SOME RESULTS ON DEFINITE QUADRATIC FORMS

Pavr Erpos and CHao Ko¥*.
[Exztracted from the Jowrnal of the London Mathematical Society, Vol. 13, 1038.]

1. The quadratic forms dealt with in this paper are all of the classic
type
n
fle)= . _El a;xx;  (a;=ag),
yi=
with integer coefficients a;; and determinant

D=llay]l G =12 . n).

A positive definite form f(x) is called non-decomposable if it cannot be
expressed as a sum of two positive definite or positive semi-definite
forms.

Mordellt has proved that, if

Dz 2m(T(2+im))’,

f(x) is decomposable. It is an interesting problem to find non-decom-
posable forms for which D is large. Let u, be the largest value of D for a
non-decomposable form in n variables. Mordell{ has proved that there
exist non-decomposable forms for n=6, 7, and 8. We§ have proved
that there exist non-decomposable forms for every = > 8, and that, for
n > 189, u, = (n—176)/13.

In §2, we prove that for ceriain sequences of n, there exist non-
decomposable forms with D> (1.1)*. It is not difficult to show that
pn = (1. 1), for all sufficiently large n, but we do not give the proof here,
since it is rather complicated.

* Received 6 June, 1938; read 16 June, 193S.

+ Mordell, “ The representation of a definite quadratic form as a sum of two others 2
Annals of Math., 38 (1937), 751-757.
1 Loc. cil.

§ Erdos and Kou, ** On definite quadratic forms which are not the sum of two definite
or semi-definite forms 7, Acta Arithmetica, noi yet published.
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Suppose now D= 1. Denote by %, the number of classes of positive
definite quadratic forms in n variables with determinant unity. For
n <7, it is well known that A, =1. For n=38, 9, 10, 11, h, = 2, these
results being due to Mordell*, Kof, Ketleyi, and Ko§, respectively.
Ko| has proved that Ay, = h;3 = 3.

Forn=2, 3, ..., 7, the forms are decomposable into an obvious sum of
7 squares. For n = 8, Mordell] has proved that one of the two classes is
non-decomposable. Ko** has proved that all the forms are decomposable
for n=9, 10, 11, 13, the result for » =10 being due to Ketleytt. Weii
have proved that non-decomposable forms exist for » > 23 and also for

n=12, 14, 15, 16, 18, 20, 22.

The cases n =17, 19, 23 are not yet settled. The proof depends upon
finding certain forms with D=1 which do not represent unity. This
suggests the problem of the existence of forms with D = 1 which do not
represent any integer less than K, where K, depends only upon n. We
cannot even construct a form which does not represent 1 and 2, but in §3
we prove that if n = 8m -4, there exists a form with D = 1 which does not
represent odd initegers less than 2m-1.

2, Lemma 1*. The form

7 n—1
= ax,®+2Bx, v, 2 _22 z2+2 _E2 X Ty,
=1 i=

with determinant D <<n, where a >0, B=0 are integers satisfying the

* Mordell, *“ The definite quadratic forms in eight variables with determinant unity ,
Journal de Math., 17 (1938), 41-46.
T Ko, * Determination of the class number of positive quadratic forms in nine variables
with determinant unity ”, Jowrnal London Math. Soc., 13 (1938), 102-110.
1 Ketley, M.Sc. Dissertation of the University of Manchester, 1938.
§ Ko, “ On the positive definite quadratic forms with determinant unity ”, Aeta
Arithmetica, not yvet published,
I Lec. eit.
4 Mordell, ““ The representation of a definite quadratic form as a sum of two others >
Annals of Maith., 38 (1937), 751-757.
** See Ko, loe. cit.
1 See Ketley loc. cit.
11 See Lrdds and Ko., loc. eil.
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conditions
BE>a> (1—1/n)B% 2B<mn,

18 positive definite and non-decomposable.

LemMa 2F.  Let the positive definite quadratic forms

bl n
— ¥ - ;
= Z a;%;;, go= L ;T

i, j=1 i, i=m+2
ya — b'vﬁr.-i—l -'I_' 2.17“! -{‘lxm ;2+ﬁ'25
having determinants V., '\, © g4, respectively. be non-decomposable. Denole
by B the cofactor of a,,, in ©,. If there exisis a posilive definite quadratic
Jorm g of determinant “- <<\, of the type
9= g1+ 0% 11+ 20 L1 T I3

where a is an integer and 0 < a < BjY,, then g is non-decomposable.

Lemma 31, The form

5 _l' 2 n—1
2 X P2 B o,

i=1 i=1
has determinant n—-1,

LeEMMA 4, Let the forms
s n' y
g= X ayxx;, ¢ = I 4T
i, i=1 i, =1

have determinants D, D' respectively, and let the cofactor of a,,, in D be 4,
and that of aj, in D’ be A'. Then the form

v S ! 2 | ; -
g =g(@y e xn)"l—gxn x:a+l+3xn+1'r'2xn+l'rn+2T9 ('rn-ksﬁ cers Tpinte)

has determinant 3DD'—DA’'—D' A.

* See Erdos and Ko, loc. eit.
t See Erdés and Ko, loc. cit.
i See Erdés and Ko, loc. cit.
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The determinant of g"" is of the type

A D

D A’

By Laplace’s development, D"’ is equal to the sum of all the signed products
+MM’', where M is an n-rowed minor having its elements in the first
n columns of D", and M’ is the minor complementary to M. The sign is
-+ or — according as an even or odd number of interchanges of the rows of
D" will bring M into the position occupied by the minor D whose elements
lie in the first #» rows and first # columns of D”.  All the 3{’s are zero except
possibly D and those obtained by replacing one row of D by (0, 0, ..., 0, 1).
The complementary minor of D is 3D"—A4’. The complementary minors
of the others are zero, except that of the minor obtained by replacing the
last row of D by (0, ..., 0, 1). This gives M = A, M’ = D’ and the number
of interchanges of the rows is 1. Hence we have

D"=D@BD'—A")—AD'=3DD'—DA'—AD'".

LEmMA 5. Let

m+1 m
J1@y oo @pyg) = (2 —1) 2,2+ 2c2, 2,+2 % zf+2 _2'2 i1
fo= tus
m m+1
BT, ooy Tpyya) = 32,242 2y +2 D 22420003y T et (C—1) 2] .

i= =
Write

fr=Fi@p ., Tpin) + 2 (2080204 $@®, ..., 2®,,)),

where {0, is writlen for x,, ., and where ¢ > 4 and m = [1c*]. Then f., is
a form in m-+1+4t(m-2) variables, with determinant not less than

(i -2+ v(iei—sei+16))
or (4(c2—5)+4v/(c*—26c24-25) )",

according as ¢ is even or odd.
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Let the determinant of f;,; be D, and the co-factor of the lower right-
hand corner element of D,,, be 4;,,. Then the determinant of f;, is of
the form:

2
i
g 1
3 1
121
312
+ ‘\-\ D)’ L{jlk
= 21
3 12¢
2 ¢ =1 1
1 31
112 1
121
g 12
= Vs
. ~
21
H 12¢
¢ ¢’—1
\
N
M
131
21
12 1
2 1.2
~
¥ N
~
E 21
L ].2(;
[
J7-+1 blocks.

By using Lemma 3,
Dy = (—1)(m+1)—ctm = c—m—1,
) {Al= (c2—1)ym—ct(m—1)=c2—m = D,+1.
By Lemma 4, on taking D=0D"=D;, A=4"=A4,,
(2) D,=3D2—2A4, D, = D;*—2D,.
Similarly from Lemma 4, on taking
D=D; A=A4,; D'=D; A =4;=D;}1,
(3) D; 1= (2D,—1)D,— A, D,.
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By Lemmas 3 and 4, on taking D=D;,, A =4, D'=m+1, 4" =m,
(4) A;=(2m+3)D,— (m+1) 4,

To solve these recurrence formulae, solve (3) for 4, change j into j+4-1 and
substitute in (4), then

(5) D; o= (2D,—m—2)D; ,— (Dy-+m-1) D;,

with the initial values D, = ¢®—m—1, D, = D;?>—2D, from (1) and (2).
If ¢ is even, m = 12, D, = 1e®—1, and from (5)

(6) D; 5/ Dsyy = 362 —4—c*{(D; /D).
From ¢ > 4, it is easily seen that jc*—8¢*--16 > 0 and that
DyiDy=D,—2 = 162—3 > }c*—2+1 1/(1c4— 8c2+ 16),

the larger root of the quadratic associated with the recurrence formula.
Hence by obvious induction from (6),

Djya/ Dy = 3t —4—c2[( Je2—241 4/ (Jc*—8c2+16) )
= Le2— 241/ (Jct—8c2416).

Hence D, = (i — 24} v/(3et—8c2+16))".

Similarly, if ¢ is odd, m = }(¢?—1), D; = (c*—1), and so from (),
(7) D1/ Dj oy = (0= 5)—c2/(D;,4/D;).
As above, by using (7), and the relation

D,/Dy = Dy —2 = §(c?—5) = }(c*—5)+1 1/(c* — 2602 4-25),

where c4—26¢2+-25 > 0 for ¢ >4, we obtain the required result of the
lemma.

Lemma 6. The form f,, of Lemma 5 is positive definite.

For ¢ =0, it is obvious that f; is positive definite on calculating the
minors of the determinant D, by Lemma 3.

Suppose f;is positive definite. Then the lemma is proved if we can prove
that f;., is positive definite.
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Denote the j(m--2), ..., (j+1)(m+2)—1 rowed minors of D, , by
dy, ..., d,, .5, where d,,.,= D, ., >0. Since f; is positive definite, f,,, is
not positive definite if and only if d;<{0 for certain ¢ lying between
land m+2. Thusiff;., is not positive definite, without loss of generality,
we can assume that d, < 0. and d;, > 0 for 1 <k <7. Write dy= D, > 0.
Then, on referring to the diagram giving the determinant D, , of
Lemma 5, it is easy to see that

dr—t-l e 2dr_dr—1!
dr!—'z = 2dr+1_dr — 3dr'_ er—lr

d 2d,,.,—d,=(m—r+3)d.—(m—r+2)d,_, <0,

m+2

in contradiction to d,,,., = D, > 0. Hence the lemma is established.

Leyma 7. The form fi,, is non-decomposable.

By Lemma 1, it is easy to see that f, is non-decomposable. It suffices
to suppose that f; is non-decomposable and to prove that f,.; is non-
decomposable.

In Lemma 2, if we take

w1 b0
oo — D % (N i} ald " Aj & - (7)
h=F g2=2 Al ay 4-2 ‘Zn ad ) +2cad) P, o+ (62 —1) 2P,

t:'_ - 1i=a
9= 200" - 22029+ g,,

thenae=1,g=F,and 8, =D;, ©, =D, ©=D,,;, B= 4,
By Lemma 1, g,, g; are non-decomposable; and by Lemma 6, f;., is
positive definite. Hence, by Lemma 2, f;., is non-decomposable if

(8) A;/D,>1>0 and D, ,<D D,
Since f; is non-decomposable, 4; > D,, for otherwise
Ii= a0 (=)
is a decomposition of f;. Next, from (5),
Dy, = (2D,—m—2)D,— (D, +m~+-1)D, , <D, D,,

if (Dy—m—2)D; < (Dy+m—+1)D,_,.
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This holds, since
D,—m—2=c*—-2m—3=c?—2[4c*]—3<0 and (D,+m+41)D; >0

Hence our lemma is proved.
From Lemmas 5 and 7, we easily deduce

THEOREM 1. If n= ([3c*|+1)i—1, where ¢ >4, t >0 are inlegers,
then a non-decomposable form exists with determimant

D> (32—2+3/(3et—862116))", or (1(e2—5)+} 1/(c*—26c2+25) ),
according as ¢ 18 even or odd.

When we take ¢ = 5, we have a non-decomposable form in n = 13t—1
variables with determinant greater than or equal to 5> (1.13)", since
5% > 1.13.

3. TurorREM 2. If n=8m+4, there exisis a form with D=1 which
does not represent odd integers less than 2m--1.

The form is the extreme form given by Korkine and Zolotareff*,

8n+4 Bn+4 2
Fe 3 m,.2+( b x,-) 4 (2n— 1) 28, — 2%y Ty — 20y Tan 14

i=1 i=1
snts (2 8nt3 \2  Sn+t3 ot 8 7o
=2(~’”1+=} 23 -'5.') +2(Tg+% Z's'ri) + I (%t e ra)® T 1%50100
i i= i=3

with determinant unity. F represents odd integers only when xg,., is
odd and then

(=1 @t ize)* =1 (6=3, ..., 8n+3).
Hence F = (8n+42)/4 = 2n+3,

and so F =2n+41.

The University,
Manchester.

* Korkine and Zolotareff, Math. Annalen, 6 (1873), 366-389.
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