
AN~PAWA OF MATEBMATIW 
Vol. 39, No. 4, October, 1938 

ON INTERPOLATION II 

ON TH.E DISTRIBUTION OF THE FUNDAMENTAL POINTS OF LAGRANGE 
AND HERMITE INTERPOLATION 1 

BY P. EFCD~S AND P. TUF&N 

(Received November 1, 1937) 

1. Introduction. 

Let 

be a triangular matrix, or shortly mat,rix, where for every line 

-1 5 22’ < XEl < .a. < Z;n) 5 +1. 

We define the nth Lagrange interpolation parabola belonging to the function 
f(z) as the polynomial Ln(f) of degree (n - 1) at most t’aking at ~1~)~ . . . , ~2’ 
the values j(~i~)), . a . f(xe’). The explicit form of this polynomial is 

where 

and 

Z”(X) = 4x1 
W’(G) (z - 2,) ’ 

w(x) = c&(x> = Q (x - xy) = Q (x - XJ. 

The polynomials I&), the “fundamental functions” are independent of 
j(s), We give explicit indication of the dependence of Z,,(x) upon n only when 
we want to emphasize this dependence or when a misunderstanding may arise. 

1 We reported part of these results to the Math. and Phys. Assoc. Budapest, 12. XII. 
1935. 
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704 P. ERDiiS AND P. TUFdN 

We evidently have 

L,(l) = 2 E,(x) = 1, 
Y-d 

or more generally, if $(z) is a polynomial of degree k: 

(lb) Ln+kM) = ti n = 1, 2, =. . . 

In the theory of the Lagrange-interpolation we shall consider the two se- 

I 

1 
quences L,(j),+=, and L,(f)dxforn-+m. The behavior of the first sequence 

-1 
is determined’ by 

@a) B&z, x00) = g1 I Zkboa) I, 

that of the second one3 by 

(2b) 

These expressions Bl(n, x0) and S(n) are evidently independent of the function 
f(s) ; they depend only upon the matrix A of the fundamental points and (as 
in (2a)) upon the value of x0 ; they are the analogues of the Lebesgue-con- 
stants in the theory of Fourier-series. 

The examination of the second problem is particularly easy when the so 
called “Cotes numbers” are all greater than or equal to O,* i.e. 

(3) XI, = Tp 2 0, k = 1, 2, - *. 71, n = 1, 2, . . . . 

For in this case, by (la) we have 

s j hk 1 = 2 XI, = 2, 

i.e. we immediately obtain by P6lya (l.c.) that, ;f f(x) is R.-integrable,2 t,henfor 
the Lagrange parabolas taken on such an A 

lim 
/ 

’ L,(f) dx = 
R-+OO -1 s 

1 

JCd dx. 

Thus (3) implies an import.ant interpolation property of the matrix A. P6lya 
proved that the necessary and sufficient condition for quadrature convergence 
for continuous functions is 

(4) &2(n) < Cl 

2 H. Hahn: iiber das Interpolationsproblem, Math. Zeitschrift 1918. The notations 
“bounded, ” “R-integrable” “L-integrable” “continuous” refer always, to the interval 
L-1, f-11. 

3 G. P6lya, ober die Konvergenz von Quadraturverfahren, Math. Zeitschrift 1933. Bd. 37. 
pp. 264-286. 

4 L. FejBr: Mechanische Quadraturen mit positiven Cotes-Zahlen, Math. Zeitschrift 
1933. Bd. 37. p, 287-309. See (2b). 
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where q (and later cz . . *) are osl lve constants independent of n. Also (4) p ‘t’ 
depends only upon A and implies an important interpolation property. 

To obtain a new and important interpolation property of A in the theory of 
the Lagrange interpolation we are forced according to FejQr’ to consider the 
Hermite-interpolation. The nth step parabola of the bounded and integrable 
function f(z) is defined as the polynomial Hn(f) of degree (272 - 1) at most 

taking at CC:‘), . . . , zp,“’ the values f(s:“‘), . . . , f(z?)) with - dH.0) 
dx &+) = ‘- 

(v = 1,2, ... n.) The explicit form of this polynomial is given%y 

where 

@b) 4x) = 2 (5 - 2,). 

Then the above mentioned property is 

W”(Zk) ek(z)=l---((R:--k) zcz, 
d(xk) 

-1szs++I, ii = 1,2, - * * ) n, n = 1,2, * * * 

The matrices with the property (5~) are called by Fejkr “strongly normal” 
matrices and he deduces for their Lagrange parabolas convergence criteria of 

great generality. The identity k h&) = 1 plays an important r81e here. 
k=I 

By this identity and (5~) we have for strongly normal matrices 2 Zk(x)’ I 2 
h=l c2 

i.e. a fortiori 

(6) 
I Zk(5) I 5 cz’ 

- 1 s 2 5 +1, k = 1, 2, . . . n, n = 1, 2, . A. . 

Thus the strongly normal matrices satisfy (6), but the converse is not true. 
(6) implies an important interpolation property, too. 

The importance of the Hermite interpolation is also shown by the following 
fact. As Bernstein’ proved, there exists for every matrix A a continuous f(z) 
and an abscissa x0 such, that li;+:up j &(f) ltiz0 = + 0~. On t,he other hand 

Fej@r’ proved, that for certain special matrices the Hermite parabolas Hn(f) of 

5 L. Fej&, On the Characterization of some remarkable systems, etc. Amer. Math. 
&Ior&ly. 1934. 

6 Bernstein, S-UT la limitation des valeurs d’un polynom etc. Bull. de 1’Acad. de Sciences 
de I’URSS, 1931. 

7 Fejbr, Die Abschcitzung eines Poiynoms etc. Math. Zeitsch. 1930, Bd. 32, pp. 426-457. 
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any continuous f(s) converge uniformly to&) in [ - 1, + 11; e.g. the “matrix T”, 
the nth row of which consists of the n roots of T&J), the Tschebyscheff poly- 
nomial (T,(cos 19) = cos no), displays this property. The question now arises, 
which matrices possess this property ? Or if uniformity of convergence is not 
required: what is the necessary and su5cient condition, that for any continuous 
f(z) and at any fixed point xo 

(7) lim H,UL=,, = f&01? 
n-r- 

For our purpose it will be sufficient to know, that a necessary condition for (7) is 

This condition follows immediately from the theorem of Hahn (l.c.). The sum 
in (8) evidently depends only upon A ; thus it expresses an interesting inter- 
polation property. 

h (3), (4), (5c), (6) and (8) we enumerated some interpolation properties. 
As far as we know, the whole literature on interpolations-with the exception 
of two papers-is deducing convergence-and divergence-properties from 
given suppositions for the matrices. Fejer’ was the first to invert the problem, 
deducing distribution-properties from given interpolation properties. He 
proved e.g. that from (3) or from (5~) it follows, that for n + 00 the difference 
of the consecutive elements of the nth row of the matrix tends to 0. The im- 
portance of the new idea is shown by the fact, that the required interpolation 
properties are sometimes quite easily verified. An interesting example is given 
by the “matrix P”, the nth row of which is given by the n roots of the nth Legendre 
polynomial P,,(x). In consequence of the orthogonality we evidently have 

s 1 
-l Z,(x) dx = 

/ 
’ Z,(x)2dx > 0, 

-1 
Y = 1, 2, . . . , 12, n = 1, 2, . . - 

which means that the matrix P satisfies (3). 
In this paper we are concerned with analogous investigations; we deduce the 

distribution of the fundamental-abscissas from given interpolation properties. 
In $2 we show the effect of the condition (6). 

THEOREM I, Let 

(9) xln) = cos e?), 0 = f$) ( f)(n) -1 < 86"' < . * * < SF' 5 eg$ = P. 

8 As a matter of fact, we do not mean here complex interpolation. 
9 See footnote 4 and FejBr: Lagrangesche Interpolation etc., Math. Ann. (1932). 
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Then, if matrix A satisfies (6), we hatre 

(lOa> c4 5 0;:; - ,y 5 cs 
n 12’ 

v = 1, 2, . . . (n - 1) 

The upper bound is valid for Y = 0 and v = n, the lower one is not.” 
The theorem generalizes FejBr’s second result in two respects; the assumption 

is weaker and the result stronger. The theorem means, that the distribution 
of the roots on the circle with the radius 1 is quasi-uniform i.e. 

2 < IarcQYQ$!i1 < :, 
n v = 1, 2, -. . (n - 1) 

(lob) { and 

FIG. 1 

As stated above, from theorem I it follows a fortiori, that the distribution of the 
fundamental points Fig. 1. of a strongly normal matrix is quasi-uniform.” 

There is an application of theorem I for the roots of some classical polynomials. 
The Jacobi-polynomials Jn(2, 01,b) corresponding to the parameters LY, /3 (a 2 0, 
/!3 ZO,(~and#3fixed,n= 1,2,.. . ) may be charact’erised as the polynomial 
solutions of the differential equation 

(11) (1 - x2) ‘2 + 2[(a - 8) - (a -I- p)z] ‘2 + n[n + 2(cr + @> - 11 J, = 0. 

I 
P 

lo E.g. the II-matrix, the nth row of which is given by the n roots of II,(z) = Pn-1Wl 

(P,,(t) the Legendre-polynomial), satisfies (6) and @’ = 0:) = 0, 02’ = 0LIVi T. We 

remark that the lower bound in (lOa) is implicitly contained in FejBr’s paper: Bestimmung 
etc. Annali della R. Scuole Norm. Sup. Pisa, 1932. 

11 It is not uninteresting to note, that the weaker supposition i$ i lk(x) 1 6 cg is not 

sufficient to assure a quasi-uniform distribution. 
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We reproduce the proof of FejBr, that the matrices given by the roots of J&, 
OL, p> are strongly normal, if 0 s a, 0 < 3. Replacing 2 in (11) by a root $) 
of J&J, cy, p) = 0, we obtain 

further from (5~) 

(12a) ~k(l> = 1 - 2(a + a> + g---k 2 1 - 28 

and similarly 

Wb) M-1) = 1 - 2b + P> + g$ >=l-22cr 

and (5~) immediately follows from (12a) and (12b). 
Now appIying theorem I we see, that the roots of J&J, CX, 8) = 0 are quasi- 

uniformly distributed on the unit-circle in the sense of (10 b), if 0 5 a, /3 < 3.‘” 
For a! = p we obtain the so called ultraspherical polynomials. If zy = /3 = 0, 
we have the polynomial II,(z) (see footnotel*). Hence by Rolle’s theorem we 
obtain, that the roots of the Legendre-polynomial P&c) are quasi-uniformly 
distributed. Further as J*(z, (Y, p) differs form J:+1(zc, 01 - $, /3 - 3) only by 
a constant factor, we conclude by repeatedly employing IMle’s theorem, that 
the distribution of the roots of the ultraspherical polynomials is for ung (Y 2 0 
qua&uniform. 

By this method we can obtain general results concerning the distribution of 
the roots of certain polynomials satisfying suitfable differential equations of the 
second order. 

In 93 we infer the structure of the matrix from properties of the Cotes- 
numbers. Theorem II states that if the Cotes-numbers are non negative, then 

(13) 
g(n) 

v+l - @) s !? 
71’ 

Y = 0, 1, . . . n, n = 1,2, . . . . 

Theorem III stdes that if there exists an integrable s(x) lying between two 

positive bounds and such that 

04) k = 1, ‘ f. n, n = 1, 2, * * * , 

12 In addition to (11) and theorem -I we must know here that each of the roots lies in 
[-1, 11; but this is a well known elementary consequence of the orthogonality of the Jacobi 
polynomials with the weight function (1 - ~)~~l(l + z)*fl-l. 
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then (13) holds. It will be sufficient to prove theorem III since it is more general 
than theorem II.13 

Let us give an application of theorem III. Let p(z) be an R-integrable 
function, lying between two positive bounds. Consider the orthogonal poly- 
nomials with respect 00 p(z). As it is known, the nth polynomial has in [ - 1, + l] 
n different roots. Since 

J 

1 

/ 

1 

L(X)P(X) dx = Lb)2~(x) dx > 0, 
-1 -1 

the hypothesis of theorem III are satisfied and we obtain the 
COROLLARY. Let p(x) be the weight function defined above; then denoting by 

cos ey (Y = 1, 2, . - * n) the roots of the nth orthogonal polynomials with respect to 
p(x), we have 

e(n) 
1+1 - fV!n’ 5 es/n, Y = 0, 1, . . . n. 

Combining theorem III with lemma III of Q3 and replacing the r] of this lemma 
by a @“‘(4/n < 0:“’ < ca/n) we see that, if (14) holds for a matrix, then 

h(x)s(x> dx < ;. 

it is immediately clear, that for n > cl0 the pin) cannot all be equal. For 
s(z) = 1 Bernstein14 proved this for any n > 9. It would be easy to estimate 
cl0 = COO for general s(x), but this we omit for the present. It isessential 
that s(x) should be bounded; for if p(z) = (1 - x’)~, then pin) = r/n, k = 
1, 2, * * * n. 

Let us examine the effect of the interpolation property (4), or more simply 
that of the weaker hypotheses 

(15) 1 A?’ / = 1 j-1 Zk(x) dx 1 5 CIITP , k = $2, . . . n 

13 It is easy to see that from the fact that the Cotes-numbers are non-negative we cannot 
obtain a lower estimate for the consecutive B’s For consider the matrix such that its 
(2~ + l)th row is given by the roots of the (2~ + 1)” Legendre-polynomial, P~.+l(r)(v = 0, 

1, . a e) and its 2vth row by the roots of P,(z) PV[(l + $ E,)Z + Q E”], where e, > 0 and so small 
that (1 - & eV)/(l + 4 .E”) is greater than the greatest root of P,(z). It is easy to prove that 
the Cotes-numbers belonging to the matrix are all non-negative, but the difference of 
certain pairs of consecutive roots of the 2vG row are less than E” (and the difference of the 
B’s belonging to this pair < 2 E,). 

14 S. Bernstein, Comptes Rendus 1936, 1305-6. 
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Theorem IV asserts that 

06) 
*‘“’ - e:“) d Cl3 log (n + I) l5 

v+1 
n ; Y = 0, * * - 72, n = 1,2, ‘.. . 

~13 depends only upon 41 and CD . This estimate is the best possible, (16) cannot 
be improved even, if (4) holds, Take e.g. the matrix T, but multiply the elements 

of its nth row by 1 - a 10gz(~~ ‘). Then the elements of the nth row will be 

’ [ 1-a log’(n n2 + 1) 1 cos 2E 2n - 1 ?ry 1 = 1,2, . . . n, 

where a < +. It can be shown by simple computation that (4) holds and 

1 egn) - ,p) , > c1, 1s (n + 1) 
n ’ 

n = 1,2, h.s, 

where cl4 depends only upon a. We omit the details. 
A COROLLARY OF THEOEM IV. Consider u sequence of polynomials orthogonul 

with respect to the weight-function p(x), where we only suppose that p(x) 2 0 and 

/ 

1 

/ 

1 

p(x) dx and M4-‘~ 2 zn (’ R iemann or Lebesgue-sense) exist. In this case, 

ailwe proved in I.y[4) is satisjed, hence for the roots of the nth polynomial (16) hold& 
General results about the distribution of the roots of the orthogonal-poly- 

nomials-as far as we know-are due to Sseg8’ and Bernstein.” They give 
asymptotic formulae for the orthogonal-polynomials but, as a matter of fact, 
they are compelled to make strong restrictions with regard to the weight- 
function. For these weight functions they determine asymptotically the roots, 
whereas our corollaries deduced from theorem III and IV give weaker, but more 
general results.” 

As we saw in footnote,l’ it is impossible to give an estimate from below in 
theorem IV, but for essentially positive and R-integrable weights we haveI 

v = 1,2, . . . (n - 1) 

16 Prom 13 and (4) it follows, that here too @F>r - 0:’ can be arbitrarily smaI1. 

18 G. Bzegii: tiber den asymptotischen Ausdruck von Polynomen etc. Math. Ann. 1922, 
Bd. 86, pp. 114-139. 

1’ Since, then, we have proved by another method, that if p(z) 1 m > 0 is L or R-in- 
tegrable, then it is possible to cover the points of infinity of p(z) by intervals of total 
length less than B so that on the remaining set the roots of the polynomials orthogonal with 
respect to p(z) are quasi-uniformly distributed in the sense of (lob). We intend to publish 
in another paper this result together with others concerning the uniformly dense distribu- 
tion of the fundamental points. 

rr G. Griinwald and P. Tur4n: ober Interpolation. This paper will appear in Annali di 
Pisa. In [- 1 + 6, 1 - E] we can replace the exponent 2 by I. 
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Wedo not give the proof of this result here. 
We have already seen that the property given by (3) does not secure the 

quasi-uniform distribution of the roots; but we may assert a property connected 
with the integral of the fundamental functions by which it is involved. The 
property in question is 

(17) k= 1,2, . ..n. n=l,2,.... 

The proof of this statement is so simple, that we give it immediately. From (17) 
it follows, that the fundamental functions are uniformly bounded with respect 
to n i.e. if 1 6 v S n, 

where without any loss of generality 

osIpos;, 

by Bernstein’s theorem 

46 > 
l zJx)2 

-= dx = 

n / -1 v/(1 - z2> / 
+ l,(cos e)2de > 

0 / 
.,+& E (cos @“de > 5 2 (co9 PO)* Y n ’ , 

00 

which means, that our assertion is an immediate consequence of theorem I. 
In $4, we shall be. concerned with the interpolation property (8) and with the 

consequences of the much more general supposition 

(1% 1 h(x) 1 s c18, -1 5 5 =< 1, k = 1, 2, . . . 72, n = 1, 2, . . . . 

In our theorem V we show, that even (18) implies quasi-uniform distribution 
as does (6) in theorem I. It is probable that (18) implies (6), but we cannot 
prove it. 

2. 

THEOREM I. If 

I h(x) I s Cl9 , -1 5 x s +1, k = 1, . . . n, n = 1, 2, . . . , 

then we have 

c”o s g;‘, - ,y 5 ?! - 
n n 

v = 1, 2, . . - , (n - l), 

and the upper bound is valid for v = 0 and v = n. 
First we prove the lower estimate. For any 1 6 Y S n we have by Rolle’s 

theorem 
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where 8’ lies between c?!~’ and 8$!: . But by t,he hypothesis l,(cos 0) is a trigo- 
nometric polynomial of degree (n - l), for which 

1 L(cos e) j 5 Cl9 . 

Thus according to a well-known theorem of BertMein-Fejer 

dZ,(cos e) 
I I de 

6 sg(n - 1). 

Putting Uris into (19) we obtain 

(20) 

We now prove the upper estimate. Let 

(21) max 
i-0,1,.“% 

We must prove that D(n) 5 ~2~; we can suppose D(n) 2 2. Let i(0:“’ + 0%) = 
6 and 

This expression is in consequence of a well known identity, a pure cosine poly- 

nomial in 0 of degree (n - 1). Evidently 

(23) (P(6) 2 1. 

Further 

(24) I de) I 4 
4 [ y j+n2(L*)2[sizj* W -I- a>2 sir e + 6 

SupposefirstthatO56~~;thenO$ 2= 4, -4’ i-2 =2. As e+s,k e-6,T 

2 & 9 when / (Y ) S F, by (24) we have for 0 _I 0 _I r 

(25) 
1 p(e) / 5 9a2 - [ 1 

___ ~ 
- 2n2 (e + s>2 + (e .! s>2 1 * 

As cp(B) is a pure cosine polynomial, we have 
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i.e. for 0 = 6 in consequence of (23), (26), (25) and the hypotheses 

713 

(27) 

But by (20) 

M34 

(28b) 

thus 
n 

5 9n2 - 
2n2 

ClB 1 = g$ [St + S,]. 

p = 1,2, *-*?I 

1 n2 m 

(p - 1) f + De] 
2<T c 1 

czo p=~ (P + D(n)12' 

and from D(n) 2 2 we have 

(294 

Further if 1 5 Y 5 n, 

s7<nz s 
m 

dt -=n2 l 
ho D(n)-1 t2 z D(n) - 1’ 

(29b) 

82 = 2 
p=l 

1 
(0:“) _ 6)” +2 l 

p=y+~ (0:’ - 6)” 

< 2y 

I 

m dt 2n2 -= 
cio D(n)-1 t2 c;o(D(n) - 1)’ 

Putting (29a) and (29b) into (27) we obtain 

1 5 9Ps9 3n2 27~~ cl9 1 27~~ 1 

%?‘cz[D(n) 

= 

2 g 

= 

- - 11 D(n) - 1 2 

cl9 3 

D(n) - 1 

i.e. 

D(n) j 1 + ‘$ &, = ~2. 

&. e. d. 

For the cases 
v=o v=n 

0 5 6 s 
H 

a/2 ’ 0 5 6 5 a/2 i ’ {7r/2 < 6 $ 1~1 the proof follows 

similar lines. Thus the result is established. 
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3. 

THEOREM III. . If for the ma&ix there exists an L-integrable s(x), which in 
[ - 1, + 11 lies between two positive bounds a and b(a < b) and is such that 

then 

J 

1 
Zj(x)s(x)dx 2 0, i = 1,2, . - + 72, 71 = 1,2, . . . , 

-1 

e(n) _ e(“) ( % 
vfl Y = n’ 

v = 0, 1, . . . n, n = 1,2, . s . , 

n+ 1. 
Letlg p be the greatest integer not exceeding 2 1.e. p > n/2,0 5 Q $ 7r/2 and 

then, for fixed r], f (t9, r)) is a cosine polynomial the degree of which does not exceed 
(n - 1) and for which 

(31) 

LEMMA I. Ifr - 1/2~ 2 q 1 1/2c(, then 

Without loss of generality let 9 S a/2. We have 

/2 e - A4 

/ 

?+*lP 
(32a) J 2 a f(O, 7) sin q do 2 

? 

Further 

IQ Throughout this paragraph the c’s are independent of D, 7, B and n, but dependent 
on a and b. 
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(32b) cos (0 + q) de .b 

r 

and 

s(cos 8) sin Ode < b 

(32~) 

e-7 
+ 2cosTj 

I 

* sin4p 2 

P4 0 sina e--r) ‘OS 
2 

/ 

* 

q 0 

e-q 4 
sinp - 

2 

t i 
sin ‘--rl 

c0s(e-+?e 

2 

8-7 -y- de -C Cza de 

Hence by (32b) and (32~) 

For the integral on the right, the integrand being even, we have 

1 - 2 
/ 
o 2a f(e, 7) de. 

But 

de = j,i2 + 2((p - 1)” + (p - 2)2 + . . . + 12) < c&’ 

by (22a) and by Parseval’s theorem. The same holds for L 
2r 

de. 

Hence by 71 >= l/p, (33) and (34) Lemma I is proved. 
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LEMMA II. In the interval 

o~?)-1/~Lee?)+l,/p-Is 

we have 

f@, II) 2 c31. 

In this interval if ) (Y 1 s 1, 

LEMMA III. Consider the fundam&& points cos et”‘, for which 
(0 2) 7) - l/p 5 e;“’ 5 7J + l//&l 7f). 11 

/ 

T 
pm G Zk(cos t?)s(cos 0) sin 0d0 2 0, k = 1,2, . - . n, 

0 

then 

s= c Pv < c32dW 
P 

s-llp~tJ,~q+llr 

By Lemma II and Lemma I we have 

c31s < 

Hence 

= 

s 

o * f(e, &(COS e> sin e de 5 %!. 
CL 

S<~*~=“““. 
c1 

Now we shall prove our theorem III. Let 

max (e$ 
D(n) I - &“)) = 0:;: _ e$“) _ 

i=O,l.. ‘ .R nfl 

and we have to prove that D(n) 5 cz3 . Let, +(0$ + 0;“‘) = ql . 
We may suppose without loss of generality that q1 s 7r/2 and consider the 

expression j(e, 7) of (30) for 7 = 71 . Starting at e${ mark off to the right 
intervals of length l/p till the whole of the int’erval [&!: , T] is covered; the last 
interval, the length of which is less than l/p, we add to the last but one. Simi- 
larly, starting at e,“’ mark off intervals to the left to cover [0, e!“‘]. Let the end- 
points (Fig. 2) be O1 , O2 , . . . , A1 , A, , . . . respectively. It is evident that 

(3-W 0, = 771+ s2+;, r = 0,1,2, -** 
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D(n) s &=vl---- 
2n+2 P 

s = 0, 1, 2, * 1 * 

Since 

the greatest distance between two consecutive ~9~ (n”~ is greater than or equal to 
n/(n -j- 1) i.e. Q 2 r/(2n + 2), D(n) 2 r/2. Thus by Lemma I 

(36) 

In the sum on the right consider the members for which Ojn’ lies in [@, , &+1]. 
For these we have by (31) 

(37) 

and by Lemma III with r] = 
0, + @+1 

2 
Nn> +r+t” 

=“‘+2n+2 p 

c Pi -c I, 
Hence this part of the sum (36) is, by (37) and (38), less than 

(39) 

Q4 csz 

rll + Nn> - + 2~ + 1 - 
2n C 2 21.4 

I cc 
( 

2s2 + f) 

i 

; + & 1 1 
= &4&2 

( 
2s2+j) 

4 + D(n) 

Ii 
(2z2+;y’p * 

This holds evidently also for [S!$ , 01] with r = 0. Hence the partial sum of 
(36) summed over all a’ 2 Y + 1 is in consequence of $(n + 1) 2 ~1 2 n/2 less 
than 

m It is clear, that for each such q, r) )= 1/2p is satisfied. 
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and by q1 2 r/Zn 
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(40) < cT C 
The sum for i 5 Y may be estimated in the same way. Thus by (36) and (40) 
we obtain 

a?5771 
- s -$&, 

c1 

D(n) ~2 cza. &. e. d. 

THEOREM IV. Ij for a matrix we have 

l~~Z.(x)dx~ 6 clln’*, 

then 

p 
vfl 

_ eh) I cls log b + 0 
Y - 

n 
, Y = 0, 1, .. . n, n = 1, 2, . . . . 

PROOF. Let n 2 9, r be even and 2 4, the odd integer m 2 5 so that 

(41) +(m - 1)r 5 n - 1; 

r and m are indefinite for the moment with only the restriction that both tend to 
in6nity as n ---f w. Let 

max (0,‘;: - 0:“‘) = &;l - i?? = 26(n) 
i-0,1.-.-n 

ge!;‘, + e!“)) = et, 

and 

(42) 

Evidently j(e) is a trigonometric polynomial of degree $(m - 1)r 5 n - 1 
and as j(0) = j(-0), it is a pure cosine polynomial. First consider 0 S 0’ S 
r/2; if r/2 < 0’ 5 T, the proof is similar. As S(n) 2 ?r/(Zn + 2) we have 
8’ 2 a/(Zn + 2). 

As m 2 5, the interval [0’, 0’ + r/m] will lie entirely in [0, ?r]. 
Then, as r is even and 0’ S 7/Z, 

(43) 
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The degree of f(e) being (n - 1) at most, we have 

hence by (43) 

719 

As 1 +(O - 0’) 1 S r/2, we have from (42) 

by putting (45) into (44) 

2 '8(n) 
2 - -+Cll?l 

0 
l+Ca 2 

7r r 
Tr ( > ms(n)’ 

thus 

(46) 

Now let r be the greatest even integer not exceeding log n and na be the greatest 
integer less than (2% - 2)/r; then (41) is satisfied for sticiently great n and 
thus by (46) we have 

gn) 5 C1a lo!%! (n + 1) 
- 

n 
, 

which establishes the result. 

4. 

Here we have to prove that from 

(47) I &c(2) 1 h&y = I h(4 I 5 c36 

-1sLCz+1, Ic = 1, 2, - - - n, n = 1,2, . . . , 

follows 

*I The upper estimate holds for Y = 0, i,2 a m * n, the lower for Y = 1,2, . a. (n - 1). 
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We oboain the lower e&mate as in theorem I, namely 

1 ~,(COS el”)) - h, (COS eS$> 

I@ 
tn) 
v+1 

- /p j = *Cd 

= i dh, (~0s 0) 

Ufl 
- el"' d0 B-P1 

where according t,o Rolle’s t’heorem cpl lies between 0,?’ and 0::: . Since h, (cos 0) 
is a trigonometric polynomial of degree (2n - l), we obtain by Bernstein’s 
theorem 

hence 

e’“’ v-i-1 - p 2 l > 2 
c342n - 1) n ’ 

Y = 1,2, -. . (75 - 1). 

Let us now consider the upper bound. Let 

(494 max 
i-0.1.. II 

(0,‘~: - ek*)) = 0:;; _ Q) I tD:l~, 

and 

@9b) 

From 

we obtain 

(49c) D(n) 2 7r/2. 

Without any loss of generality we may suppose 

(4W 0 s $02 s r/2. 

Let ~(2) be the polynomial (its degree does not exceed (n - l)), for which 
cp(cos 0) is identical with the poIynomia1 defined at (42) if we replace 9’ by (0~ 

n-l 
andr=lO,m= - . [ 1 5 

Since 

(50) 

we have 

CASE I. j z,(~o~ p2) 1 5 n8 j eLn’ - ps j8, Y = 1, 2, . . . n. 
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From (51) we have 

(52d 

and by (48) 

W’b) 
Finally by putting (52b) into (52a) we obtain 

mn> 5 C38, 

which sett.les case I. 
CASE II. A. There is a Ic such, that 

(53) 1 b (cos (02) 1 > ?a3 <e/y - *>” 

and Zk(cos 19) takes its absolute maximum in [@‘, &!;I. First we require two 
lemmas. 

LEMMA 1. Let f(0) be a cosine polynomial of degree m, the roots of which are all 
real and distinct 

taking its absolute ma&mum in [#v,J/V+l]; then to every $ in [#“, fiV+l] there exists an 
interval I such that: 

1. 1 hes in My , btd, 
2. t is an. endpoint of 1, 
3. The length of 1 is greater than 1/2m, 
4. For every 0 lying in 1 we have 

If@> I > a I f(E) I ’ 
PROOF. According to the hypo%hesis f(8) has in [#y , tiy+i] the unique extreme 

0 = (03 ; we can suppose thii to be a maximum. Suppose hrst .$ 5 cpa . If 
f + 1/2m s ~3 ; our lemma follows from the fact, that f(0) is monotonously 
increasing in [f, a]. 

Suppose now f + 1/2m > M . Then Bernstein’s well-known theorem gives 

I f’@> I 5 mfk4 
and from this we have 

(54) 

f (5 + &) = fbJ + r1’2m f’(e) de 
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As (54) a fortiori holds for t 5 19 s 5 + l/Zm, the lemma is proved for E g ~3 . 
Similarly for f > p3 we consider the interval [,$ - l/2m, ~1. 

Let US now consider the case II A. S&e &(cos 0) takes its absolute maximum 
in [ey, OLT$ we obtain from our lemma by putting f(8) = Ek(cos e), .$ = pz , 
and (53), that in [pz j cp2 f 1/(2n - 2)]“” and a fortiori in [q2 , p2 f 1/2n] 

f-2 (4 Izdc04( 2 ~IZ&OSC~~) 1 > -jek 
2 

- P2 IS. 

Thus for cp2 f l/272 = q423 we have 

(55) 1 &(COS (64) 1 > g 1 eP’ - cpz IS. 

A simple geometrical observation shows ihat if for the linear function a(x) = 

ca + B 

d-5) = 1, 

and, further, & and f3 lie on the same side of fl , then 

(56) max (I &2> I, I f&d 1) 2 

By applying (56) to a(z) = O,(x) and putting .$I = cos d”‘, g2 = cos rp2 , .& = 
cos q4 we obtain 

cos* -j- cosp4 
~ - cosp4 

(57) max (I edc0s ~2.1 I, I Bdcos ~4) I) 2 
2 

cos* + cosp4 

I, 

2 
- cos ep 

Replacing in (57) 3 (cos ~2 + cos (~4) by cos P&CJ~ s ~5 5 ~4 or ~4 5 (~6 I ~2) we 
have 

(58) mftx (]eb(cOs ~2) 1, jek(coS p4) I> B 'OS " - 'OS " s24 
cm 4% - cos eP) 

Now we prove 
L~bm~2. Let0 5 X1 < X2 < X3 $ t, then 

(59) 

45 The sign which we must take depends only on the position of rpt . 
23 From the lemma it follow8 that (p4 also lies in [&?‘, 0$]. 

81 It i clear, that the numerator can also bewritten in the form 1 + (coscpz + coe+~) - cos 
9s I . We use this form if opq lies between v6 and 8P’; if ~1 lies between (p6 and 0:“’ we use the 

form (58). 
1 Obviously one and only one of these two cases arises; we suppose in the text the second 

one. Evidently the same inequality holds for 0 5 XI < XI < Al S 7. 
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PROOF. Obviously if L O&t, = X, , 1 cos X, - cos X, j is the projection of 

A,A, ; then for fixed xz - X1 and X8 - X1 the quotient 
cos x1 - cos xz 
cos x takes its 

1 - GO.9 XI I 
minimum at X1 = 0; the value of the minimum is evidently 

FIG. 3 

which proves the lemma. 
Applying lemma 2 to (58) we obtain 

NOW from the definition of ‘pb and by j C,Q - (p., 1 = 1/2n we obtain 

and 

@I@ lips - e:n'/ < jpz - e:n) I? 

Putting (6la) and (61b) into (60) we obtain 

(62) max (1 &(cos (bz) j, I Ok(COs d I> L ~ 
1 

25n2n2((p2 - B?))” 

which with (53) and (55) gives 

(63) ~36 2 max (1 Zk(co8 4~2) 1, / Zk(cos (~4) 1) L c43n14(p3 - O:"')14. 

B If p2 lies between rps and 0:’ (see footnote 24) then , pcl~ - rpll > l/10 n holds instead of 

iy$a)-and, /TV,-- 0:’ 1 5 (1 + ~~-1) I(p2 - 0:) 1 instead of (61b), since according to (49~) and 
m (p4 - p:! I = l/2 n, 
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Hence 

which evidently means that 

and this settles II A. 
CASE II B. There exists a 7c such that 

(66) j Zk(CbS cpz) 1 2 T&z - eP’>” 

and b (cos 0) takes its absolute maximum outside [&“‘, e$:], at 0 = (a~ . From 
t$he definition of (p6 we have 

(67) [ Z&OS +d 1 2 ns(lp2 - eP))*. 

The only property of p4 used in the proof of (62) was that its distance from p2 
lies e.g. between r/8n and n/4n. Thus (62) holds here too, if 5~~ has the same 
meaning as in case I and instead of q4 we take an arbitrary point cp of the interval 
[p2 f 7r/8n, pz zt ~/4n].~~ We remark, that cps is farther from cpz than cp, and 
note, that by using (66) and 167) the whole idea of the proof of case II A may be 
applied here too, if we have proved following lemma. 

LEE 3. Let $(x) be linear and denote the minimum of max (1 vi (cos ~2) [, 

I + (~0s 4 I > kv M = M&2, a, e!“‘), if $(x) tins over the lines, for which +(cos 
Oi”‘) = 1. Then M does not decrease, if t?!“’ and p2 are jixed and 1 LY - 492 1 
increases (a # e:“)). 

If p2 and a lie on the same side of Bin’ and a! is fixed then the minimum is 
attained for the straight line connecting the point (cos ein), 1) with the bisecting 
point of the distance (cos sy, 0) and (cos v2, 0). This evidently proves the 
lemma for this case and it is also clear, that the minimum is less than 1. If (Y 
and cp2 are situated on opposite sides of & (n), the minimum is at,tained if G(z) = 1 
and then its value is 1. 

MANCHESTER, BUDAPEST. 


