Hardy and Ramanujan* proved that $v(m)$ is almost always $\log \log n$, i.e. that for any positive ϵ there are only $o(n)$ integers $m \leqslant n$ for which either $\nu(m)>(1+\epsilon) \log \log n$ or $\nu(m)<(1-\epsilon) \log \log n$.

We use the following notation:

1. T denotes the closed interval $\left[(\log n)^{6}, n^{(\log \log n)^{-3}}\right]$,
2. $\nu^{\prime}(m)$ the number of different prime factors of m in T,
3. $q_{1}, q_{2}, \ldots, q_{v}$ symbols for the v primes q of T,
4. a_{1}, a_{2}, \ldots the integers composed of q_{i},
5. $a_{1}^{(k)}, a_{2}^{(k)}, \ldots$ the integers whose factors are powers of k different $q_{i}(k<2 \log \log n)$,
6. $A(m)$ the greatest a_{i} contained in m,
7. U_{k} the number of integers $m \leqslant n$ for which $A(m)$ is an $a^{(k)}$,
8. c_{1}, c_{2}, \ldots absolute constants,
9. $x=\sum_{q} \frac{1}{q}$; from the formula $\sum_{p<y} \frac{1}{p}=\log \log y+c_{1}+o(1)$, it immedately follows that $x=\log \log n-4 \log \log \log n-\log 6+o(1)$.

We require four lemmas.
Lemma 1. The number of integers $m \leqslant n$ for which

$$
\nu(m)-\nu^{\prime}(m)>(\log \log \log n)^{2}
$$

is $o(n)$.
We evidently have

$$
\begin{aligned}
\sum_{m=1}^{n}\left(\nu(m)-\nu^{\prime}(m)\right) & =\sum_{p \leqslant n}\left[\frac{n}{p}\right]-\sum_{q}\left[\frac{n}{q}\right] \\
& =\sum_{p<(\log n)^{6}}\left[\frac{n}{p}\right]+\sum_{n^{\left.\log \log n\right|^{-3}<p \leqslant n}}\left[\frac{n}{p}\right] \\
& =O(n \log \log \log n),
\end{aligned}
$$

which implies Lemma 1.
Lemma 2.

$$
\frac{x^{k}}{k!}-o\left(\frac{1}{(\log n)^{2}}\right)<\Sigma_{i}^{\prime} \frac{1}{a_{i}^{(k)}}<\frac{x^{k}}{k!}
$$

where the dash in the summation means that the summation is extended over the square-free $a^{(k)}$'s only.

We have

$$
\sum_{i}^{\prime} \frac{1}{a_{i}^{(k)}}<\frac{\left(\sum_{q} \frac{1}{q}\right)^{k}}{k!}=\frac{x^{k}}{k!} .
$$

By expanding $\left(\sum_{q} \frac{1}{q}\right)^{k} / k!$ by the multinomial theorem we see that the coefficient of the terms whose denominator is a square-free $a^{(k)}$ is 1 , but the other terms contain in their denominator the square of a q, i.e. a square greater than $(\log n)^{12}$ and have coefficients less than 1. Finally, the denominators are all less than $n^{2 /(\log \log n)^{2}}$, since $k<2 \log \log n$. Thus

$$
\begin{gathered}
\frac{\left(\sum_{q} \frac{1}{q}\right)^{k}}{k!}<\sum_{i}^{\prime} \frac{1}{a_{i}^{(k)}}+\sum_{r>(\log n)^{6}} \frac{1}{r^{2}} \sum_{i<n} \frac{1}{i}=\sum_{i}^{\prime} \frac{1}{a_{i}^{(k)}}+O\left(\frac{1}{(\log n)^{5}}\right), \\
\sum_{i}^{\prime} \frac{1}{a_{i}^{(k)}}>\frac{\left(\sum_{q} \frac{1}{q}\right)^{k}}{k!}-O\left(\frac{1}{(\log n)^{5}}\right),
\end{gathered}
$$

and hence

$$
\Sigma_{i}^{\prime} \frac{1}{a_{i}^{(k)}}>\frac{x^{k}}{k!}-o\left(\frac{1}{(\log n)^{2}}\right),
$$

which establishes Lemma 2.

$$
\text { Lemma 3. } \quad U_{k}=n e^{-x} \frac{x^{k}}{k!}+o\left(\frac{n}{(\log n)^{2}}\right) .
$$

First we evaluate the number of integers $m \leqslant n$ for which $A(m)=a_{i}^{(k)}$. The number of the $m \leqslant n$ divisible by the square of a q is less than $\sum_{i} \frac{n}{q^{2}}=O\left(\frac{n}{(\log n)^{6}}\right)$. If m is not divisible by the square of a $q, A(m)$ is square-free, and the number of the m for which $A(m)=a_{i}^{(k)}$ is equal to the number z of integers

$$
m \leqslant \frac{n}{a_{i}^{(k)}},
$$

no one of which is divisible by a q. We calculate z by Brun's method. We have

$$
\begin{align*}
z=\left[\frac{n}{a_{i}^{(k)}}\right]-\sum_{q}\left[\frac{n}{q a_{i}^{(k)}}\right]+\sum_{q_{1}<q_{2}} & {\left[\frac{n}{q_{1} q_{2} a_{i}^{(k)}}\right]-\ldots } \\
& +(-1)_{q_{1}<q_{2}<\ldots<q_{r}}\left[\frac{n}{q_{1} q_{2} \ldots q_{r} a_{i}^{(k)}}\right]+\ldots \tag{1}
\end{align*}
$$

We write

$$
s_{r}=\sum_{q_{1}<q_{2}<\ldots<q_{r}}\left[\frac{n}{q_{1} q_{2} \ldots q_{r} a_{i}^{(k)}}\right]
$$

and

$$
\begin{gather*}
s_{r}^{\prime}=\sum_{q_{1}<q_{2}<\ldots<q_{r}} \frac{n}{q_{1} q_{2} \ldots q_{r} a_{i}^{(k)}}, \\
z=\sum_{r=0}^{v}(-1)^{r} s_{r}
\end{gather*}
$$

so that we have
Now, evidently,
$\sum_{r \leqslant 10 \log \log n}(-1)^{r} s_{r}-\sum_{r>10 \log \log n} s_{r} \leqslant z \leqslant \sum_{r \leqslant 10 \log \log n}(-1)^{r} s_{r}+\sum_{r>10 \log \lg n} s_{r}$,
but

$$
\begin{align*}
\sum_{r>10 \log \log n} s_{r} & \leqslant \sum_{r>10 \log \log n} s_{r}^{\prime}<\frac{n}{a_{i}^{(k)}} \sum_{r>10 \log \log n} \frac{\left(\sum_{q} \frac{1}{q}\right)^{r}}{r!} \\
& <\frac{n}{a_{i}^{(k)}} \sum_{r>10 \log \log n} \frac{(\log \log n)^{r}}{r!}<\frac{2 n}{a_{i}^{(k)}} \frac{(\log \log n)^{[10 \log \log n]}}{[10 \log \log n]!} \\
& <\frac{2 n e^{10 \log \log n}(10 \log \log n+1)}{a_{i}^{(k)} 10^{10 \log \log n}}<\frac{2 n}{a_{i}^{(k)} 2^{10 \log \log n}} \tag{3}
\end{align*}
$$

since

$$
y!>\frac{y^{y}}{e^{y}}
$$

Hence, from (1^{\prime}), on noting the right-hand inequalities in (2) and (3) and omitting the square brackets, we obtain

$$
\begin{equation*}
z=\sum_{r \leqslant 10 \log \log n}(-1)^{r} s_{r}^{\prime}+O\left((1+v)^{10 \log \log n}\right)+O\left(\frac{n}{a_{i}^{(k)} 2^{10 \log \log n}}\right) \tag{4}
\end{equation*}
$$

the v term arising from a possible error $1+v+\binom{v}{2}+\ldots$ up to $10 \log \log n$ terms.

From (3), (4), and $1+v<n^{(\log \log n)-3}$, we obtain

$$
\begin{equation*}
z=\sum_{r}(-1)^{r} s_{r}^{\prime}+O\left(n^{10 /(\log \log n)^{2}}+O\left(\frac{n}{a_{i}^{(k)} 2^{10 \log \log n}}\right)\right. \tag{5}
\end{equation*}
$$

Now we have

$$
\begin{aligned}
\sum_{r}(-1)^{r} s_{r}^{\prime} & =\frac{n}{a_{i}^{(k)}} \prod_{q}\left(1-\frac{1}{q}\right)=\frac{n}{a_{i}^{(k)}} e^{\frac{\Sigma\left(-(1 / q)+O\left(1 / q^{2}\right)\right)}{q}}=\frac{n}{a_{i}^{(k)}} e^{-x} e^{\frac{\Sigma O\left(1 / 2^{2}\right)}{}} \\
& =\frac{n}{a_{i}^{(k)}} e^{-x} e^{O\left(1 /(\log n)^{\phi}\right)}=\frac{n}{a_{i}^{(k)}} e^{-x}\left(1+O\left(\frac{1}{(\log n)^{6}}\right)\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
z=\frac{n}{a_{i}^{(k)}} e^{-x}\left(1+O\left(\frac{1}{(\log n)^{6}}\right)\right)+O\left(n^{10 /(\log \log n)^{2}}\right)+O\left(\frac{n}{a_{i}^{(k)} 2^{10 \log \log n}}\right) . \tag{6}
\end{equation*}
$$

From (6) we easily obtain

$$
\begin{align*}
& U_{k}=n e^{-x}\left(1+O\left(\frac{1}{(\log n)^{6}}\right)\right) \Sigma_{i}^{\prime} \frac{1}{a_{i}^{(k)}}+O\left(n^{20 /(\log \log n)^{2}}\right) \\
&+O\left(\frac{n}{2^{10 \log \log n}} \sum_{i} \frac{1}{a_{i}^{(k)}}\right)+O\left(\frac{n}{(\log n)^{6}}\right) \tag{7}
\end{align*}
$$

since the number of the square-free $a_{i}^{(k)} \leqslant n$ is less than

$$
(1+v)^{k}<n^{10 /(\log \log n)^{2}},
$$

and finally, from Lemma 2 and from
we have

$$
\sum_{i} \frac{1}{a_{i}^{(k)}}<\sum_{l<n} \frac{1}{l}=O(\log n),
$$

Thus Lemma 3 is proved.
Lemma 4. The number of integers $m \leqslant n$ for which $\nu^{\prime}(m)>\log \log n$ is $\frac{1}{2} n+o(n)$.

Evidently $\nu^{\prime}(m)=\nu[A(m)]$; thus we have only to consider the integers for which $\nu[A(m)]>\log \log n$.

First we prove that the number of integers for which $\nu[A(m)]>x$ is $\frac{1}{2} n+o(n)$, i.e.

$$
\sum_{k>x} U_{k}=\frac{1}{2} n+o(n)
$$

Since $\sum_{r=1}^{n} d(r)=O(n \log n)$, the number of integers $m \leqslant n$ for which $\nu(m)>2 \log \log n$ is $O\left(n \log n / 2^{2 \log \log n}\right)=o(n)$, so that we have to prove

$$
\sum_{k>x}^{k \leqslant 2 \log \log n} U_{k}=\frac{1}{2} n+o(n),
$$

i.e., by Lemma 3,

$$
\begin{equation*}
n e^{-x} \sum_{k>x}^{k \leqslant 2 \log \log n} \frac{x^{k}}{k!}=\frac{1}{2} n+o(n) \tag{9}
\end{equation*}
$$

But it is known that*

$$
\begin{equation*}
\sum_{k>x} \frac{x^{k}}{k!}=\frac{1}{2} e^{x}+o\left(e^{x}\right) \tag{10}
\end{equation*}
$$

[^0]and
\[

$$
\begin{gather*}
\sum_{k>2 \log \log n} \frac{x^{k}}{k!}<2 \frac{x^{2 \log \log n}}{[2 \log \log n]!}<\frac{2 x^{2 \log \log n} e^{2 \log \log n}(2 \log \log n+1)}{2^{2 \log \log n}(\log \log n)^{2 \log \log n}} \\
<\frac{2 e^{2 \log \log n}(2 \log \log n+1)}{2^{2 \log \log n}}=o\left(e^{x}\right) \tag{11}
\end{gather*}
$$
\]

and (9) is an immediate consequence of (10) and (11). We now have to prove that there are only $o(n)$ integers $m \leqslant n$ for which

$$
x \leqslant \nu^{\prime}(m) \leqslant \log \log n .
$$

From Lemma 3 we see that, since x^{k} / k ! assumes its maximum value for $k=[x]$, the number of integers $m \leqslant n$ for which $\nu^{\prime}(m)=k$ is, by Stirling's formula, at the utmost

$$
\begin{equation*}
n e^{-x} \frac{x^{[x]}}{[x]!}+o\left(\frac{n}{\log ^{2} n}\right)<\frac{c_{2} n}{\sqrt{ } x} . \tag{12}
\end{equation*}
$$

Hence the number of integers $m \leqslant n$ for which $x<\nu^{\prime}(m) \leqslant \log \log n$ is

$$
O\left(\frac{n}{\sqrt{ } x}(\log \log n-x)\right)=O\left(\frac{n \log \log \log n)}{(\log \log n)^{\frac{1}{2}}}\right)=o(n)
$$

which completes the proof of Lemma 4.
We now proceed to prove our main theorem.
By Lemma 4, we have only to prove that the number of integers $m \leqslant n$ for which $\nu^{\prime}(m) \leqslant \log \log n$ but $\nu(m)>\log \log n$ is $o(n)$.

We divide these integers into two classes.
In the first class are the integers for which

$$
\nu^{\prime}(m)<\log \log n-(\log \log \log n)^{2}
$$

For these, $\nu(m)-v^{\prime}(m)>(\log \log \log n)^{2}$, and so, from Lemma 1 , the number of them is $o(n)$.

For the integers of the second class

$$
\log \log n-(\log \log \log n)^{2} \leqslant \nu^{\prime}(m) \leqslant \log \log n .
$$

From (12), it follows that the number of them is less than

$$
\frac{c_{2} n}{\sqrt{ } x}\left((\log \log \log n)^{2}+1\right)=O\left(\frac{n(\log \log \log n)^{2}}{(\log \log n)^{\frac{1}{2}}}\right)=o(n) .
$$

Thus our theorem is established.
In consequence of the exceedingly slow increase of $\log \log n$ we can easily deduce from our theorem that the number of integers $m \leqslant n$ for which $v(m)>\log \log m$ is also $\frac{1}{2} n+o(n)$.

Let $f(m)$ be the number of prime factors of m, multiple factors being counted multiply. We easily deduce that for every ϵ there exists a c_{3} such that the number of integers $m \leqslant n$ for which $f(m)-v(m)>c_{3}$ is less than ϵn, and from this it is clear that the number of integers $m \leqslant n$ for which

$$
f(m)>\log \log n
$$

is. $\frac{1}{2} n+o(n)$.
By similar methods we can prove the following theorems:
Theorem 1. Let $\nu_{1}(m)$ and $\nu_{2}(m)$ denote the numbers of prime factors of m of the forms $4 k+1$ and $4 k+3$ respectively. The number of integers $m \leqslant n$ for which $\nu_{1}(m)>\nu_{2}(m)$ is $\frac{1}{2} n+o(n)$. The same holds for $\nu_{1}(m)<\nu_{2}(m)$ and hence the number of integers $m \leqslant n$ for which $\nu_{1}(m)=\nu_{2}(m)$ is o(n).

Theorem 2. Let $A_{1}(m)$ and $A_{2}(m)$ denote the product of all prime factors of m of the forms $4 k+1$ and $4 k+3$ respectively, multiple factors being counted multiply. The number of integers $m \leqslant n$, for which $A_{1}(m)>A_{2}(m)$ is $\frac{1}{2} n+o(n)$.

Theorem 3. The number of integers $m \leqslant n$, the greatest prime factor of which is a prime of the form $4 k+1$, is $\frac{1}{2} n+o(n)$.

The University,
Manchester.

[^0]: * Srinivasa Ramanujan, Coliected papers, 323, Question 294.

