ON THE REPRESENTATION OF AN INTEGER AS THE SUM OF k k-TH POWERS

PAUL ERDÖS*.

[Extracted from the Journal of the London Mathematical Society, Vol. 11, 1936.]

1. Let f(m) denote the number of representations of m as the sum of k k-th powers of non-negative integers. Hardy and Littlewood[†] conjectured ("Hypothesis K") that $f(m) = O(m^{\epsilon})$ for every $\epsilon > 0$. In the opposite direction, Chowla has recently proved[‡] that, for fixed $k \ge 5$, $f(m) \neq O(1)$. In this note I give a simple proof that, for an infinity of m,

(1) $f(m) > e^{c_1 (\log m/\log \log m)},$

where c_1 (as also $c_2, ...$) is a positive number depending only on k.

Dr. Mahler has just proved that, for k = 3, $f(m^{12}) > c_2 m$, which shows that Hypothesis K is false for k = 3.

2. We first suppose that k is odd.

LEMMA 1. If p+k, and (p-1, k) = 1, then for every $x \not\equiv 0 \pmod{p}$ there exists exactly one $y \pmod{p^k}$ such that $y^k \equiv x \pmod{p^k}$.

Proof. It suffices to prove that, if $y_1y_2 \not\equiv 0 \pmod{p}$ and $y_1 \not\equiv y_2 \pmod{p^k}$, then $y_1^k \not\equiv y_2^k \pmod{p^k}$. Hence it suffices to prove that $z^k \equiv 1 \pmod{p^k}$ implies $z \equiv 1 \pmod{p^k}$. This is clear, since $z^{p^k - p^{k-1}} \equiv 1 \pmod{p^k}$ and $(k, p^k - p^{k-1}) = 1$.

^{*} Received 10 December, 1935; read 12 December, 1935.

[†] Math. Zeitschrift, 23 (1925), 1-37.

[‡] Indian Physico-Mathematical Journal, 6 (1935), 65-68.

[§] Since writing this paper, I have heard from Prof. Chowla that he has also proved (1).

PAUL ERDÖS

Let $p_1, p_2, ..., p_r$ be consecutive primes greater than k for which (p-1, k) = 1. Let $A = p_1 p_2 ... p_r$, $n = A^k$, $B \mid A$, A = BC. Let S_B denote the number of solutions of

(2)
$$x_i \leq n, \quad x_i \equiv 0 \pmod{B} \quad (i = 1, 2, ..., k),$$

(3)
$$x_1^k + \dots + x_k^k \equiv 0 \pmod{n},$$

(4) $(x_1^k + \ldots + x_{k-1}^k, C) = 1,$

in non-negative integers x_1, \ldots, x_k .

LEMMA 2.
$$S_B > \frac{c_3 n^{k-1}}{\log p_*}.$$

Proof. For each of x_1, \ldots, x_{k-2} there are n/B values to satisfy (2). When x_1, \ldots, x_{k-2} have been chosen, there are $(n/B) \prod_{p \mid C} (1-p^{-1})$ values for x_{k-1} to satisfy (2), (4). When $x_1, x_2, \ldots, x_{k-1}$ have been chosen, x_k is uniquely determined mod BC^k by (2), (3), and so can be given n/BC^k values.

Hence
$$S_B \ge \frac{n^k}{B^k C^k} \prod_{p \mid C} (1-p^{-1}) > \frac{c_3 n^{k-1}}{\log p_r}.$$

To prove (1), we now observe that the number of solutions of

(5)
$$x_i \leq n, \quad x_1^k + \ldots + x_k^k \equiv 0 \pmod{n}$$

is at least

since the same value of x_k cannot arise from two different *B*'s. Hence there is an $m \leq kn^k$ which has at least

 $\sum_{B|A} S_B > \frac{c_3 2^r n^{k-1}}{\log p_r},$

$$\frac{c_3 \, 2^r \, n^{k-1}}{\log p_r} \, \frac{1}{k n^{k-1}}$$

representations as the sum of k k-th powers. Now, by the prime number theorem for arithmetic progressions, $p_r < c_4 r \log r$, and

$$\log n = k \left(\log p_1 + \ldots + \log p_r \right) < c_5 r \log r,$$
$$r > c_6 \frac{\log n}{\log \log n}.$$

so that

Hence m has at least $e^{c_1(\log n/\log \log n)}$ representations as the sum of k k-th powers, which establishes (1) for odd k.

3. We now deal with the case in which k is even and greater than 2. It is easily seen (as in the proof of Lemma 1) that, if p+k and (p-1, k) = 2, every k-th power residue (mod p^k) prime to p is also a quadratic residue, and conversely.

LEMMA 3. If C is a product of different primes, each of which satisfies p+k, $p \equiv 3 \pmod{4}$, (p-1, k) = 2, then the number of solutions of $x^k+y^k \equiv a \pmod{C^k}$, where (a, C) = 1, is

$$C^k \prod_{p \mid C} (1+p^{-1}).$$

Proof. We shall prove that the number in question is the same as the number of solutions of $u^2 + v^2 \equiv a \pmod{C^k}$, and by a well-known result^{*}, this has the value stated. It is sufficient to prove that the congruences

(6) $x^k + y^k \equiv a \pmod{p^k},$

$$(7) u^2 + v^2 \equiv a \pmod{p^k}$$

have the same number of solutions for every p | C. First, by the above remark, there is a (1, 1) correspondence between the solutions of (6) with p + xy, and of (7) with p + uv. Secondly, for any $x \equiv 0 \pmod{p}$, and any $u \equiv 0 \pmod{p}$, the number of solutions of $v^2 \equiv a - u^2 \pmod{p^k}$ and $y^k \equiv a - x^k \pmod{p^k}$ is the same, since $a - u^2 \not\equiv 0 \pmod{p}$ and $a - x^k \not\equiv 0 \pmod{p}$. Similarly for any $y \equiv 0 \pmod{p}$ and $v \equiv 0 \pmod{p}$. This exhausts the possible cases, and the lemma is proved.

Let $p_1, ..., p_r$ be consecutive primes greater than k, for which $p \equiv 3 \pmod{4}$ and (p-1, k) = 2, and let A, B, C, n be as in §2. Let $S_{B'}$ denote the number of solutions of (2), (3), and

(4')
$$(x_1^k + \ldots + x_{k-2}^k, C) = 1.$$

For each of x_1, \ldots, x_{k-3} there are n/B values to satisfy (2). For x_{k-2} there are at least $(n/B) \prod_{p|C} (1-2p^{-1})$ values to satisfy (4'). By Lemma 3, there are $C^k \prod_{p|C} (1+p^{-1})$ pairs of residues (mod C^k) for x_{k-1}, x_k to satisfy (3), and so

$$\frac{n^2}{B^2 C^k} \prod_{p \mid C} (1 + p^{-1})$$

pairs of values.

Hence

$$S_{B^{'}} \geqslant rac{n^{\kappa}}{B^{k} C^{k}} \prod_{p \mid C} (1 + p^{-1}) (1 - 2p^{-1}) > c_{7} rac{n^{k-1}}{(\log p_{r})^{2}}.$$

The rest of the proof now proceeds as before.

^{*} Dickson, History of the theory of numbers, 1 (1919), 225, note 21.

4. By the same method we can prove that, if a_1, a_2, \ldots are integers, and $1/k_1 + \ldots + 1/k_l = 1$, there are an infinity of m with more than

 $e^{c \, (\log m / \log \log m)}$

representations in the form

$$a_1 x_1^{k_1} + a_2 x_2^{k_2} + \ldots + a_l x^{k_l} \quad (x_l \ge 0).$$

The University, Manchester.

Printed by C. F. Hodgson & Son, Ltd., Newton St., London, W.C.2.