NOTE ON SOME ADDITIVE PROPERTIES OF INTEGERS

By Paul Erdós, Manchester.

I. It is well known that for suitable n^{\prime} s both the equations $n=x^{2}-y^{2}$ and $n=x^{2}+y^{2}$ have more than $n^{\frac{c_{2}}{\log \log n}}$ solutions. I show that for suitable n 's the number of solutions of the equations $n=p^{2}-q^{2}$ resp. $n=p^{2}+q^{2}$ (p, q primes) is greater than $n^{\frac{c_{2}}{\log \log n}}$.

I sketch the proof for $n=p^{2}-q^{2}$.
Let $A=2 \cdot 3 \cdots p_{r}$, the product of consecutive primes, be sufficiently large. By elementary method we prove that the number of solutions of the congruence $p^{2}-q^{2} \equiv 0(\bmod A)$ with $0<q<p<A$ is greater than $A^{1+\frac{1}{4 \log \log A}}$. But the integers of the form $p^{2}-q^{2}$ with $0<q<p<A$ lie all between 0 and A^{2}, hence there exists a multiple of A say $n\left(<A^{2}\right)$ such that the number of solutions of the equation $n=p^{2}-q^{2}$ is greater than $A^{\frac{1}{4 \log \log A}}>n^{\frac{1}{8 \log \log n}}$.

The proof for $n=p^{2}+q^{2}$ is much more complicated but also elementary. It requires Brun's method.
2. Schnirelmann proved that there exists a constant c_{g} such that every integer is the sum of c_{8} or less primes. Some time ago Heilbronn-Landau-Scherk proved that $c_{8} \leqq 71$. By Brun's method I proved that there exists a constant c_{4} such that any integer is the sum of c_{4} or less positive and negative squares of primes. The same result holds for any powers of primes. It can be proved also that the density of integers of the form $p^{2}+q^{2}-r^{2}-s^{2}$ is positive.
3. Now I sketch some new results of N. P. Romanoff (Tomsk).

Let us denote by $f\left(x_{1}, x_{2}, \cdots, x_{k_{1}} ; y_{1}, y_{2}, \cdots y_{k_{2}} \mid n\right)$ the number of integers not exceeding n belonging to the sequence x_{i}, y_{j} and $x_{i}+y_{j}$. It is an old and most important problem of the additive theory of numbers to determine the value of f for given x_{i} and y_{j}. But this can be solved only for special sequences. Romanoff deduced 4 formulas for the mean value of f for general sequences of integers.

First mean-value-theorem:

$$
\begin{gathered}
\sum_{1 \leqq x_{1}<x_{2}<\cdots, x_{k_{1}} \leqq n} f\left(x_{1}, x_{2}, \cdots, x_{k_{1}} ; y_{1}, y_{2}, \cdots, y_{k_{2}} \mid n\right) \\
=n C_{k_{1}}^{n}-\sum_{z=1}^{n-k_{9}} C_{k}^{n-1-\bar{y}_{z}+z}
\end{gathered}
$$

where $C_{k}^{n}=\binom{n}{k}$ and \bar{y}_{z} denotes the complementary sequence of y_{z}.
Second mean-value-theorem:

$$
\begin{gathered}
\sum_{x_{1}=1}^{n} \sum_{x_{2}=1}^{n} \cdots \sum_{x_{k_{1}}=1}^{n} f\left(x_{1}, x_{2}, \cdots, x_{k_{1}} ; y_{1}, y_{2}, \cdots, y_{k_{2}} \mid n\right) \\
=n^{k+1}-\sum_{z=1}^{n-k_{2}}\left(n-1-\bar{y}_{z}+z\right)^{k_{2}}
\end{gathered}
$$

Third mean-value-theorem:

$$
\begin{gathered}
\sum_{1 \leqq x_{1} \leqq x_{2} \leqq \ldots \leqq x_{k_{1}} \leqq n} \sum_{1<y_{1}<y_{2}<\cdots<y_{k_{2}} \leqq n} f\left(x_{1}, x_{2}, \cdots x_{k_{1}} ; y_{1}, y_{2}, \cdots y_{k_{h}} \mid n\right) \\
=n C_{k_{1}}^{n} C_{k_{2}}^{n}-C_{k_{1}+1}^{n} C_{k_{2}+1}^{n}+C_{k_{1}+1}^{n} C_{k_{2}}^{n-k_{1}+1}
\end{gathered}
$$

Fourth mean-value-theorem:

$$
\begin{gathered}
\sum_{1 \leqq x_{1}<x_{2}<\cdots<x_{k} \leqq n} f\left(x_{1}, x_{2}, \cdots, x_{k_{1}} ; x_{1}, x_{2}, \cdots x_{k} \mid n\right) \\
=n C_{k}^{n}-2 C_{k+2}^{n}-C_{k+1}^{n}+2^{k+3} C_{k+2}^{\left[\frac{n}{2}\right]}+2^{k+1}\left(1+2 \varepsilon_{n}\right) C_{k+1}^{\left[\frac{n}{2}\right]}
\end{gathered}
$$

with $\varepsilon_{n}=0$ if n even, and $\varepsilon_{n}=1$ if n odd.
The proof depends on elementary combinatoric methods.

