An Extremum-Problem Concerning Trigonometric Polynomials.

By PAUL ERDÖS in Manchester.

Let S(x) be a trigonometric polynomial of the n^{th} order¹) such that $|S(x)| \leq 1$ for all real values of x. We prove that of the graphs of all these trigonometric polynomials, those with the equations $y = \cos(nx + \alpha)$ (α denotes any real constant) have the maximum length of arc over $(0, 2\pi)$.

First we need the following lemma due to VAN DER CORPUT and SCHAAKE²) improving upon a well known theorem of S. BERN-STEIN:

Lemma. Let S(x) be a trigonometric polynomial of the n^{th} order, such that $|S(x)| \leq 1$. Let $T(x) = \cos nx$. Let x_1 and x_2 be two values such that

$$-1 < S(x_1) = T(x_2) < 1,$$

then

$$|S'(\mathbf{x}_1)| \leq |T'(\mathbf{x}_2)|.$$

If the sign of equality holds in a single case then it holds always, i. e. $S(x) = T(x + \alpha)$.

The following proof of the lemma³) is much simpler than that given by the cited authors.

Suppose the lemma be not true, i. e., although $S(x) \equiv T(x+\alpha)$ there is a pair of numbers x_1, x_2 such that

$$-1 < S(x_1) = T(x_2) < 1, |S'(x_1)| \ge |T'(x_2)|.$$

1) "nth order" stands throughout instead of "nth order at most".

²) J. G. VAN DER CORPUT und G. SCHAAKE, Ungleichungen für Polynome und trigonometrische Polynome, *Compositio Math.*, 2 (1936), p. 321-361, especially Theorem 8, p. 337.

³) This proof is a generalisation of the proof of M. RIESZ for S. Bernstein's theorem, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht der D. M. V., 23 (1914), p. 354-368.

P. Erdős

We may suppose without loss of generality that

$$x_2 = x_1, S'(x_1) \geq T'(x_1) \geq 0$$

(otherwise we should consider $S(x+\alpha)$ or $-S(x+\alpha)$ instead of S(x), α being a suitable chosen real number).

First consider the case |S(x)| < 1, $S'(x_1) > T'(x_1)$.

Let x_i belong to the interval $J_k = \left(\frac{k\pi}{n}, \frac{(k+1)\pi}{n}\right)$ (k odd). As

$$S\left(\frac{k\pi}{n}\right) > -1 = T\left(\frac{k\pi}{n}\right),$$

$$S(x_1 - \epsilon) < T(x_1 - \epsilon)$$

$$S(x_1 + \epsilon) > T(x_1 + \epsilon)$$
 for sufficiently small ϵ ,

$$S\left(\frac{(k+1)\pi}{n}\right) < 1 = T\left(\frac{(k+1)\pi}{n}\right),$$

the curves y = S(x) and y = T(x) have at least 3 points of intersection over J_k .

As the trigonometric polynomial of the n^{th} order S(x) - T(x)alternates its sign in the consecutive multiples of $\frac{\pi}{n}$, it has at least 2n+2 zeros, incongruent mod 2π , in contradiction to $S(x) \equiv T(x)$.

When S(x) is allowed to assume the values ± 1 , then our former arguments remain obviously valid if we observe that a point x where

$$S(x) = T(x) = \pm 1,$$

is at least a double zero of S(x) - T(x).

Finally, if $S'(x_1) = T'(x_1)$, then x_1 is at least a double zero of S(x) - T(x), so that we find also in this case more than 2n zeros, incongruent mod 2π . This completes the proof of the lemma.

Let us now consider an arbitrary trigonometric polynomial $S(x) \equiv T(x+\alpha)$ of the n^{th} order. Let σ and τ be two monotone arcs of the curves y = S(x) and y = T(x) respectively, the endpoints of which have the same ordinates y_1 and y_2 say. Let $|\sigma|$ and $|\sigma_x|$ denote the length of the arc σ resp. of its projection on the x-axis, $|\tau|$ and $|\tau_x|$ having analogous meaning for τ . Then we assert:

$$|\sigma| < |\tau| + (|\sigma_x| - |\tau_x|).$$

This follows easily from the lemma by approximating the arcs σ and τ by means of polygons corresponding to a subdivison of the interval (y_1, y_2) .

I am indebted to Dr. P. CSILLAG for the following alternative proof: We may suppose the arcs both increasing. Writing their equations in the inverse forms x = g(y), and x = f(y) respectively, we deduce from the lemma that g'(y) > f'(y) for $y_1 < y < y_2$. Hence applying the triangle inequality to the non-degenerating triangle (0, 0), (1, g'(y)), (1, f'(y))

we find

{1 +
$$[g'(y)]^2$$
}^{1/2} < {1 + $[f'(y)]^2$ }^{1/2} + $[g'(y) - f'(y)]$,

thus

$$\begin{aligned} |\sigma| &= \int_{y_1}^{y_2} \{1 + [g'(y)]^2\}^{\frac{1}{2}} dy < \int_{y_1}^{y_2} \{1 + [f'(y)]^2\}^{\frac{1}{2}} dy + [g(y) - f(y)]^{\frac{1}{2}} = \tau + |\sigma_x| - |\tau_x|. \end{aligned}$$

Let $\sigma', \sigma'', \ldots, \sigma^{(m)}$ $(m \ge 2n)$ be the monotone arcs of the curve y = S(x) over a suitable interval of length 2π . Denote by $\tau^{(k)}$ an arc of the curve y = T(x), $0 \le x \le 2\pi$, corresponding to $\sigma^{(k)}$ in the above sense. We may plainly choose the arcs $\tau', \tau'', \ldots, \tau^{(m)}$ such that no two of them overlap.

We have

$$|\sigma^{(k)}| < |\tau^{(k)}| + [|\sigma^{(k)}_x| - |\tau^{(k)}_x|]$$

whence

$$\sum_{1}^{m} |\sigma^{(k)}| < \sum_{1}^{m} |\tau^{(k)}| + \left[2\pi - \sum_{1}^{m} \tau_{x}^{(k)}\right].$$

On the left side we find the length of the arc y = S(x), $0 \le x \le 2\pi$, while the expression in brackets on the right side is the sum of the projections of the arcs remaining from the curve y = T(x), $0 \le x \le 2\pi$, when the arcs $\tau', \tau'', \ldots, \tau^{(m)}$ are omitted. Replacing this expression by the sum of the lengths of these additional arcs, the right side increases and becomes equal to the length of the arc y = T(x), $0 \le x \le 2\pi$, which concludes the proof of the theorem.

I conjecture that the following theorem holds.

Let f(x) be a polynomial of the n^{th} degree, $|f(x)| \le 1$ in (-1, 1). Of the graphs of all these polynomials that of the n^{th} Chebisheff polynomial has the maximum length of arc.

(Received October 13, 1936; revised June 15, 1937.)