ON THE SUM AND DIFFERENCE OF SQUARES OF PRIMES (II)

Paul Erdös*.
[Extracted from the Journal of the London Mathematical Society, Vol. 12, 1937.]

In a previous paper \dagger I proved that, for an infinity of m and n, the equations $m=p^{2}-q^{2}$ and $n=p^{2}+q^{2}$, where p and q are primes, have more than $m^{c_{1} / \log \log m}$ and $n^{c_{2} /(\log \log n)^{2}}$ solutions respectively. The proofs were elementary. In §1 of this paper I prove that, for an infinity of n, the number of solutions of the equation $n=p^{2}+q^{2}$ is greater than $n^{c_{3} / \log \log n}$. The argument is very similar to that of I, the principal difference being that it requires Brun's method. I give the proof in detail only where it differs from I.

In §2 we prove the following theorem, which is a generalization of the result proved in § 1 of I.

Let $r_{1}<r_{2}<\ldots$ be an infinite sequence of positive integers such that for an infinity of N the number of r 's less than or equal to N is greater than $N^{1-\left(c_{4} / \log \log N\right)}$, with $c_{4}<\frac{1}{2} \log 2$. Then for an infinity of M the number of solutions of the equation $r_{j}{ }^{2}-r_{i}{ }^{2}=M$ is greater than $M^{c s / \log \log M}$, where c_{5} depends only upon c_{4}.

The results of this paper were stated in I.

1. As in I, we put $A=5.13 \ldots p_{k}$, where k is sufficiently large and the p 's are the first k primes of the form $4 d+1$. We write $A=a_{1} a_{2} \ldots a_{x}$, where x is a sufficiently large absolute constant, to be determined later (in I we had $x=[10 \log \log A]$), and all the a 's have at least $[k / x]$ prime factors.

First we prove the following
Lemma. There exists an a_{i} such that the number of primes $p<A^{2}$ in each of at least $\frac{7}{8} \phi\left(a_{i}\right)$ residue classes $\bmod a_{i}$ is greater than $A^{2} / \phi\left(a_{i}\right)(\log A)^{2}$.

Proof. Suppose that the lemma is not true. For every a_{i} we divide the $\phi\left(a_{i}\right)$ residues prime to a_{i} into two classes. Class 1 contains the residues for which the number of primes in each of them is less than $A^{2} / \phi\left(a_{i}\right)(\log A)^{2}$; class 2 contains the other residues. Similarly we divide the primes $p<A^{2}$ with $p+A$ into two groups: in group I we put those primes which, for at least one a_{i}, are congruent $\bmod a_{i}$ to a residue of class 1, in group II all the other primes.

[^0]The number of primes $p \leqslant A^{2}$ congruent for a fixed modulus a_{i} to a residue of class 1 is evidently less than $A^{2} /(\log A)^{2}$. Hence the total number of primes belonging to group I is less than $A^{2} x /(\log A)^{2}$.

The number of residues $\bmod A$ belonging for every a_{i} to class 2 is, in consequence of the multiplicativity of the residue classes, less than

$$
\frac{7}{8} \phi\left(a_{1}\right) \frac{7}{8} \phi\left(a_{2}\right) \ldots \frac{7}{8} \phi\left(a_{x}\right)=\left(\frac{7}{8}\right)^{x} \phi(A) .
$$

Now, by a theorem due to Brun and Titchmarsh*, the number of primes belonging to group II is less than

$$
\left(\frac{7}{8}\right)^{x} \phi(A) \frac{c_{6} A^{2}}{\phi(A) \log A}=\left(\frac{7}{8}\right)^{x} \frac{c_{6} A^{2}}{\log A}
$$

But then the number of primes $p \leqslant A^{2}$ would be less than

$$
2 \log A+\frac{A^{2} x}{(\log A)^{2}}+\left(\frac{7}{8}\right)^{x} \frac{c_{6} A^{2}}{\log A}<\frac{A^{2}}{4 \log A}
$$

for sufficiently large x, which is contrary to the prime number theorem.
We now consider an a_{i} for which the number of residues belonging to class 2 is greater than $\frac{7}{8} \phi\left(a_{i}\right)$.

Let these residues be $z_{1}, z_{2}, \ldots, z_{l} ; l>\frac{7}{8} \phi\left(a_{i}\right)$. We denote by S_{1} the number of solutions of the congruence $z_{\kappa}^{2}+z_{\lambda}{ }^{2} \equiv 0\left(\bmod a_{i}\right)$. In I we proved that

$$
S_{1}>\frac{2^{V\left(a_{i}\right)} \phi\left(a_{i}\right)}{16}
$$

where $V\left(a_{i}\right)$ denotes the number of prime factors of a_{i}. Hence, by our lemma, the number of solutions of the congruence $p^{2}+q^{2} \equiv 0\left(\bmod a_{i}\right)$, with $p, q \leqslant A^{2}$, is greater than

$$
\begin{aligned}
\frac{2^{V\left(a_{i}\right)} \phi\left(a_{i}\right) A^{4}}{16 \phi\left(a_{i}\right)^{2}(\log A)^{4}} & >\frac{2^{V\left(a_{i}\right)} A^{4}}{16(\log A)^{4} a_{i}}>\frac{2^{k / x} A^{4}}{32(\log A)^{4} a_{i}}>\frac{2^{\log A / 4 x \log \log A} A^{4}}{32(\log A)^{4} a_{i}} \\
& >\frac{2^{\log A / 5 x \log \log A} A^{4}}{a_{i}},
\end{aligned}
$$

since, by the prime number theorem for arithmetical progressions (or by a more elementary theorem),

$$
k>\frac{\log A}{4 \log \log A}
$$

[^1]On the sum and difference of squares of primes (II). 170
But the integers of the form $p^{2}+q^{2}$, with $p, q<A^{2}$, are all less than $2 A^{4}$. Hence there exists a multiple of a_{i}, say n, less than $2 A^{4}$, for which the equation $n=p^{2}+q^{2}$ has more than

```
2
```

solutions; this concludes the proof.
2. The proof of the second theorem stated in the introduction is also similar to that of § 1 of I.

Let N be sufficiently large and let $A=3.5 \ldots p_{\mu}$, the product of the first μ odd primes such that $3 \ldots p_{\mu} \leqslant N<3 \ldots p_{\mu} p_{\mu+1}$. We denote by
 and estimate the number S of solutions of the congruence $r_{j}{ }^{2}-r_{i}{ }^{2} \equiv 0(\bmod A)$ with $r_{i}<r_{j} \leqslant N$.

First we determine the number of different residue-classes $\bmod A$ of the sequence $1^{2}, 2^{2}, 3^{2}, \ldots, A^{2}$. It is well known that the number of different residue-classes $\bmod p$ (p a prime) of the sequence $1^{2}, 2^{2}, \ldots, p^{2}$ is equal to $\frac{1}{2}(p+1)$; hence, in consequence of the multiplicativity of residue-classes, the number of the different residue-classes $\bmod A$ of the sequence $1^{2}, 2^{2}, \ldots, A^{2}$ is equal to

$$
z=\prod_{i=1}^{\mu} \frac{1}{2}\left(p_{i}+1\right)=\frac{A}{2^{\mu}} \prod_{i=1}^{\mu}\left(1+\frac{1}{p_{i}}\right)
$$

Hence the residues $\bmod A$ may be distributed into z classes such that the squares of the residues of each class are all congruent to one another $\bmod A$.

As in I, we denote by $y_{1}, y_{2}, \ldots, y_{z}$ the numbers of r 's not exceeding N and congruent to a residue of the 1st, 2nd, ... class. Thus we evidently have

$$
S=\frac{1}{2}\left[y_{1}{ }^{2}+y_{2}{ }^{2}+\ldots+y_{z}{ }^{2}-y_{1}-y_{2}-\ldots-y_{z}\right]=\frac{1}{2}\left[y_{1}{ }^{2}+y_{2}{ }^{2}+\ldots+y_{z}{ }^{2}\right]-\frac{1}{2} \xi,
$$

since

$$
y_{1}+y_{2}+\ldots+y_{z}=\xi
$$

By a well-known elementary theorem, the sum of the squares of the y 's is a minimum if they are all equal, i.e. if $y_{i}=\xi / z$; hence

$$
S \geqslant \frac{1}{2} z \frac{\xi^{2}}{z^{2}}-\frac{1}{2} \xi=\frac{1}{2} \xi\left(\frac{\xi}{z}-1\right)
$$

But

$$
z=\frac{A}{2^{\mu}} \prod_{i=1}^{\mu}\left(1+\frac{1}{p_{i}}\right)<\frac{c_{7} A \log \log A}{2^{\mu}}<\frac{A}{e^{c_{8} \log A / \log \log A}}=A^{1-\left(c_{8} / \log \log A\right)}
$$

171 On the sum and difference of squares of primes (II).
for every $c_{8}<\log 2$, since, by the prime number theorem,

$$
\mu>c_{9} \frac{\log A}{\log \log A}
$$

for every $c_{9}<1$ if A is sufficiently large. Thus

$$
\begin{aligned}
S & \geqslant \frac{1}{2} \xi\left(\frac{\xi}{z}-1\right)>\frac{1}{2} N^{1-\left(c_{4} / \log \log N\right)}\left(\frac{N^{1-\left(c_{4} / \log \log N\right)}}{A^{1-\left(c_{s} / \log \log A\right)}}-1\right) \\
& >\frac{1}{4} N^{1-\left(c_{4} / \log \log N\right)} \frac{N^{1-\left(c_{4} / \log \log N\right)}}{A^{1-\left(c_{s} / \log \log A\right)}}=\frac{1}{4} N^{1-\left(2 c_{4}-c_{s} / \log \log N\right)} \frac{N^{1-\left(c_{8} / \log \log N\right)}}{A^{1-\left(c_{s} / \log \log A\right)}} \\
& \geqslant \frac{1}{4} N^{1-\left(2 c_{4}-c_{8} / \log \log N\right)} .
\end{aligned}
$$

But $2 c_{4}<\log 2$; hence we may suppose that $c_{8}>2 c_{4}$. Thus, finally,

$$
S>\frac{1}{4} N^{1+\left(c_{0} / \log \log N\right)},
$$

where $c_{9}=c_{8}-2 c_{4}>0$.
But the integers of the form $r_{j}{ }^{2}-r_{i}{ }^{2}$ with $r_{i}<r_{j} \leqslant N$ are all positive and less than N^{2}, so that we can always find a multiple, say $M \leqslant N^{2}$, of A for which the equation $r_{j}{ }^{2}-r_{i}{ }^{2}=M$ has more than

$$
\frac{1}{4} N^{c_{9} / \log \log N} \frac{A}{N}>\frac{1}{4 p_{u+1}} N^{c_{9} / \log \log N}>M^{c_{5} / \log \log M}
$$

solutions. Hence the result.
The University,
Manchester.

[^0]: * Received 6 November, 1936; read 12 November, 1936.
 \dagger Journal London Math. Soc., 12 (1937), 133-136.

[^1]: * E. C. Titchmarsh, Rend. di Palermo, 54 (1930) 414-429.

