > a^{V/\epsilon_a}$

 $V < c_2 N \epsilon_a$.

and thus

Lemma 3. $\sum_{i=1}^{\infty} \frac{1}{B_i^*} < \epsilon_a^{\frac{1}{50}}.$

Proof. First we estimate $\sum_{i=1}^{\infty} \frac{1}{B_i^{(r)}}$.

If $B_i^{(r)} = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$, where $p_1^{a_1} < p_2^{a_2} < \dots < p_r^{a_r}$, then $p_r^{a_r} > (B_i^{(r)})^{1/r}$, and

$$p_1^{*_1} p_2^{*_2} \cdots p_{r-1}^{*_{r-1}} < (B_i^{(r)})^{(r-1)/r} < a^{\{(1+\varepsilon_a)(r-1)\}/r}.$$
(1)

The sum of the reciprocals of the $B_i^{(r)}$'s of which the first r-1 prime factors are $p_1^{a_1}p_2^{a_2}\dots p_{r-1}^{a_{r-1}}$ is evidently not greater than $\frac{1}{p_1^{a_1}\dots p_{r-1}^{a_{r-1}}}\Sigma'\frac{1}{p_r^{a_r}}$, where Σ' means that $p_r^{a_r}$ runs through the interval

$$\begin{pmatrix} a^{1-\epsilon_a x} & a^{1+\epsilon_a} \\ p_1^{a_1} \cdots p_{r-1}^{a_{r-1}}, & p_1^{a_1} \cdots p_{r-1}^{a_{r-1}} \end{pmatrix}$$
.

Now it is known that, for $y \ge 3$,

$$\sum_{p^a \leqslant y} \frac{1}{p^a} = \log \log y + c_3 + O\left(\frac{1}{\log y}\right).$$

Hence

$$\begin{split} \sum_{\substack{u \leq p \leq uv}} \frac{1}{p^{a}} &= \log \log (uv) - \log \log u + O\left(\frac{1}{\log u}\right) \\ &= \log \left(\log u + \log v\right) - \log \log u + O\left(\frac{1}{\log u}\right) < \frac{\log v}{\log u} + O\left(\frac{1}{\log u}\right), \end{split}$$

since $\log(1+x) \leq x$ for $x \geq 0$.

Hence, taking

$$u = \frac{a^{1-\epsilon_a x}}{p_1^{a_1} p_2^{a_2} \cdots p_{r-1}^{a_{r-1}}}$$
 and $v = a^{\epsilon_a(1+x)}$,

A GENERALIZATION OF A THEOREM OF BESICOVITCH.

we have

$$\Sigma' \frac{1}{p_r^{\gamma_r}} < \frac{\epsilon_a (1+x) \log a}{\log \left(a^{1-\epsilon_a x} / p_1^{\alpha_1} \dots p_{r-1}^{\alpha_{r-1}} \right)} + O\left(\frac{1}{\log \left(a^{1-\epsilon_a x} / p_1^{\gamma_1} p_2^{\gamma_2} \dots p_{r-1}^{\alpha_{r-1}} \right)} \right);$$

and so, from (1),

$$\Sigma' \frac{1}{p_r^{a_r}} < \frac{\epsilon_a (1+x) \log a}{\log a^{1-\epsilon_a x - \{(1+\epsilon_a)(r-1)\}/r}} + O\left(\frac{1}{\log a^{1-\epsilon_a x - \{(1+\epsilon_a)(r-1)\}/r}}\right).$$

Now $(1+x) \epsilon_a \log a$ tends to infinity because a^{ϵ_a} tends to infinity, and so we may write

$$\Sigma' \frac{1}{p_r^{a_r}} < \frac{2\epsilon_a(1+x)\log a}{\log a^{1-\epsilon_a x - \langle (1+\epsilon_a)(r-1) \rangle/r}}$$

for $a > a_0$, say. Thus

$$\Sigma' \frac{1}{p_r'} < \frac{2\epsilon_a(1+x)}{1-\epsilon_a x - \{(1+\epsilon_a)(r-1)\}/r} = \frac{2r \epsilon_a(1+x)}{1-\epsilon_a (rx+r-1)}.$$

Now $r \leqslant \frac{4}{3}x$, and so $\epsilon_a(rx+r-1) \leqslant \epsilon_a 3x^2 < \frac{1}{2}$ for sufficiently large a. Hence

$$\Sigma' \frac{1}{p_r^{n_r}} < 4\epsilon_a r(x+1) < 8\epsilon_a x^2.$$

From this, we have

$$\begin{split} \sum_{i=1}^{\infty} \frac{1}{B_i^{(r)}} &< 8\epsilon_a x^2 \sum_{p_1^{a_1} \dots p_{r-1}^{a_{r-1}} < a_{1+\epsilon_a}} \frac{1}{p_1^{a_1} p_2^{a_2} \dots p_{r-1}^{a_{r-1}}} < 8\epsilon_a x^2 \left\{ \left(\sum_{p, a} \frac{1}{p^a} \right)^{r-1} \middle/ (r-1)! \right\} \\ &< 8\epsilon_a x^2 \frac{(x+1)^{r-1}}{(r-1)!}, \end{split}$$

since

$$\sum_{p,a} \frac{1}{p^{a}} = \log \log a^{1+\epsilon_{a}} - \log \log a^{\epsilon_{a}} + O\left(\frac{1}{\log a^{\epsilon_{a}}}\right)$$
$$= \log (1+\epsilon_{a}) - \log \epsilon_{a} + O\left(\frac{1}{\log a^{\epsilon_{a}}}\right) < x+1$$

Hence

$$\sum_{i=1}^{\infty} \frac{1}{B_i^*} = \sum_{r=1}^{\lfloor \frac{s}{2} \rfloor} \sum_{i=1}^{\infty} \frac{1}{B_i^{(r)}} < 8\epsilon_a x^2 \sum_{r=1}^{\lfloor \frac{s}{2} \rfloor} \frac{(x+1)^{r-1}}{(r-1)!} < \frac{1.6}{3}\epsilon_a x^3 \frac{(x+1)^{\lfloor \frac{s}{2} x\rfloor}}{(\lfloor \frac{2}{3} x\rfloor)!},$$

since $(x+1)^{r-1}/(r-1)!$ increases with r for r < x+1.

From the inequality $n! > \frac{n^n}{e^n}$

have
$$\sum_{i=1}^{\infty} \frac{1}{B_i^*} < 6\epsilon_a x^3 \frac{(x+1)^{\frac{2}{3}x+1} e^{\frac{2}{3}x+1}}{\binom{2}{3}x^{\frac{2}{3}x}}.$$

we have

P. Erdös

Now

$$(x+1)^x < ex^x$$
,

and so

$$\sum_{i=1}^{\infty} \frac{1}{B_i^{*}} < 6e^2 \epsilon_a x^3 (x+1) \frac{x^{\frac{3}{3}x} e^{\frac{3}{3}x}}{(\frac{2}{3}x)^{\frac{3}{3}x}} = 6e^2 \epsilon_a x^3 (x+1) e^{\frac{3}{3}x} (\frac{3}{2})^{\frac{3}{3}x}$$

 $(\frac{3}{2})^{\frac{2}{3}} < e^{\frac{8}{27}}.$

Further[†],

$$\sum_{i=1}^{\infty} \frac{1}{B_i^{*}} < 6e^2 \epsilon_a x^3 (x+1) e^{\frac{26}{27}x},$$

 $\epsilon_a = e$

but

Hence

and so

for $a > a_0$, which proves Lemma 3.

LEMMA 4.
$$\sum_{i=1}^{\infty} \frac{1}{B_i^+} < x^3$$
.

Proof. As in Lemma 2, we have

$$\sum_{i=1}^{\infty} \frac{1}{B_i^+} = \sum_{r>\frac{2}{3}x}^{r\leqslant\frac{4}{3}x} \sum_{i=1}^{\infty} \frac{1}{B_i^{(r)}} < 8\epsilon_a x^2 \sum_{r>\frac{2}{3}x}^{r\leqslant\frac{4}{3}x} \frac{(x+1)^{r-1}}{(r-1)!} < 8\epsilon_a x^2 e^{x+1} = 8e x^2 < x^3.$$

LEMMA 5. The number W of integers $m \leq N$ which are divisible by not more than $\frac{2}{3}x$ of the p_i 's is less than $N \epsilon_a^{\frac{3}{3}0}$.

Proof. We split these integers m into two classes. Put in the first class those for which $C(m) > a^{1/\epsilon_a}$. The number of these is, by Lemma 2, less than $c_2 N \epsilon_a$.

For the integers of the second class $C(m) \leq a^{1/\epsilon_a}$.

The number Z of integers $m \leq N$ for which $C(m) = C_i \leq a^{1/\epsilon_a}$ is equal to the number of integers less than or equal to N/C_i not divisible by any p_i . For this number we have, from the sieve of Eratosthenes, the inequality

$$Z \! < \! \frac{N}{C_i} \prod_{p_i} \left(1 \! - \! \frac{1}{p_i} \right) \! + \! 2^s \! < \! c_4 \, \frac{N \epsilon_a}{C_i},$$

since $C_i \leq a^{1/\epsilon_a}$ and the number of the p_i 's is independent of N. Hence

$$W < c_2 N \epsilon_a + c_4 N \epsilon_a \sum_{C_i \leqslant a^{1/\epsilon_a}} \frac{1}{C_i},$$

where the dash means that C_i runs through the C's having not more than

[†] We have
$$(\frac{3}{2})^{\frac{9}{4}} = (\frac{3}{2})^2 (\frac{3}{2})^{\frac{1}{4}} < \frac{9}{4} \frac{6}{5} = 2\frac{7}{10} < e.$$

96

A GENERALIZATION OF A THEOREM OF BESICOVITCH.

 $\frac{2}{3}x$ prime factors. Thus

8

$$W < c_2 N \epsilon_a + c_4 N \epsilon_a \left(\sum_{p, a} \frac{1}{p^a} + \frac{\left(\sum\limits_{p, a} \frac{1}{p^a}\right)^2}{2!} + \frac{\left(\sum\limits_{p, a} \frac{1}{p^a}\right)^3}{3!} + \ldots + \frac{\left(\sum\limits_{p, a} \frac{1}{p^a}\right)^{[\frac{3}{3}x]}}{[\frac{2}{3}x]!} \right),$$

where p runs through $p_1, p_2, ..., p_s$.

Finally, exactly as in the proof of Lemma 3,

$$W < \! c_2 N \epsilon_a \! + \! c_4 N \epsilon_a \Big((x\!+\!1) \! + \! \frac{(x\!+\!1)^2}{2\,!} \! + \! \dots \! + \! \frac{(x\!+\!1)^{[\frac{2}{3}x]}}{[\frac{2}{3}x]!} \Big) \! < \! N \epsilon_a^{\frac{1}{30}} \! .$$

LEMMA 6. The number of integers $m \leq N$ divisible by $\frac{4}{3}x$ or more of the p_i 's (multiple factors counted multiply) is less than ηN for every $\eta > 0$, if $N > N(\eta).$

The proof follows easily by Turán's method[†], so that it will be sufficient to sketch it.

The number of integers less than or equal to N divisible by a p_i^2 is less than

$$\sum_{p_i} \frac{N}{p_i^2} < \frac{\eta}{2} N;$$

hence it will be sufficient to consider the m's containing the p_i 's to the first power only.

Let f(m) be the number of p_i 's contained in m. We prove that

$$\sum_{m=1}^{N} [f(m) - x]^2 < c_5 N x, \tag{2}$$

where c_5 is independent of N and x. Evidently

$$\sum_{n=1}^{N} [f(m) - x]^2 = \sum_{m=1}^{N} f(m)^2 - 2x \sum_{m=1}^{N} f(m) + Nx^2.$$
(3)

We can easily show that

$$\sum_{n=1}^{N} f(m)^2 = 2 \sum_{\substack{p_i, p_k \\ p_i \neq p_k}} \left[\frac{N}{p_i p_k} \right] + \sum_{p_i} \left[\frac{N}{p_i^2} \right] \leqslant N \left(\sum_{p_i} \frac{1}{p_i} \right)^2 = Nx^2 + O(Nx).$$
(4)

rther,
$$\sum_{m=1}^{N} f(m) = \sum_{p_i} \left[\frac{N}{p_i} \right] = Nx + O(N).$$
(5)

Substituting from (4) and (5) in (3), we immediately obtain (2).

From (2) we deduce that the number of integers less than or equal to Nfor which $f(m) > \frac{4}{3}x$ is less than $9c_5 N/x < \frac{1}{2}\eta N$ for sufficiently large x; thus Lemma 6 is proved.

Proof of the theorem. We divide the integers of the interval $(a, a^{1+\epsilon_a})$ into two classes. In the first class are the integers which are divisible by

† Journal London Math. Soc., 9 (1934), 274-276.

JOUR. 42.

Fu

an $A > a^{x\epsilon_a}$. By Lemma 1 the number of integers $m \leq N$ divisible by an integer of the first class is less than $c_1 N/x$. The second class contains the other integers in the interval in question. Every integer I of the second class is divisible by a B_i , for, if A_I is the largest A contained in I, then I/A_I contains no prime less than or equal to a^{ϵ_a} , since these have been absorbed by I_A ; also $I/A_I > a^{1-\epsilon_a x}$, since $A_I < a^{x\epsilon_a}$; hence I/A_I is a B. We divide these B's into three classes. Put in the first the B_i^* 's, in the second the B_i^+ 's, and in the third the B's having more than $\frac{4}{3}x$ prime factors.

The number of integers not greater than N divisible by a B^* is less than

$$\sum_{i=1}^{\infty} \frac{N}{B_i^*} < N \epsilon_a^{30},$$

by Lemma 3.

98

We subdivide the integers less than or equal to N divisible by a B_i^+ into two sets, putting in the first those of the form tB_i^+ , where $t \leq N/B_i^+$ and t has at most $\frac{2}{3}x$ different prime factors among the p_i 's. The number of integers in the first set is less than

$$\epsilon_{a^{\frac{1}{30}}} \sum_{i=1}^{\infty} \frac{N}{B_{i}^{+}} \! < \! x^{3} \, \epsilon_{a^{\frac{1}{30}}},$$

by Lemma 4, since, by Lemma 5, the number of t's is less than $(N/B_i^+) \epsilon_a^{3b}$. The second set includes the integers of the form tB_i^+ , where t has more than $\frac{2}{3}x$ different prime factors among the p_i 's. These integers have more than $\frac{4}{3}x$ prime factors (multiple factors counted multiply) among the p_i 's, and so, by Lemma 6, their number is less than ηN .

Similarly the number of integers $m \leq N$ divisible by a B of the third class is less than ηN .

Hence the number of integers not greater than N having a divisor in the interval $(a_1, a^{1+\epsilon_a})$ is less than

thus their density is less than

which is arbitrarily small. This proves the theorem.

By a more precise argument we can prove that the density in question is less than $\epsilon_a^{c_6}$.

The University, Manchester,