# ON THE REPRESENTATION OF AN INTEGER AS THE SUM OF $k k$-TH POWERS 

Paul Erdös*.

[Extracted from the Journal of the London Mathematical Society, Vol. 11, 1936.]

1. Let $f(m)$ denote the number of representations of $m$ as the sum of $k k$-th powers of non-negative integers. Hardy and Littlewood $\dagger$ conjectured ("Hypothesis $K$ ") that $f(m)=O\left(m^{*}\right)$ for every $\epsilon>0$. In the opposite direction, Chowla has recently proved $\ddagger$ that, for fixed $k \geqslant 5$, $f(m) \neq O(1)$. In this note I give a simple proof that, for an infinity of $m$,

$$
\begin{equation*}
f(m)>e^{c_{1}(\log m / \log \log m)}, \tag{1}
\end{equation*}
$$

where $c_{1}$ (as also $c_{2}, \ldots$ ) is a positive number depending only on $k \S$.
Dr. Mahler has just proved that, for $k=3, f\left(m^{12}\right)>c_{2} m$, which shows that Hypothesis $K$ is false for $k=3$.
2. We first suppose that $k$ is odd.

Lemma 1. If $p+k$, and $(p-1, k)=1$, then for every $x \not \equiv 0(\bmod p)$ there exists exactly one $y\left(\bmod p^{k}\right)$ such that $y^{k} \equiv x\left(\bmod p^{k}\right)$.

Proof. It suffices to prove that, if $y_{1} y_{2} \not \equiv 0(\bmod p)$ and $y_{1} \not \equiv y_{2}$ $\left(\bmod p^{k}\right)$, then $y_{1}{ }^{k} \not \equiv y_{2}{ }^{k}\left(\bmod p^{k}\right)$. Hence it suffices to prove that $z^{k} \equiv 1$ $\left(\bmod p^{k}\right) \operatorname{implies} z \equiv 1\left(\bmod p^{k}\right)$. This is clear, since $z^{p k-p^{k-1}} \equiv \mathbf{1}\left(\bmod p^{k}\right)$ and $\left(k, p^{k}-p^{k-1}\right)=1$.

[^0]Let $p_{1}, p_{2}, \ldots, p_{r}$ be consecutive primes greater than $k$ for which $(p-1, k)=1$. Let $A=p_{1} p_{2} \ldots p_{r}, n=A^{k}, B \mid A, A=B C$. Let $S_{B}$ denote the number of solutions of

$$
\begin{align*}
& x_{2} \leqslant n, \quad x_{i} \equiv 0 \quad(\bmod B) \quad(i=1,2, \ldots, k),  \tag{2}\\
& \quad x_{1}^{k}+\ldots+x_{k}^{k} \equiv 0 \quad(\bmod n),  \tag{3}\\
& \left(x_{1}^{k}+\ldots+x_{k-1}^{k}, C\right)=1, \tag{4}
\end{align*}
$$

in non-negative integers $x_{1}, \ldots, x_{k}$.
Lemma 2.

$$
S_{B}>\frac{c_{3} n^{k-1}}{\log p_{r}}
$$

Proof. For each of $x_{1}, \ldots, x_{k-2}$ there are $n / B$ values to satisfy (2). When $x_{1}, \ldots, x_{k-2}$ have been chosen, there are $(n / B) \prod_{p \mid C}\left(1-p^{-1}\right)$ values for $x_{k-1}$ to satisfy (2), (4). When $x_{1}, x_{2}, \ldots, x_{k-1}$ have been chosen, $x_{k}$ is uniquely determined $\bmod B C^{k}$ by (2), (3), and so can be given $n / B C^{k}$ values.

Hence

$$
S_{B} \geqslant \frac{n^{k}}{B^{k} C^{k}} \Pi_{p \mid C}\left(1-p^{-1}\right)>\frac{c_{3} n^{k-1}}{\log p_{r}}
$$

To prove (1), we now observe that the number of solutions of

$$
\begin{equation*}
x_{i} \leqslant n, \quad x_{1}{ }^{k}+\ldots+x_{k}{ }^{k} \equiv 0 \quad(\bmod n) \tag{5}
\end{equation*}
$$

is at least

$$
\sum_{B \mid A} S_{B}>\frac{c_{3} 2^{r} n^{k-1}}{\log p_{r}}
$$

since the same value of $x_{k}$ cannot arise from two different $B$ 's. Hence there is an $m \leqslant k n^{k}$ which has at least

$$
\frac{c_{3} 2^{r} n^{k-1}}{\log p_{r}} \frac{1}{k n^{k-1}}
$$

representations as the sum of $k k$-th powers. Now, by the prime number theorem for arithmetic progressions, $p_{r}<c_{4} r \log r$, and

$$
\log n=k\left(\log p_{1}+\ldots+\log p_{r}\right)<c_{5} r \log r
$$

so that

$$
r>c_{6} \frac{\log n}{\log \log n}
$$

Hence $m$ has at least $e^{c_{1}(\log n / \log \log n)}$ representations as the sum of $k k$-th powers, which establishes (1) for odd $k$.
3. We now deal with the case in which $k$ is even and greater than 2. It is easily seen (as in the proof of Lemma 1) that, if $p+k$ and
$(p-1, k)=2$, every $k$-th power residue $\left(\bmod p^{k}\right)$ prime to $p$ is also a quadratic residue, and conversely.

Lemma 3. If $C$ is a product of different primes, each of which satisfies $p+k, p \equiv 3(\bmod 4), \quad(p-1, k)=2$, then the number of solutions of $x^{k}+y^{k} \equiv a\left(\bmod C^{k}\right)$, where $(a, C)=1$, is

$$
C^{k} \prod_{p \mid C}\left(1+p^{-1}\right)
$$

Proof. We shall prove that the number in question is the same as the number of solutions of $u^{2}+v^{2} \equiv a\left(\bmod C^{k}\right)$, and by a well-known result*, this has the value stated. It is sufficient to prove that the congruences

$$
\begin{align*}
x^{k}+y^{k} \equiv a & \left(\bmod p^{k}\right),  \tag{6}\\
u^{2}+v^{2} \equiv a & \left(\bmod p^{k}\right) \tag{7}
\end{align*}
$$

have the same number of solutions for every $p \mid C$. First, by the above remark, there is a $(1,1)$ correspondence between the solutions of (6) with $p+x y$, and of (7) with $p+u v$. Secondly, for any $x \equiv 0(\bmod p)$, and any $u \equiv 0(\bmod p)$, the number of solutions of $v^{2} \equiv a-u^{2}\left(\bmod p^{k}\right)$ and $y^{k} \equiv a-x^{k}\left(\bmod p^{k}\right)$ is the same, since $a-u^{2} \not \equiv 0(\bmod p)$ and $a-x^{k} \not \equiv 0$ $(\bmod p)$. Similarly for any $y \equiv 0(\bmod p)$ and $v \equiv 0(\bmod p)$. This exhausts the possible cases, and the lemma is proved.

Let $p_{1}, \ldots, p_{r}$ be consecutive primes greater than $k$, for which $p \equiv 3$ $(\bmod 4)$ and $(p-1, k)=2$, and let $A, B, C, n$ be as in $\S 2$. Let $S_{B}^{\prime}$ denote the number of solutions of (2), (3), and

$$
\left(x_{1}^{k}+\ldots+x_{k-2}^{k}, C\right)=\mathbf{1} .
$$

For each of $x_{1}, \ldots, x_{k-3}$ there are $n / B$ values to satisfy (2). For $x_{k-2}$ there are at least $(n / B) \prod_{p \mid C}\left(1-2 p^{-1}\right)$ values to satisfy (4'). By Lemma 3, there are $C^{k} \prod_{p \mid C}\left(1+p^{-1}\right)$ pairs of residues $\left(\bmod C^{k}\right)$ for $x_{k-1}, x_{k}$ to satisfy (3), and so

$$
\frac{n^{2}}{B^{2} C^{k}} \prod_{p \mid C}\left(1+p^{-1}\right)
$$

pairs of values.
Hence

$$
\begin{aligned}
S_{B}^{\prime} & \geqslant \frac{n^{k}}{B^{k} C^{k}} \prod_{p \mid C}\left(1+p^{-1}\right)\left(1-2 p^{-1}\right) \\
& >c_{7} \frac{n^{k-1}}{\left(\log p_{r}\right)^{2}} .
\end{aligned}
$$

The rest of the proof now proceeds as before.

* Dickson, History of the theory of numbers, 1 (1919), 225, note ${ }^{21}$.

4. By the same method we can prove that, if $a_{1}, a_{2}, \ldots$ are integers, and $1 / k_{1}+\ldots+1 / k_{l}=1$, there are an infinity of $m$ with more than

$$
e^{c(\log m / \log \log m)}
$$

representations in the form

$$
a_{1} x_{1}^{k_{1}}+a_{2} x_{2}^{k_{2}}+\ldots+a_{l} x^{k_{l}} \quad\left(x_{i} \geqslant 0\right)
$$

The University,
Manchester.

[^1]
[^0]:    * Received 10 December, 1935; read 12 December, 1935.
    $\dagger$ Math. Zeitschrift, 23 (1925), 1-37.
    $\ddagger$ Indian Physico-Mathematical Journal, 6 (1935), 65-68.
    § Since writing this paper, I have heard from Prof. Chowla that he has also proved (1).

[^1]:    Printed by C. F. Hodgsen \& Son, Ltd., Newton St., London, W.C.e.

