On definite quadratic forms, which are not the sum of two definite or semi-definite forms.

By
Paul Erdös and Chao Ko (Manchester).

Let

$$
f_{n}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \quad\left(a_{i j}=a_{j i}\right)
$$

be a positive definite quadratic form with determinant D_{n} and integer coefficients $a_{i j}$. Call it an even form if all $a_{i j}$ are even, an odd form if at least one a_{n} is odd. Then f_{n} is called non-decomposable, if it cannot be expressed as a sum of two non-negative quadratic forms with integer coefficients.

Mordell ${ }^{1}$) proved that f_{2}, can always be decomposed into a sum of five squares of linear forms with integer coefficients. Ko^{2}) proved that f_{n} can be expressed as a sum of $n+3$ integral linear squares, when $n=3,4,5$.

When $n=6$, Mordell ${ }^{3}$) proved that the form

$$
\begin{equation*}
\sum_{i=1}^{6} x_{i}^{2}+\left(\sum_{i=1}^{6} x_{i}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} \tag{1}
\end{equation*}
$$

of determinant 3 is non-decomposable; and Ko^{4}) proved that (1) is the only non-decomposable form in six variables.
${ }^{1}$) Mordell, Quart. J. of Math. (Oxford) 1 (1930), 276-88.
${ }^{2}$) Ko, Quart. J. of Math. (Oxford), 8 (1932), 81-98.
${ }^{1}$) Mordell, Annals of Math, 38 (1937), 751-757.
${ }^{4}$) May appear in Acta Arithmetica.

When $n=7,8$, Mordell 3) proved that the forms

$$
\sum_{i=1}^{n} x_{i}^{2}+\left(\sum_{i=1}^{n} x_{i}\right)^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} \quad(n=7,8)
$$

with determinant $D_{7}=2, D_{8}=1$ are non-decomposable.
In the present paper, we shall prove the following theorems:
THEOREM 1. When $D_{n}=1$, there exists an odd non-decomposable form, if $n \geqslant 12$, except possibly for $13,16,17,19,23$; and an even non-decomposable form for all $n \equiv 0(\bmod 8)$.

Hitherto the only method known for finding forms with $D_{n}=1$ for $n>8$ was that due to Minkowski ${ }^{\text { }}$).

THEOREM 2. For every $k>0$ and $n>13 k+176$, there exists a nondecomposable form in n variables with $D_{n}=k$.

THEOREM 3. There exist non-decomposable forms for every $n>5$.
From theorem 1, we can deduce that the class number h_{n} of positive definite quadratic forms with $D_{n}=1$ is greater than $2^{\sqrt{n}}$ for large n But Magnus ${ }^{\circ}$) proved that the mass of the principal genus is greater than $n^{n^{2}}(1-\varepsilon) / 4$ for $n>n_{0}$, where $\varepsilon=\varepsilon\left(n_{0}\right)$ is a small positive number, and so, as Dr. Mahler points out, it follows that $h_{n}>n^{n^{2}(1-6) / 4}$ for $n>n_{0}$.

Any quadratic form can be reduced by a unimodular transformation, i. e. integer coefficients and determinant unity, to the form

$$
\sum_{i=1}^{n} a_{i} x_{i}^{2}+2 \sum_{i=1}^{n-1} b_{i} x_{i} x_{i+1}
$$

This and its determinant may be denoted by

$$
\left(\begin{array}{lllllll}
a_{1} & a_{2} & & a_{n-1} & & a_{n} \\
& b_{1} & b_{2} & \cdots & b_{n-1}
\end{array}\right) \text { and }\left|\begin{array}{lllllll}
a_{1} & & a_{2} & & a_{n-1} & & a_{n} \\
& b_{1} & & b_{2} & \cdots & b_{n-1}
\end{array}\right|
$$

respectively. If, however, say $a_{2}=a_{3}=\ldots a_{n}=c$ and $b_{c}=b_{3}=$ $\ldots=b_{n-1}=d$, we may write $\left(\begin{array}{lll}a_{1} & & c_{(n-1)} \\ & b_{1} & \\ d_{(n-2)}\end{array}\right)$ with obviously similar extensions.

1. Some lemmas.

LEMMA 1. The determinant of order n

${ }^{5}$) Gesammelte Abhandlungen von H. Minkowski, 1, (1909), 77.
${ }^{6}$) Magnus, Math. Annalen, 114 (1937), 465-475.

$$
d_{n}=\left|\begin{array}{ll}
2_{(n)} & \\
& 1_{(n-1)}
\end{array}\right|=n+1 .
$$

It is evident that $d_{1}=2$ and $d_{2}=3$. Suppose now $d_{m}=m+1$ for all $m<n$, then

$$
d_{n}=2 d_{n-1}-d_{n-2}=2 n-(n-1)=n+1
$$

LEMMA 2. The only squares which can be subtracted from the form

$$
f(x)=2 \sum_{i=1}^{n} x_{i}+2 \sum_{i=1}^{n-1} x_{i} x_{i+1} \quad(n>3)
$$

so that the remaining form is non-negative, are $x_{i}^{2},\left(x_{i}+x_{i+1}\right)^{2} \quad(i=1, \ldots$, $n-1$), and x_{n}^{2}.

Since we can write

$$
f(x)=x_{1}^{2}+\sum_{i=1}^{n-1}\left(x_{i}+x_{i+1}\right)^{2}+x_{n}^{2}
$$

the unimodular transformation

$$
x_{1}=y_{1}, x_{t}+x_{i+1}=(-1)^{t-1} y_{i+1}, \quad(i=1, \ldots, n-1)
$$

carries $f(x)$ into

$$
f(y)=\sum_{i=1}^{n} y_{i}^{2}+\left(\sum_{i=1}^{n} y_{i}\right)^{2} .
$$

If

$$
F(y)=f(y)-(L(y))^{2} . \quad L(y)=\sum_{i=1}^{n} a_{i} y_{i}
$$

is non-negative, then it is evident that a_{i} can be only ± 1 or 0 since

$$
F(0, \ldots, 0,1,0, \ldots, 0)=2-a_{i}^{2} \geqslant 0
$$

I. Suppose first that one of the $a^{\prime} \mathrm{s}$ is zero, say $a_{n}=0$. Without loss of generality, we can assume that $a_{1}= \pm 1$. Then

$$
F\left(a_{1}, a_{2}, \ldots, a_{n-1},-a_{1}\right)=2+\sum_{i=2}^{n-1} a_{i}^{2}+\left(\sum_{i=2}^{n-1} a_{i}\right)^{2}-\left(1+\sum_{i=2}^{n-1} a_{i}^{2}\right)^{2}
$$

$$
\leqslant 1-\sum_{i=2}^{n-1} a_{i}^{2}<0
$$

if at least two of the a_{2}, \ldots, a_{n-1} are not zero. Hence we need only consider either $a_{2}=\ldots=a_{n-1}=0$, and then $L(y)=y_{1}$, or only one of these a 's does not vanish, say $a_{2} \neq 0$. But then $F(y)$ is indefinite, since as $n>3$,

$$
F\left(2 a_{1}, 2 a_{2},-a_{1},-a_{1}, 0, \ldots, 0\right)=2^{2}+2^{2}+1+1+2^{2}-4^{2}<0
$$

II. Suppose next that none of the a 's are zero. If two of them have different sings, say $a_{1}=-a_{2}$, then

$$
F\left(a_{i}, a_{2}, \ldots, a_{n}\right)=n+\left(\sum_{i=3}^{n} a_{i}\right)^{2}-n^{2} \leqslant(n-2)^{2}+n-n^{2}<0 .
$$

From I, and II, it follows that $F(y)$ is non-negative, if and only if $L(y)=y_{i}(i=1, \ldots, n)$, or $\sum_{i=1}^{n} y_{i}$. This clearly proves the lemma.

LEMMA 3. The form

$$
f(x)=\alpha x_{1}^{2}+2 \beta x_{1} x_{2}+2 \sum_{i=2}^{n} x_{i}^{2}+2 \sum_{i=2}^{n-1} x_{i} x_{i+1}
$$

with determinant $D_{n}<n$, where $\alpha>0 . \beta \geq 0$ are integers satisfying the conditions:

$$
\beta^{2}>\alpha>(1-1 / n) \beta^{2}, \quad 2 \beta \leqslant n .
$$

is positive definite and non-decomposable.
By lemma $1, f(x)$ is positive definite, since its determinant is

$$
D_{n}=n \alpha-(n-1) \beta^{2}>0 .
$$

and clearly all its principal minors are positive.
First, we shall show that nondecomposition of $f(x)$ involving a linear square exists. As in lemma 2, we can transform $f(x)$ into

$$
f(y)=\alpha y_{1}^{2}+2 \beta y_{1} y_{2}+\sum_{i=2}^{n} y_{i}^{2}+\left(\sum_{i=2}^{n} y_{i}\right)^{2}
$$

By lemma 2, it follows that the only squares which need be considered are
(1) $\left(a_{1} y_{1}\right)^{2}, a_{1} \neq 0$, (2) $\left(a_{1} y_{1}+y_{2}\right)^{2}$, (3) $\left(a_{1} y_{1}+y_{i}\right)^{2}(i=3, \ldots, n)$ and
(4) $\left(a_{1} y_{1}+\sum_{i=2}^{n} y_{i}\right)^{2}$.

The case (1) is ruled out, since $D_{n}-n a_{1}^{2}<0$. For the cases (3) and (4), we need consider only the square $\left(a_{1} y_{1}+y_{\mathrm{i}}\right)^{2}$, since $f(y)$ is symmetrical in y_{5}, \ldots, y_{n}, and the transformation

T:

$$
y_{2} \rightarrow-\sum_{i=2}^{n} y_{i} \quad y_{i} \rightarrow y_{j} \quad(j=1,2,4,5, \ldots, n)
$$

permutes y_{3}^{2} and $\left(\sum_{i=2}^{n} y_{i}\right)^{2}$.
Consider first the form

$$
\begin{aligned}
F_{2} & =f(y)-\left(a_{1} y_{1}+y_{2}\right)^{2} \\
& =\left(\alpha-a_{i}^{2}\right) y_{1}^{2}+2\left(\beta-a_{1}\right) y_{1} y_{2}+\sum_{i=3}^{n} y_{i}^{2}+\left(\sum_{i=2}^{n} y_{i}\right)^{2} .
\end{aligned}
$$

The transformation

$$
y_{2} \rightarrow-\sum_{i=1}^{n} y_{i}, \quad y_{j} \rightarrow y_{i} \quad(j=1,3,4, \ldots, n)
$$

carries F_{2} into

$$
\begin{aligned}
F_{2}^{\prime} & =\left(\alpha-a_{i}^{2}\right) y_{1}^{2}-2\left(\beta-a_{1}\right) y_{i}\left(\sum_{i=2}^{n} y_{i}\right)+\sum_{i=2}^{n} y_{i}^{2} \\
& =\sum_{i=2}^{n}\left(y_{i}-\left(\beta-a_{1}\right) y_{i}\right)^{2}+\left(\alpha-a_{1}^{2}-(n-1)\left(\beta-a_{1}\right)^{2}\right) y_{1}^{2} .
\end{aligned}
$$

The maximum of the coefficients of y_{1}^{2}

$$
A=\alpha-a_{1}^{2}-(n-1)\left(\beta-a_{1}\right)^{2}
$$

for different a_{1} occurs when $a_{1}=(n-1) \beta / n$. Since $0<\beta / n<1$, we have for $a_{1}=\beta, \beta-1$, respectively,

$$
A=\alpha-\beta^{2}<0 \text { and } A=\alpha-\beta^{2}+2 \beta-n<0 \text {, }
$$

so that $F_{3}{ }^{\prime}$ is indefinite. This settles the case (2).
Consider next the form

$$
\begin{aligned}
F_{3} & =f(y)-\left(a_{1} y_{1}^{*}+y_{3}\right)^{2} \\
& =\left(\alpha-a_{3}^{2}\right) y_{1}^{2}+2 \beta y_{1} y_{2}+y_{2}^{2}+\sum_{i=4}^{n} y_{i}^{2}+\left(\sum_{i=2}^{n} y_{i}\right)^{2}-2 a_{1} y_{1} y_{3} .
\end{aligned}
$$

The transformation T carries F_{u} into

$$
\begin{gathered}
F_{3}^{\prime}=\left(\alpha-a_{i}^{2}\right) y_{i}^{2}+2 ; y_{1} y_{1}+2 a_{1} y_{1}\left(\sum_{i=2}^{n} y_{i}\right)+\sum_{i=2}^{n} y_{1}^{2} \\
\left.=\sum_{i=3}^{n}\left(y_{i}+a_{i} y_{i}\right)^{2}+\left(y_{i}+\beta+a_{i}\right) y_{1}\right)^{2}+\left(\alpha-a_{1}^{2}-\left(\beta+a_{i}\right)^{2}-(n-2) a_{i}^{2}\right) y_{i}^{2} .
\end{gathered}
$$

The maximum value of the coefficient of y_{1}^{2}

$$
A^{\prime}=\alpha-a_{1}^{2}-\left(\beta+a_{1}\right)^{2}-(n-2) a_{1}^{2}
$$

is reached when $a_{1}=-\beta / n$. Since $-1<-\beta / n<0$, we have, for $a_{1}=0,-1$, respectively,

$$
A^{\prime}=\alpha-\beta^{2}<0 \text { and } A^{\prime}=\alpha-\beta^{2}+2 \beta-n<0,
$$

F_{3} is indefinite and cases (3) and (4) are also settled.
Suppose now there is a decomposition

$$
f(x)=f^{\prime}(x)+f^{\prime \prime}(x)
$$

No term $x_{i}^{2}(i \geq 2)$ can occur in either $f^{\prime}(x)$ or $f^{\prime \prime}(x)$ for then a square can be taken out of $f(x)$. Hence we can assume $f^{\prime}(x)$, say, has a term $2 x_{n}^{2}$. Then $f^{\prime}(x)$ must also contain $2 x_{n-1} x_{n}$, for otherwise $f^{\prime \prime}(x)$ assumes negative values by choice of x_{n}. Then $f^{\prime \prime}(x)$ contains also $2 x_{n-1}^{2}$, for otherwise $f^{\prime}(x)$ will assume negative values by choice of x_{n-1}. Proceeding in this way, $f^{\prime}(x)$ will contain all the terms of $f(x)$ involving $x_{n}, x_{n-1}, \ldots, x_{2}$. Hence $f^{\prime \prime}(x)=a x_{1}^{2}$, and so a square x_{1}^{2} can be taken out from $f(x)$, which contradicts what we hawe proved.

LEMMA 4. If $n \neq 2^{\alpha}, p^{\alpha}, 2 p^{\alpha}$, where p is an odd prime and α is a positive integer, then there exists an odd non-decomposable form in n variables with determinant unity.
Consider the form

$$
f_{n}=\left(\begin{array}{ccc}
x & 2_{(n-1)} & \\
y^{(n-2)}
\end{array}\right)
$$

in n variables. It is easy to calculate by using lemma 1 that its determinant has the value

$$
D_{n}=n x-(n-1) y^{2} .
$$

Putting $D_{n}=1$, we have to solve the congruence

$$
\begin{equation*}
y^{n} \equiv 1(\bmod n) . \tag{2}
\end{equation*}
$$

Since $n \neq 2^{\alpha}, p^{\alpha}, 2 p^{\alpha}$, we can write

$$
n=a \cdot b,(a, b)=1, a>2, \text { and } b>2 .
$$

Suppose y_{1}, y_{2} are the solutions of the congruences:

$$
\begin{aligned}
& y_{1} \equiv-1(\bmod a), y_{1} \equiv 1(\bmod b), 0<y_{1}<n ; \\
& y_{2} \equiv 1(\bmod a), y_{2} \equiv-1(\bmod b), 0<y_{2}<n .
\end{aligned}
$$

Both y_{1} and y_{2} satisfy the congruence (2) and since

$$
y_{1}+y_{2} \equiv 0(\bmod n), 0<y_{1}<n, 0<y_{2}<n,
$$

we have

$$
y_{1}+y_{z}=n
$$

Hence one of the y_{1}, y_{2} is less than $\frac{1}{4} n$ and we take this value to be our y, which satisfies the inequality $2 y<n$.

From $D_{n}=1$, we can obtain the inequalities $y^{2}>x>(1-1 / n) y^{2}$. Hence the form f_{n} satisfies all the conditions of lemma 3 and is non-decomposable.
f_{n} is an odd form if $x=\left((n-1) y^{2}+1\right) / n$ is odd x is evidently odd if n is odd. If n is even, we write

$$
x=y^{2}-\left(y^{2}-1\right) / n .
$$

Then y must be odd and from the congruences

$$
y \equiv \pm 1(\bmod a), y \equiv \mp 1(\bmod b),(a, b)=1, a b=n,
$$

it is clear that if a is even, then b is odd, $y \pm 1$ is even and so $\left(y^{2}-1\right) / n$ is even and so x is odd.

LEMMA 5. For any $n=8 m$, there exists an even non-decomposable form in n variables with determinant unity.

Consider the form

$$
f(x)=\left(\begin{array}{cccc}
8 m & & 2 m & \\
& 4 m-1 & & 1(8 m-2)
\end{array}\right)
$$

in $8 m$ variables. By lemma 1 , the right lower corner $(8 m-1)$-rowed minor or the determinant $D_{8 m}$ of $f(x)$ has the value

$$
2 m(8 m-1)-(8 m-2)=16 m^{2}-10 m+2>0
$$

and so

$$
D_{8 m}=8 m\left(16 m^{2}-10 m+2\right)-(4 m-1)^{2}(8 m-1)=1 .
$$

Hence it is clear that $f(x)$ is an even positive definite quadratic form with determinant unity.

To prove the non-decomposability of $f(x)$, we first show that no square can be taken out from $f(x)$.

Let Q be the matrix of $f(x)$, then the adjoint form of $f(x)$, say F, has matrix Q^{-1}. Since

$$
Q Q^{-1} Q=Q,
$$

$F \sim f(x)$, and so F is also even. Hence all the ($8 m-1$)-rowed minors of forms equivalent to $f(x)$ are even. Suppose now a square L^{y} can be taken out from $f(x)$. A unimodular transformation carries $f(x)$ into

$$
f^{\prime}(x)=\sum_{i, j=1}^{8 m} a_{i j} x_{i} x_{j} \quad\left(a_{i j}=a_{j j}\right)
$$

and $L=x_{1}$. Then the determinant of $f(x)-x_{1}^{2}$ is

$$
\left|\begin{array}{llll}
a_{11}-1 & a_{12} & \ldots & a_{1+8 m} \\
a_{21} & a_{22} & \ldots & a_{2,8 m} \\
\ldots & \ldots & \ldots & \cdots \\
a_{8 m, 1} & a_{8 m, 2} & \cdots & a_{8 m, 8 m}
\end{array}\right|=1-A_{1}
$$

where A is the minor of the element a_{11} in the determinant of $f(x)$. Since A is even, $1-A<0$ and so $f^{\prime}(x)-x_{1}^{2}$ is indefinite.

Suppose now $f(x)$ is decomposable, say

$$
f(x)=f_{1}(x)+f_{2}(x) .
$$

By the same argument used in the last part of the proof of lemma 3 , one
of the $f_{1}(x), f_{2}(x)$, say $f_{2}(x)$, can at most contain the variables x_{1} and x_{5}. Since all binary non-negative forms can be expressed as a sum of squares of linear forms, a square can be taken out from $f(x)$. This contradicts what we have just proved ').

LEMMA 6. If there exists an even positive form in n variables with determinant unity, then n is divisible by 8 .

Suppose there exists an even form f_{n} with determinant $D_{n}=1$. Then by a unimodular transformation, we can change f_{n} into

$$
\left(\begin{array}{cccccc}
2 a_{1} & & 2 a_{2} & 2 a_{3} & & \cdots 2 a_{n-1} \\
\\
& b_{1} & b_{2} & & b_{3} & \\
\cdots & b_{n-1}
\end{array}\right) .
$$

A simple determinant calculation shows that D_{n} is even if n is odd. Hence n is even. Let the left hand corner principal minors of D_{n} be $2 D_{1} D_{2}, 2 D_{n}$, $D_{4}, \ldots, 2 D_{n-1}$, and write $D_{0}=1$, then

$$
\begin{align*}
& 2 D_{1}=2 a_{1}, D_{2}=4 a_{2} D_{1}-D_{0} b_{1}^{2}, \ldots, D_{2 i-1}=a_{2 i-1} D_{2 i-2}-D_{2 i-3} b_{2 i-2}^{2}, \tag{3}\\
& D_{2 i}=4 a_{2 j} D_{2 i-1}-D_{2 i-2} b_{2 i-1}^{2}, \ldots, D_{n}=4 a_{n} D_{n-1}-D_{n-2} b_{n-1}^{2}=1 .
\end{align*}
$$

From these relations, it is easy to see that $\left(D_{i}, D_{i+1}\right) D_{n}=1$ and so $\left(D_{f} D_{1+1}\right)=1$ for $i=1, \ldots, n-1$. Since

$$
D_{n} \equiv\left|\begin{array}{llllll}
0 & & 0 & & 0 & \ldots 0
\end{array} \quad 0 .\right| \equiv b_{1} b_{3} \ldots b_{n-1}(\bmod 2),
$$

all the $b_{2 i+1}$ are odd. By taking congruences modulus 4 in (3), we have

$$
D_{2} \equiv-b_{1}^{2} \equiv-1, \quad D_{4} \equiv-D_{2} b_{3}^{2} \equiv 1(\bmod 4) .
$$

It follows, by induction, that in general

$$
D_{4 i+2} \equiv-1 \quad \text { and } \quad D_{4 i} \equiv 1(\bmod 4) .
$$

Hence the $D_{2 i}$ are odd and $n \equiv 0(\bmod 4)$, say $n=4 \mathrm{~m}$. Write $D_{2 i+1}=$ $2^{\prime 2 i+1} D_{2 i+1}^{\prime}$, where $D_{2 i+1}^{\prime}$ is odd. It is evident from the last relation of (3), that the $D_{4 m-1}^{\prime}, D_{4 m-2}$ satisfy the relation

[^0]$$
\left(-D_{4 m-2} / D_{4 m-1}^{\prime}\right)=1,
$$
the symbol being that of quadratic residuacity. Since $-D_{4 m-2} \equiv 1(\bmod 4)$, and $D_{4 m-2} \equiv-1(\bmod 8)$, when $t_{4 m-1} \geq 0$, we have
$$
1=\left(D_{4 m-1}^{\prime} / D_{4 m-2}\right)=\left(D_{4 m-1} / D_{4 m-2}\right) .
$$

From the relation $D_{4 m-1}=a_{4 m-1} D_{4 m-2}-D_{4 m-3} b_{4 m-2}^{2}$ of (3).

$$
\begin{aligned}
1 & =\left(-D_{4 m-3} / D_{4 m-2}\right) \\
& =\left(2^{4} 4 m-3 / D_{4 m-2}\right) \cdot(-1)^{\frac{1}{2}}\left(D_{4 m-3}^{\prime}+1\right)\left(D_{4 m-2}^{\prime} / D_{4 m-3}^{\prime}\right) \\
& =\left(2^{\left.4 m-3 / D_{4 m-2}\right) \cdot(-1)^{\frac{1}{2}\left(D_{4 m-3}^{\prime}+1\right)}\left(-D_{4 m-4} / D_{4 m-3}^{\prime}\right),}\right.
\end{aligned}
$$

since again from (3). $D_{4 m-2}=4 a_{4 m-2} D_{4 m-3}-D_{4 m-4} b_{4 m-3}^{2}$. Hence

$$
\begin{aligned}
1 & =\left(2^{\prime} 4 m-3 / D_{4 m-2}\right) \cdot(-1)^{\frac{1}{2}\left(D_{4 m-3}^{\prime}+1\right)+\frac{1}{2}\left(D_{4 m-3}^{\prime}-1\right)}\left(D_{4 m-3}^{\prime} / D_{4 m-4}\right) \\
& =-\left(2^{\prime} 4 m-3 / D_{4 m-2}\right)\left(2^{\prime} 4 m-3 / D_{4 m-4}\right)\left(D_{4 m-3} / D_{4 m-4}\right) .
\end{aligned}
$$

From the relation $4_{a_{4 m-2}} D_{4 m-3}-D_{4 m-4} b_{4 m-3}^{2}=D_{4 m-2}$, we have, when $t_{4 m-3}>0$, since $b_{4 m-3}$ is odd, $D_{4 m-2}+D_{4 m-4} \equiv 0(\bmod 8)$. Hence

$$
\begin{aligned}
\left(2 / D_{4 m-2}\right)= & \left(2 / D_{4 m-1}\right) \text { and so } \\
& \left(2^{t 4 m-3 / D_{4 m-2}}\right)\left(2^{4 m-3} / D_{4 m-4}\right)=1 .
\end{aligned}
$$

Hence
or

$$
\begin{aligned}
& 1=-\left(D_{4 m-3} / D_{4 m-4}\right) . \\
& \left(D_{4 m-3} / D_{4 m-4}\right)=-1 .
\end{aligned}
$$

Continuing this process, we get

$$
\left(D_{4 m-8 i-3} / D_{4 m-8 l-4}\right)=-1 .
$$

Hence

$$
D_{4 m-8 i-4} \neq 1,
$$

and so $4 m-8 i-4 \neq 0$, or n is divisible by 8 .
LEMMA 7. The positive definite forms:

$$
\begin{aligned}
& f_{8 m-1}=\left(\begin{array}{ccc}
8 m & 2 m & 2_{(8 m-3)} \\
\cdot 4 m-1 & 1_{(8 m-3)}
\end{array}\right), \\
& f_{8 m-2}=\left(\begin{array}{ccc}
8 m & 2 m & 2_{(8 m-4)} \\
4 m-1 & 1_{(8 m-4)}
\end{array}\right)
\end{aligned}
$$

tn $8 m-1$ and $8 m-2$ variables with determinants 2 and 3, respectively, are non-decomposable.

Let us first consider the form $f_{8_{m-2}}$. From the argument used in the last part of the proof of lemma 5, it suffices to prove that no square can be subtracted from $f_{\mathrm{sm}-2}$. Suppose $f_{\mathrm{B} m-2}-L^{2}$ is a non-negative quadratic form with integer coefficients, where L is a linear form in $x_{1}, \ldots, x_{8_{m-2}}$ with integer coefficients having no common factor. By an unimodular transformation, we can write $L=x_{1}$, and then

$$
f_{8 m-2} \sim f_{8 m-2}=\sum_{i, j=1}^{8 m-2} a_{i j} x_{i} x_{j} \quad\left(a_{i j}=a_{i j}\right)
$$

where $f_{8 m-2}^{\prime}-x_{1}^{2}$ is a non-negative form. Let the cofactor of a_{11} in the determinant of $f_{\mathrm{sm-2}}^{\prime}$ be A_{21}; then the determinant of $f_{\mathrm{sm}-2}^{\prime}-x_{1}^{2}$ is $3-A_{11}$ and ist not negative. Since the adjoint form of an even form in an even number of variables is even ${ }^{8}$), $A_{31}=2$. Consider now the positive even definite form

$$
f_{8 m+4}=8 x_{1}^{2}+6 x_{1} x_{2}+2 \sum_{i=2}^{6} x_{i}^{2}+2 \sum_{i=2}^{6} x_{1} x_{i+1}+\sum_{i, j=1}^{8 m-\dot{2}} a_{i j} x_{i+6} x_{H+6}
$$

in $8 m+4$ variables. On bearing in mind the method of lemma 1 , the lower right corner, say 1. r. c., $(8 m-1)$-rowed minor of the determinant of $f_{8 m+4}$ has the value $2.3-2=4$; the 1. r. c. 8 m -rowed minor is $2.4-3=5$, the 1 c. r. $(8 m+1)$-rowed minor is $2.5-4=6$, the 1 r. c. $(8 m+2)$-rowed minor is $2.6-5=7$, the 1 . r. c. $(8 m+3)$-rowed minor is $2.7-6=8$ and so the determinant of $f_{8 m+1}$ is $8.8-3^{2} .7=1$, which contradicts lemma 6.

Next we prove that no square can be taken out from $f_{8 m-1}$ and hence $f_{\mathrm{sm}-1}$ is non-decomposable. If $f_{8 m-1}-L^{2}$ is non-negative, then L cannot contain a term involving $x_{i}(1 \leqslant i \leqslant 8 m-2)$, for otherwise, by putting $x_{8 m-1}=0$, we would get a decomposition of $f_{8 m-2}$. Hence $L=x_{8 m-1}$. But $f_{8 m-1}-x_{8 m-1}^{2}$ is indefinite, since the determinant of $f_{8 m-1}-x_{8 m-1}^{2}$ is $2-3<0$. This completes the proof.

LEMMA 8. Let the positive definite quadratic forms:

$$
\begin{gathered}
g_{1}=f_{m}\left(x_{1}, \ldots, x_{m}\right), \quad g_{2}=f_{n-m-1}\left(x_{m+2}, \ldots, x_{n}\right), \\
g_{3}=b x_{m+1}^{2}+2 x_{m+1} x_{m+2}+g_{2}
\end{gathered}
$$

having determinants $\mathscr{D}_{1}, \mathscr{D}_{2}, \mathscr{D}_{3}$, respectively, be non-decomposable. Denote

[^1]by A the value of the upper left-hand corner principal $(m-1)$-rowed minor of \mathscr{D}_{1}, If there exists a positive definite quadratic form of determinant $\mathscr{D}<\mathscr{D}_{1} \mathscr{D}_{2}$.
$$
g=g_{1}+a x_{m+1}^{2}+2 x_{m} x_{m+1}+g_{3},
$$
where a is an integer and $0<a<A \mid \mathcal{D}_{1}$, then g is non-decomposable.
Suppose g has a decomposition
\[

$$
\begin{equation*}
g=h+h . \tag{4}
\end{equation*}
$$

\]

If one of the h 's has a term involving $x_{i}(i=1, \ldots, m)$, it will contain all the terms of g_{1}, for otherwise we would get a decomposition of g_{1} by putting $x_{m+1}=\ldots=x_{n}=0$. Similarly, if one of the $h^{\prime} s$, say h, has a term involving $x_{i}(i=m+2, \ldots, n)$, it contains all the terms of g_{2}. Then h must contain the term $2 x_{m+1} x_{m+2}$, for otherwise, h^{\prime} will assume negative values by choice of x_{m+2}. Then h contains also a term $b^{\prime} x_{m+1}^{2}$ with $b^{\prime}>0$, for otherwise, h will assume negative values by choice of x_{m+1}. Next $b^{\prime} \geqq b$, for if $b^{\prime}<b$, on putting $x_{1}=\ldots=x_{m}=0$,

$$
h=g_{2}+2 x_{m+1} x_{m+2}+b^{\prime} x_{m+1}^{2} .
$$

This is indefinite, since g_{3} is non-decomposable. Hence h contains g_{g}. Hence we may suppose that either h contains both g_{1} and g_{11}, or h contains g_{1} and h^{\prime} contains g_{3}.

In the first case, h can only contain the terms or part of the terms of $g-\left(g_{1}+g_{3}\right)=a x_{m+1}^{2}+2 x_{m} x_{m+1}$. Then $h^{\prime}=c x_{m+1}^{2}$ with $0<c \leqq a$, since if h^{\prime} contains the $2 x_{m} x_{m+1,}, h^{\prime}$ will assume negative values by choice of x_{m}. Hence

$$
h=g-c x_{m+1}^{2} .
$$

Since the cofactor of the coefficients of x_{m+1}^{2} in the determinant \mathscr{D} of g, is $\mathscr{D}_{1} \mathscr{D}_{2}$, the determinant of h is $\mathscr{D}-c \mathscr{D}_{1} \mathscr{D}_{2}$. By hypothesis, $\mathscr{D}-\mathscr{D}_{1} \mathscr{D}_{2}<0$, h is indefinite.

In the second case, h must contain the term $2 x_{m} x_{m+1}$, for otherwise h^{\prime} will assume negative values by choice of x_{m}, Then h contains also a term $c^{\prime} x_{m+1}^{2}, c^{\prime}>0$, for otherwise h will assume negative values by choice of x_{m+1}. Also

$$
h=g_{1}+2 x_{m} x_{m+1}+c^{\prime} x_{m+1}^{2}, h^{\prime}=g_{3}+d x_{m+1}^{2}
$$

since h^{\prime} contains g_{3}. Hence $\boldsymbol{a}=\boldsymbol{c}+\boldsymbol{d}$ and so $c \leq a$ for d cannot be negative, as g_{a} is indecomposable. It is easy to see that the determinant of h is $c^{\prime} \mathscr{D}_{1}-A$. By hypothesis, $c^{\prime} \mathscr{D}_{1} \leq a \mathscr{D}_{1} \leq A$, and so h is indefinite. Hence (4) is impossible and the lemma is proved.

LEMMA 9. For every $n \geqq 12$, except possibly for $n=13,16,17,19$, 23, there exists an odd non-decomposable quadratic form with determinant unity.

Suppose $n+2$ can be expressed as the sum of two positive integers n_{1}, n_{2}, where $n_{1}=8 m$ or $a^{2}-1$, and $n_{2} \neq 4, p^{\alpha}, 2 p^{\alpha}, p$ being an odd prime and a an integer. Let the form

$$
\left(\begin{array}{ccccccc}
a_{1} & & & a_{2} & & a_{3} & \tag{5}\\
a_{n_{k}-2} & & a_{n_{i}-1}
\end{array}\right) .
$$

in $n_{1}-1$ variables with determinant 2 , containing a minor

$$
\left|\begin{array}{lllllll}
a_{1} & & a_{2} & & a_{3} & & a_{n_{1}-3} \tag{6}\\
& b_{1} & & b_{2} & & b_{3} & \cdots
\end{array} b_{n_{1}-3} a_{n_{4}-2}\right|=3
$$

be non-decomposable. Such forms always exist, for if $n_{1}=8 m$, we can by lemma 7, take the form

$$
\left(\begin{array}{ccc}
8 m & 2 m & \\
4 m-1 & 1_{(8 m-3)}
\end{array}\right)
$$

and if $n_{1}=a^{2}-1$, by lemma 3 , the form

$$
\left(\begin{array}{ccc}
a^{2}-1 & 2_{\left(n_{1}-2\right]} & \\
& 1_{\left(n_{1}-3\right)}
\end{array}\right)
$$

Consider now the odd form:
$f_{n}=\left(\begin{array}{lllllllllllll}a_{1} & & a_{2} & & a_{3} & & \ldots & a_{n_{1}-2} & & & a_{n_{1}-1} & & \\ & b_{1} & & b_{2} & & b_{3} & \ldots & b_{n_{1}-2} & & & 1_{(n,-3)} & 2_{(n,-3)} & x\end{array}\right)$,
in n variables with x, y satisfying the relation

$$
\begin{equation*}
n_{2} x-\left(n_{2}-1\right) y^{2}=1 \tag{7}
\end{equation*}
$$

From (5) and (6),
and so as in lemma 1,

$$
\begin{aligned}
& \left|\begin{array}{llllllll}
a_{1} & \cdots & a_{n_{1}-2} & & a_{n_{1}-1} & 3 & 3 & 2\left(n_{2}-4\right) \\
& b & \cdots & b_{n_{1}-2} & 1 & 1\left(n_{2}-4\right) \\
\left|\begin{array}{cccccccc}
a_{4} & \ldots & a_{n_{1}-2} & & a_{n_{1}-1} & 3 & 2\left(n_{2}-3\right)
\end{array}\right|=n_{2}-1, \\
& b_{1} & \cdots & b_{n_{1}-2} & & 1 & 1\left(n_{2}-3\right)
\end{array}\right|=n_{2} .
\end{aligned}
$$

and the determinant of f_{n} is $n_{2} x-\left(n_{2}-1\right) y^{2}=1$. From lemma 8 , on taking

$$
\begin{aligned}
& g_{1}=\left(\begin{array}{lllll}
a_{1} & \cdots & a_{n_{2}-2} & & a_{n_{1}-1} \\
& b_{1} & \cdots & b_{n_{1}-2}
\end{array}\right), \quad \mathscr{D}_{1}=2, A=3, \\
& g_{2}=\left(\begin{array}{llll}
2\left(n_{2}-4\right) & & 2 & x \\
& 1\left(n_{2}-4\right) & y
\end{array}\right), a=1, g_{3}=\left(\begin{array}{lll}
2\left(n_{2}-3\right) & & 2 \\
& 1\left(n_{2}-3\right) & y^{x}
\end{array}\right) \text {, } \\
& \mathscr{D}_{2}=\left|2\left(n_{2}-4\right){ }^{1\left(n_{2}-4\right)}{ }^{2} y^{x}\right|, \mathscr{D}_{2}=\left|2\left(n_{2}-3\right){ }^{1\left(n_{2}-4\right)} \begin{array}{lll}
2 & y
\end{array}\right| ;
\end{aligned}
$$

f_{n} is non-decomposable if g_{2}, g_{s} are non-decomposable. From lemma 3 , we need only show that

$$
\begin{gather*}
x<y^{2}, \tag{8}\\
2 y \leqslant n_{2}-2,
\end{gather*}
$$

the determinant of order $n_{2}-2$,

$$
\begin{equation*}
\mathscr{D}_{2}<n_{2}-2, \tag{10}
\end{equation*}
$$

and the determinant of order $n_{2}-1$

$$
\begin{equation*}
\mathscr{D}_{\mathrm{a}}<n_{2}-1 . \tag{11}
\end{equation*}
$$

By lemma 1 and (7),

$$
\begin{align*}
& \mathscr{D}_{3}=\left(n_{2}-2\right) x-\left(n_{2}-3\right) y^{2}=1-2 x+2 y^{2} \tag{12}\\
& \mathscr{D}_{1}=\left(n_{2}-1\right) x-\left(n_{2}-2\right) y^{2}=1-x+y^{2} .
\end{align*}
$$

We now solve (7). Since $n_{2} \neq 4, p^{\alpha}, 2 p^{\alpha}$,

$$
Y^{2} \equiv 1\left(\bmod n_{1}\right)
$$

has a solution Y satisfying the inequalities

$$
\begin{equation*}
1<Y<\frac{1}{2} n_{2} . \tag{13}
\end{equation*}
$$

Then taking $y=Y$ in (7), we have a solution (x, y). Then (8) evidently holds, as from (7) and (13),

$$
x=y^{3}+\left(1-y^{2}\right) / n_{2}<y^{2} .
$$

If n_{2} is even, (9) follows from (13). If n_{2} is odd, say $n_{2}=2 n_{3}+1, y \neq n_{3}$, since $n_{3}^{2} \equiv \equiv 1\left(\bmod 2 n_{a}+1\right)$ for $n_{2} \neq 3$. Hence from (13), $y \leqslant n_{3}-1$ and (9) holds again. Since from (12), $\mathscr{D}_{2}-\mathscr{D}_{u}=y^{2}-x>0$, (11) holds if (10) holds. From (7) and (9), we get

$$
y^{2}-x=\left(y^{2}-1\right) / n_{2}<n_{2} / 4 .
$$

Thus (10) follows if $n_{2} \geqq 6$, since

$$
\mathscr{D}_{2}=1+2 y^{\prime \prime}-2 x<1+n_{2} / 2 \leqslant n_{2}-2
$$

is true for $n_{2} \geqq 6$. But $n_{2} \neq 4, p^{\alpha}, 2 p^{\alpha}$, and so $n_{2} \geqq 8$, hence f_{n} is nondecomposable.

Now from lemma 4, we need only prove that if $n=2^{k}, p^{k}$, or $2 p^{k}$, where $n \geqq 12, n \neq 13,16,17,19,23$, the equation

$$
n \div 2=n_{1}+n_{2}
$$

is solvable with the conditions $n_{1}=8 m$ or $a^{y}-1, n_{2} \neq 4, p^{\alpha}, 2 p^{\alpha}$ and $n_{1}>0, n_{2}>0$.

Small values for $n_{1}-2$ are

$$
6,13,14,22,30,38 \text { and } 46 .
$$

Suppose first that $n \equiv 0(\bmod 4)$. Then we need only consider $n=2^{k}$.
If $2^{k} \equiv 2(\bmod 3)$, then we can take $n_{2}=2^{k}-14$ or $2^{k}-38$, if $n>38$, unless

$$
2^{k}-14=2.3^{3}, \quad 2^{k}-38=2.3^{\top}
$$

They give $3 \beta-3^{\gamma}=12$, which is impossible. But if $n \leqslant 38$, we get the exceptional case $n=32$.

If $2^{k} \equiv 1(\bmod 3)$, then we can take $n_{2}=2^{k}-22$ or $2^{k}-46$, if $n>46$, unless

$$
2^{k}-22=2.3^{\beta}, \quad 2^{k}-46=2.3^{i}
$$

They give also the impossible equation $3^{\beta}-3^{\gamma}=12$ and we get the exceptional value $n=16$.

Suppose next $n \equiv 2(\bmod 4)$, we can take $n_{2}=n-6$, unless $n_{2}=4$, i. e. $n=10$.

Suppose finally n is odd and so $n=p^{k}$. If $n \equiv 0(\bmod 3)$, we can take $n_{2}=n-6$ or $n-30$, if $n>30$, unless

$$
n-6=3^{3}, \quad n-30=3^{3}
$$

They give the equation $3^{\beta}-3^{\eta}=24$, which has only the solutions $\beta=3$ leading to $n=33 \neq p^{k}$ The only exceptional value $n=p^{k} \leqslant 30$ is 27 .

If $n \equiv 2(\bmod 3)$, we can take $n_{8}=n-14$, or $n-38$, if $n>38$, unless

$$
n-14=3^{9}, \quad n-38=3^{7}
$$

They give the equation $3^{\beta}-3^{\gamma}=24$, which has the only solution $\beta=3$ and this corresponds $n=41$. The other exceptional values $\leqslant 38$ are 17, 23, 29.

If $n \equiv 1(\bmod 3)$, we can take $n_{2}=n-22$ or $n-13$, if $n>22$, unless

$$
n-22=3^{3}, \quad n-13=3^{Y} .
$$

They give the impossible equation $3^{\gamma}-3^{\beta}=9$, and so the exceptional values in this case are only $13,19$.

Hence the exceptional values are

$$
n=13,16,17,19,23,27,29,32 \text { and } 41 .
$$

Since

$$
27-6=21, \quad 29-14=15, \quad 41-6=35,
$$

and $21,15,35 \neq 4, p^{\alpha}, 2 p^{\alpha}$, we can rule out the cases 27,29 and 41 . Hence the only exceptional values are

$$
n=13,16,17,19,23 \text { and } 32 .
$$

But 32 can be excluded from the last. Write

$$
f_{31}=\left(\begin{array}{cccc}
35 & & 2(30) & \\
& 6 & & 1(29)
\end{array}\right), \quad f_{32}=\left(\begin{array}{lllll}
35 & & 2(29) & & \\
& 6 & & & \\
& & & & \\
& & 29) & & 2
\end{array}\right) .
$$

Then f_{31} has determinant $5=35.31-6^{2} .30, f_{32}$ has determinant $1=5.5-2^{2}\left(35.30-6^{2} \cdot 29\right)$. By lemma 3, the form f_{31} is non-decomposable. If there exists a decomposition for f_{32}, say

$$
f_{32}=h_{32}+h_{32}^{\prime}
$$

and one of the h 's, say h_{32} must vanish identically if we put $x_{32}=0$, for otherwise, there would exist a decomposition for f_{31}. Hence $h_{a a^{\prime}}$ contains only $c x_{32}^{2}$ with $c \geqq 1$. This is impossible, since

$$
\left|\begin{array}{llll}
35 & 6_{1(29)}^{2(29)} & 2^{5-c}
\end{array}\right|=1-5 c<0 .
$$

Hence f_{32} is non-decomposable and our lemma is proved.
It should be remarked that for $n=8^{\circ}$), $9,10,11,13^{19}$), it is known that there exist no odd non-decomposable forms with determinant unity. It still remains to be investigated whether there exist odd non-decomposable forms when $n=16,17,19$ and 23 with determinant unity.

LEMMA 10. For every odd integer $n>176$, a non-decomposable form in n variables with determinant 2 exists such that the upper left-hand

[^2]$(n-1)$-rowed principal minor of its determinant is odd and greater than unity.

We prove first the existence of two such forms in $16 k+1,22 h+1$ variables respectively.

Consider first the form in $16 k+1$ variables:
 where the part $\left(\begin{array}{lll}34 & 10 & \\ & 1 & 1(14) \\ & 6(14) & 6\end{array}\right)$ occurs $k-1$ times. Denote the upper left - hand i-rowed minor of its determinant by A_{i}. Then $A_{16 k+1}$ is the determinant of $f_{16 n+1}$.

For $k=1$, the form in 17 variables

$$
f_{17}=\left(\begin{array}{lll}
2(15) & & 2 \\
& 1(15) & \\
& 64
\end{array}\right)
$$

is non-decomposable by lemma 3. By lemma $1, A_{15}=16, A_{16}=17, \quad$ and $A_{17}=34.17-6^{2} .16=2$.

Suppose now that for $k=m$, in (14) the form $f_{16 m+1}$ is non-decomposable and $A_{16 m}=17, A_{16 m+1}=2$. Take $k=m+1$, Then $A_{16 m+2}=10.2-17$ $=3, A_{16 m+3}=2.3-2=4$, and so step by step, $A_{16 m+16}=17, A_{16 m+17}=$ $34.17-6^{2} .16=2$.

From lemma 8, on taking

$$
\begin{aligned}
& g_{1}=f_{16 m+1}, \mathscr{D}_{4}=2, A=17, \\
& g_{2}=\left(\begin{array}{ccc}
2(13) & 2 & 34 \\
& 1(13) & 6
\end{array}\right), \quad \mathscr{D}_{2}=34 \cdot 15-6^{2} \cdot 14=6, \\
& g_{3}=\left(\begin{array}{ccc}
2(14) & & 2
\end{array}\right. \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

and $a=8$, then $g=f_{16 m+17}$ is non-decomposable, since from lemma $3, g_{2}, g_{3}$ are non-decomposable. Hence $f_{16 t+1}$ is non-decomposable for any $k>0$.

Consider next the form in $22 h+1$ variables
(15) $f_{22 h+1}^{\prime}=\left(\begin{array}{lllllllllll}2(21) & 2 & 24 & 13 & 2(20) & 24 & 13 & 2(20) \ldots 24 & 13 & 2(20) & 24 \\ & 1(21) 5 & 1 & 1(20) & 5 & 1 & 1(20) \ldots 5 & 1 & 1(20) & 5\end{array}\right)$ the part $\left(\begin{array}{llll}24 & 13 & & 2.20) \\ & 1 & 1(20) & 5\end{array}\right)$ occurring $h-1$ times. Denote the minors corresponding to the A^{\prime} s above by A_{i}.

For $h=1$, the form in 23 variables

$$
f_{23}^{\prime}=\left(\begin{array}{lll}
2(21) & & 2 \\
& & 24(21) \\
& 5
\end{array}\right)
$$

is non-decomposable by lemma 3. By lemma $1, A_{22^{\prime}}=23$, and $A_{23}{ }^{\prime}=$ $24.23-5^{2} \cdot 22=2$. Suppose now for $h=m$, in (15) the form $f_{2 m+1}^{\prime}$ is non decomposable and that $A_{22 m+1}^{\prime}=23, A_{22 m+1}^{\prime}=2$. Take $h=m+1$. Then $A_{22 m+2}^{\prime}=13.2-23=3, A_{22 m+3}^{\prime}=2.3-2=4$, and so step by step, $A_{22 m+22}^{\prime}=23, A_{22 m+23}^{\prime}=24 \cdot 23-5^{2} \cdot 22=2$.

From lemma 8 , on taking

$$
\begin{aligned}
& g_{1}=f^{\prime} 22 m+1 . \mathscr{D}_{1}=2, A=23, \\
& g_{2}=\left(\begin{array}{llll}
2(19) & & 2 & 24 \\
& 1(19) & & 5
\end{array}\right), \mathscr{D}_{2}=24.21-5^{2} \cdot 20=4, \\
& g_{9}=\left(\begin{array}{llll}
2(20) & & 2 & 24 \\
& 1(20) & 5^{24}
\end{array}\right), \mathscr{D}_{2}=24.22-5^{2} .21=3,
\end{aligned}
$$

and $a=11$, then $g=f_{22 m+23}$ is non-decomposable, since by lemma $3, g_{2}, g_{3}$ are non-decomposable. Hence $f_{22 h+1}^{\prime}$ is non- decomposable for any $h>0$.

Finally, we consider the form in $16 k+22 h+1$ variables $f^{\prime \prime}{ }_{16 k+22 h+1}=$
 with $k>0, h>0$. Denote the corresponding minors now by $A_{i}^{\prime \prime}$. Then

$$
A^{\prime \prime} 16 k+1=A_{16 k+1}=2, A^{\prime \prime} 16 k+2=A_{16 k+2}=10.2-17=3,
$$

$$
A^{\prime \prime} 16 k+3=A_{3}^{\prime}=4, \text { etc., } A^{\prime \prime} 16 k+22 h=A^{\prime} 22 h=23, A^{\prime \prime} 16 k+22 h+1=A^{\prime} 22 h+1=2 .
$$

From lemma 8 , on taking

$$
\begin{array}{ll}
g_{1}=f 16 k+1, & \mathscr{D}_{1}=2, A=17, \\
g_{2}=\left(\begin{array}{lll}
2(19) & 2 & 24 \\
1(19) & 5^{2}
\end{array}\right), & \mathscr{D}_{2}=4, \\
g_{3}=\left(\begin{array}{lll}
2(20) & 24 & 24 \\
1(20) & & \mathcal{D}_{3}=3, a=8,
\end{array}\right.
\end{array}
$$

the form $g=f^{\prime}{ }_{16 k+22 h+1}$ is non-decomposable. Then as in the proof of the non-decomposability of $f^{\prime} 22 h+1$, we can show that $f^{\prime \prime} 16 k+22 h+1$ is nondecomposable for any $k>0, h>0$.

Now every integer $n=2 m+1>176$ is of the form $16 k+22 h+1$, since $m=8 k+11 h$ has a solution with $h \geqq 0, k \geqq 0$ for $m>87$. Our lemma is proved.

LEMMA 11. There exist even and odd non-decomposable forms in less than $13 k$ variables with determinant $k+2$.

Let r be an integer such that

$$
\begin{equation*}
10 k>r^{2}>2 k+4 \quad(k>0) . \tag{16}
\end{equation*}
$$

Such integers always exist, for if we write

$$
\begin{gathered}
r^{2}>2 k+4 \geqslant(r-1)^{2} \\
r^{2} \leqslant(\sqrt{2 k+4}+1)^{2}=2 k+5+2 \sqrt{2 k}+4
\end{gathered}
$$

Then (16) holds, if
or

$$
\begin{gathered}
10 k>2 k+5+2 \sqrt{2 k+4} \\
8(8 k-11) k+9>0
\end{gathered}
$$

which is true for all $k>1$. If $k=1, r=3$ suffices.
Consider the form in $r^{2}-k-2$ variables

$$
f_{r^{2}-k-2}=\left(\begin{array}{ll}
2\left(r^{2}-k-4\right) & 1_{\left(r^{2}-k-4\right)} r
\end{array} r^{2} r^{2}-1\right) .
$$

By lemma 1, its determinant is $\left(r^{2}-1\right)\left(r^{2}-k-2\right)-r^{2}\left(r^{2}-k-3\right)=k+2$. It is non-decomposable; for by lemma 3, it tuffices to show that

$$
r^{2}-k-2>k+2, \quad 2 r \leqslant r^{2}-k-2 .
$$

The first inequality follows from (16). The second is true for $k=1$. For $k=2$, we can take $r=4$. For $k>2$, we have $r \geq 4$. Suppose then the second ineqaulity is not true, i. e. $2 r>r^{2}-k-2$, and so

$$
(r-1)^{2} \leqslant k+2 .
$$

Then from $r^{2} \geqq 2 k+5$, we get

$$
2(r-1)^{2}<r^{2},
$$

which is false for $r \geqq 4$. Hence $f_{t, n-2}$ is non-decomposable.
Consider next the form in $(r+1)^{2}-k-2$ variables with determinant $k+2$

$$
f_{(r+1)^{2}-k-2}=\left(2_{\left.(r+1)^{2}-k-1\right)}^{1_{\left((r+1)^{2}-k-4\right)}} 2^{r+1}(r+1)^{2}-1\right) .
$$

It is non-decomposable; for by lemma 3 , it suffices to show that

$$
(r+1)^{2}-k-2>k+2, \quad 2(r+1) \leqslant(r+1)^{2}-k-2 .
$$

Both of the inequalities follow from $r^{2}>2 k+4$.

Since $(r+1)^{2}-k-2<13 k$ and the number of variables of one of the forms $f_{r^{2}-k-2}, f_{(t+1)^{2}-k-2}$ is even and of the other is odd, the lemma is proved.

2. Proofs of the theorems 1,2 and 3.

Theorem 1 evidently follows from lemma 5 and 9 .
To prove theorem 2, we put $n=m+1+s$, where $s>176$ is an odd integer and with the r of $(16), m=r^{2}-k-2$ or $(r+1)^{2}-k-2$, the choice being determined by $m \equiv n(\bmod 2)$. Let the form in s variables obtained in lemma 12 be f_{s}. Then the upper left-hand minor A_{s-1} is odd and >1. Let

$$
u=\frac{1}{2}\left(A_{s-1}+3\right) .
$$

Then u is an integer and $0<u-2<\frac{1}{2} A_{s-1}$. Suppose first $m=r^{2}-k-2$. Consider the form

$$
f_{n}=f_{s}+2 x_{s} x_{s+1}+u x_{s+1}^{2}+2 x_{s+1} x_{s+2}+f_{r^{2}-k-2}\left(x_{s+2}, \ldots, x_{i+1 r^{2}-k-1}\right),
$$

where $f_{r^{2}-k-2}$ is the form obtained from lemma 11. Denote the upper lefthand i-rowed principal minor of f_{n} by A_{i}. Then

$$
\begin{aligned}
& A_{s}=2, A_{r+1}=2 u-A_{s-1}=3, A_{o+2}=2.3-2=4, \text { etc. } \\
& A_{s+r^{2}-k-3}=r^{2}-k-1, A_{s+r^{2}-k-2}=r^{2}-k ;
\end{aligned}
$$

and so the determinant of f_{n} is $\left(r^{2}-1\right)\left(r^{2}-k\right)-r^{2}\left(r^{2}-k-1\right)=k$.
From lemma 8, on taking

$$
\begin{gathered}
\mathrm{g}_{1}=f_{s}, \mathscr{D}_{1}=2, A=A_{s-1} \geq 3, g_{2}=f_{r^{2}-k-2}, \mathscr{D}_{2}=k+2, \\
g_{3}=\left(\begin{array}{cc}
2_{\left(r^{2}-k-3\right)} & \mathrm{I}_{\left(r^{2}-k-3\right)} \quad r
\end{array}\right), \quad \mathscr{D}_{3}=k+1, a=u-2,
\end{gathered}
$$

$g=f_{n}$ is non-decomposable, if g_{3} is non-decomposable. By lemma 3, g_{1} is non-decomposable, if $\mathscr{D}_{3}<r^{2}-k-1$, or $2 k+2<r^{2}$ and this follows from the choice of r in lemma 11 .

Similarly, f_{n} is non-decomposable if $m=(r+1)^{2}-k-2$.
Hence theorem 2 is proved.
To prove theorem 3, by theorem 1, we need only supply special results for $n=6,7,9,10,11,13,17,19,23$.

Since $6 \equiv-2,7 \equiv-1,23 \equiv-1(\bmod 8)$, by lempa 7 , we have a non-decomposable form for $n=6,7^{11}$), and 23 . For $n=9,10,11,13,17$, 19, we have that by lemma 3 the forms

$$
\begin{array}{lll}
\left(\begin{array}{llll}
15 & & 2_{(9)} & \\
& 4 & & 1_{(0)}
\end{array}\right) & (i+1=9,10,11,13) ; \\
\left(\begin{array}{llll}
24 & & 2_{(n)}^{(n)} & \\
& 5 & & 1_{(n)}
\end{array}\right) & (i+1=17,19)
\end{array}
$$

are non-decomposable.
In closing, we should like to thank Prof. Mordell for suggesting shorter proofs of lemmas 2, 3 and for his kind help with the manuscript.
(Received 28 March, 1938.)
${ }^{11)}$) These are the same forms given by Prof. Mordell. See footnote ग.

[^0]: ${ }^{7}$) This argument shows that the even positive definite form with determinant unity

 $$
 h(x)=\sum_{i=1}^{8 m} x_{i}^{2}+\left(\sum_{i=1}^{8_{m}} x_{i}\right)^{2}-2 x_{1} x_{+}-2 x_{2} x_{8 m}+2(m-1) x_{8 m}^{2}
 $$

 given by Korkine and Zolotareff in Mathematische Annalen, 6, 1873, p. 366-389 (brought to our notice by prof. L. J. Mordell) is non-decomposable. It is probable that $h(x)$ is equivalent to our $f(x)$ for the same m.

[^1]: ${ }^{8}$) Bachmann, Zahlentheorie, vol. 4, part 1, 444.

[^2]: ${ }^{9}$) Mordell, J. de Mathématiques, 17 (1938), 41-46. Also see Ko, Quart. J. of Math. (Oxford), 8 (1937) 85.
 ${ }^{10}$) Ko, "On the positive definite quadratic forms with determinant unity", which may appear in Acta Arithmetica.

