An Extremum-Problem Concerning Trigonometric Polynomials.

By Paul Erdõs in Manchester.

Let $S(x)$ be a trigonometric polynomial of the $n^{\text {th }}$ order') such that $|S(x)| \leqq 1$ for all real values of x. We prove that of the graphs of all these trigonometric polynomials, those with the equations $y=\cos (n x+\alpha)$ (α denotes any real constant) have the maximum length of arc over $(0,2 \pi)$.

First we need the following lemma due to van der Corput and Schafke ${ }^{2}$) improving upon a well known theorem of S. BernSTEIN:

Lemma. Let $S(x)$ be a trigonometric polynomial of the $n^{\text {th }}$ order, such that $|S(x)| \leqq 1$. Let $T(x)=\cos n x$. Let x_{1} and x_{2} be two values such that

$$
-1<S\left(x_{1}\right)=T\left(x_{2}\right)<1,
$$

then

$$
\left|S^{\prime}\left(x_{1}\right)\right| \leqq\left|T^{\prime}\left(x_{2}\right)\right| .
$$

If the sign of equality holds in a single case then it holds always, i. e. $S(x)=T(x+\alpha)$.

The following proof of the lemma ${ }^{3}$) is much simpler than that given by the cited authors.

Suppose the lemma be not true, i. e., although $S(x) \equiv T(x+\alpha)$ there is a pair of numbers x_{1}, x_{2} such that

$$
\begin{gathered}
-1<S\left(x_{1}\right)=T\left(x_{2}\right)<1, \\
\left|S^{\prime}\left(x_{1}\right)\right| \geqq\left|T^{\prime}\left(x_{2}\right)\right| .
\end{gathered}
$$

[^0]We may suppose without loss of generality that

$$
x_{2}=x_{1}, S^{\prime}\left(x_{1}\right) \geqq T^{\prime}\left(x_{1}\right) \geqq 0
$$

(otherwise we should consider $S(x+a)$ or $-S(x+a)$ instead of $S(x), a$ being a suitable chosen real number).

First consider the case $|S(x)|<1, S^{\prime}\left(x_{1}\right)>T^{\prime}\left(x_{1}\right)$.
Let x_{1} belong to the interval $J_{k}=\left(\frac{k \pi}{n}, \frac{(k+1) \pi}{n}\right) \quad$ (k odd). As

$$
\begin{aligned}
& S\left(\frac{k \pi}{n}\right)>-1=T\left(\frac{k \pi}{n}\right), \\
& \left.\begin{array}{l}
S\left(x_{1}-\varepsilon\right)<T\left(x_{1}-\varepsilon\right) \\
S\left(x_{1}+\varepsilon\right)>T\left(x_{1}+\varepsilon\right)
\end{array}\right\} \text { for sufficiently small } \varepsilon \text {, } \\
& S\left(\frac{(k+1) \pi}{n}\right)<1=T\left(\frac{(k+1) \pi}{n}\right),
\end{aligned}
$$

the curves $y=S(x)$ and $y=T(x)$ have at least 3 points of intersection over J_{k}.

As the trigonometric polynomial of the $n^{\text {th }}$ order $S(x)-T(x)$ alternates its sign in the consecutive multiples of $\frac{\pi}{n}$, it has at least $2 n+2$ zeros, incongruent $\bmod 2 \pi$, in contradiction to $S(x) \equiv T(x)$.

When $S(x)$ is allowed to assume the values ± 1, then our former arguments remain obviously valid if we observe that a point x where

$$
S(x)=T(x)= \pm 1,
$$

is at least a double zero of $S(x)-T(x)$.
Finally, if $S^{\prime}\left(x_{1}\right)=T^{\prime}\left(x_{1}\right)$, then x_{1} is at least a double zero of $S(x)-T(x)$, so that we find also in this case more than $2 n$ zeros, incongruent $\bmod 2 \pi$. This completes the proof of the lemma.

Let us now consider an arbitrary trigonometric polynomial $S(x) \equiv T(x+\alpha)$ of the $n^{\text {th }}$ order. Let σ and τ be two monotone arcs of the curves $y=S(x)$ and $y=T(x)$ respectively, the endpoints of which have the same ordinates y_{1} and y_{2} say. Let $|\sigma|$ and $\left|\sigma_{x}\right|$ denote the length of the arc σ resp. of its projection on the x-axis, $|\tau|$ and $\left|\tau_{\tilde{x}}\right|$ having analogous meaning for τ. Then we assert:

$$
|\sigma|<|\tau|+\left(\left|\sigma_{x}\right|-\left|\tau_{x}\right|\right) .
$$

This follows easily from the lemma by approximating the arcs σ and τ by means of polygons corresponding to a subdivison of the interval (y_{1}, y_{2}).

I am indebted to Dr. P. Csillag for the following alternative proof: We may suppose the arcs both increasing. Writing their equations in the inverse forms $x=g(y)$, and $x=f(y)$ respectively, we deduce from the lemma that $g^{\prime}(y)>f^{\prime}(y)$ for $y_{1}<y<y_{2}$. Hence applying the triangle inequality to the non-degenerating triangle

$$
(0,0), \quad\left(1, g^{\prime}(y)\right), \quad\left(1, f^{\prime}(y)\right)
$$

we find

$$
\left\{1+\left[g^{\prime}(y)\right]^{2}\right\}^{1 / 2}<\left\{1+\left[f^{\prime}(y)\right]^{2}\right\}^{1 / 2}+\left[g^{\prime}(y)-f^{\prime}(y)\right],
$$

thus

$$
\begin{aligned}
|\sigma|=\int_{y_{1}}^{y_{2}}\left\{1+\left[g^{\prime}(y)\right]^{2}\right\}^{1 / 2} d y<\int_{y_{1}}^{y_{2}}\{1 & \left.+\left[f^{\prime}(y)\right]^{2}\right\}^{1 / 2} d y+ \\
& +[g(y)-f(y)]_{y_{1}}^{y_{2}}=\tau+\left|\sigma_{x}\right|-\left|\tau_{x}\right| .
\end{aligned}
$$

Let $\sigma^{\prime}, \sigma^{\prime \prime}, \ldots, \sigma^{(m)}(m \geqq 2 n)$ be the monotone arcs of the curve $y=S(x)$ over a suitable interval of length 2π. Denote by $\tau^{(k)}$ an arc of the curve $y=T(x), 0 \leqq x \leqq 2 \pi$, corresponding to $\sigma^{(k)}$ in the above sense. We may plainly choose the arcs $\left.\tau^{\prime}, \tau^{\prime \prime}, \ldots, \tau^{\prime m}\right)$ such that no two of them overlap.

We have

$$
\left|\sigma^{(k)}\right|<\left|\tau^{(k)}\right|+\left[\left|\sigma_{x}^{(k)}\right|-\left|\tau_{x}^{(k)}\right|\right]
$$

whence

$$
\sum_{1}^{m}\left|\sigma^{(k)}\right|<\sum_{1}^{m}\left|\tau^{(k)}\right|+\left[2 \pi-\sum_{1}^{m} \boldsymbol{\tau}_{x}^{(k)}\right] .
$$

On the left side we find the length of the arc $y=S(x)$, $0 \leqq x \leqq 2 \pi$, while the expression in brackets on the right side is the sum of the projections of the arcs remaining from the curve $y=T(x), 0 \leqq x \leqq 2 \pi$, when the arcs $\tau^{\prime}, \tau^{\prime \prime}, \ldots, \tau^{(m)}$ are omitted. Replacing this expression by the sum of the lengths of these additional arcs, the right side increases and becomes equal to the length of the arc $y=T(x), 0 \leqq x \leqq 2 \pi$, which concludes the proof of the theorem.

I conjecture that the following theorem holds.
Let $f(x)$ be a polynomial of the $n^{\text {th }}$ degree, $|f(x)| \leqq 1$ in $(-1,1)$. Of the graphs of all these polynomials that of the $\mathrm{n}^{\text {th }}$ Chebisheff polynomial has the maximum length of arc.

[^0]: ${ }^{1}$) " $n^{\text {th }}$ order" stands throughout instead of " $n^{\text {th }}$ order at most".
 ${ }^{2}$) J. G. van der Corput und G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math., 2 (1936), p. 321-361, especially Theorem 8, p. 337.
 ${ }^{3}$) This proof is a generalisation of the proof of M. Riesz for S. Bernstein's theorem, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht der D. M. V., 23 (1914), p. 354-368.

