ON A FAMILY OF SYMMETRIC BERNOULLI CONVOLUTIONS.*

By Paul Erdös.

1. For any fixed real number a in the interval $0<a<1$, let $\lambda=\lambda(x ; a)$, $-\infty<x<+\infty$, denote the distribution function which is defined as the convolution of the infinitely many symmetric Bernoulli distribution functions $\beta\left(a^{-n} x\right),-\infty<x<+\infty$, where $n=0,1,2, \cdots$, and $\beta(x)$ denotes the function which is $0, \frac{1}{2}$ or 1 according as $x<-1,|x| \leqq 1$ or $x>1$. In other words, $\lambda(x ; a)$ is the distribution function whose Fourier-Stieltjes transform is the infinite product

$$
L(u ; a) \equiv \int_{-\infty}^{+\infty} e^{i u x} d_{x} \lambda(x ; a)=\prod_{n=0}^{\infty} \cos \left(a^{n} u\right) ; \quad-\infty<u<+\infty
$$

It is known ${ }^{1}$ that if a value of a is not such as to make the (monotone) function $\lambda(x ; a)$ of x absolutely continuous for $-\infty<x<+\infty$, then $\lambda(x ; a)$ is purely singular, that is to say such as to have neither a discontinuous nor an absolutely continuous component in its Lebesgue decomposition. It is also known ${ }^{2}$ that the set of those points of the x-axis at which the nondecreasing function $\lambda(x ; a)$ is increasing either is the interval - $(1-a)^{-1}$ $\leqq x \leqq(1-a)^{-1}$ or a nowhere dense perfect zero set contained in this interval, according as $a \geqq \frac{1}{2}$ or $a<\frac{1}{2}$. While this clearly implies that $\lambda(x ; a)$ is purely singular if $a<\frac{1}{2}$, it does not imply that $\lambda(x ; a)$ is absolutely continuous if $a \geqq \frac{1}{2}$. On the other hand, it is known ${ }^{3}$ that if a has any of the values $\frac{1}{2},\left(\frac{1}{2}\right)^{1 / 2},\left(\frac{1}{2}\right)^{1 / 3}, \cdots$, then $\lambda(x ; a)$ is absolutely continuous, and that $\lambda\left(x ;\left(\frac{1}{2}\right)^{1 / k}\right)$ acquires derivatives of arbitrary high order as $k \rightarrow \infty$, i. e., as $a=\left(\frac{1}{2}\right)^{1 / k} \rightarrow 1$.
2. Thus, one might be inclined to expect that the "smoothness" of $\lambda(x ; a)$ for $-\infty<x<+\infty$ cannot decrease when a is increasing, and that $\lambda(x ; a)$, being absolutely continuous if $a=\frac{1}{2}$, is absolutely continuous if $\frac{1}{2}<a<1$, and not only if $a=\left(\frac{1}{2}\right)^{1 / 2}$. However, it turns out that such is

[^0]not the case. For instance, it will be shown that if a has the "Fibonacci" value $\frac{1}{2}\left(5^{1 / 2}-1\right)$, a value which lies between $\frac{1}{2}$ and $\left(\frac{1}{2}\right)^{1 / 2}$, then $\lambda(x ; a)$ is not absolutely continuous and is therefore purely singular (though nowhere constant on its range $\left.|x| \leqq(1-\alpha)^{-1}\right)$. A corresponding a-value between $\left(\frac{1}{2}\right)^{1 / 2}$ and $\left(\frac{1}{2}\right)^{1 / 3}$ is, for instance, the positive root of the cubic equation $a^{3}+a^{2}-1=0$. That $\lambda(x ; a)$ is singular for these algebraic irrationalities a, will be proved by showing that the necessary condition $L(u ; a) \rightarrow 0$, $u \rightarrow \pm \infty$, of the Riemann-Lebesgue lemma is not satisfied at these particular a-values.

Let α be a real algebraic integer which satisfies the inequality $\alpha>1$ and is such that, if m denotes the degree of α, and α_{j}, where $j=2, \cdots, m$, are the conjugates of α, then $\left|\alpha_{j}\right|<1$ for all j. Since $\alpha^{n}+\alpha_{2}{ }^{n}+\cdots+\alpha_{m}{ }^{n}$ is a rational integer for $n=0,1,2, \cdots$, it is clear that there exists a positive number $\theta<1$ which has the property that the distance between α^{n} and the nearest integer to $\boldsymbol{\alpha}^{n}$ is less than θ^{n} for every n.

Now choose $a=1 / \boldsymbol{\alpha}$. Then, since $L(u ; a)=\prod_{n=0}^{\infty} \cos \left(a^{n} u\right)$, one has, for every positive integer k,

$$
L\left(\pi \alpha^{k} ; a\right)=C \prod_{n=1}^{k} \cos \left(\alpha^{n} \pi\right), \text { where } C=\prod_{n=0}^{\infty} \cos \left(\alpha^{-n} \pi\right)
$$

is a non-vanishing constant, since every $\cos \left(\alpha^{-n} \pi\right) \neq 0$. Consequently by the above definition of the positive number $\theta<1$,

$$
\left|L\left(\pi x^{k} ; a\right)\right|=|C| \prod_{n=1}^{k}\left|\cos \left(\alpha^{n} \pi\right)\right| \geqq C^{\prime} \prod_{n=1}^{k}\left|\cos \left(\theta^{n} \pi\right)\right|
$$

where $C^{\prime}=|C| \Pi^{*}\left|\cos \theta^{n} \pi\right|$ and the product Π^{*} runs through those values of n for which $\theta^{n}<\frac{1}{2}$. Hence, for every k,

$$
\left|L\left(\pi \alpha^{k} ; a\right)\right| \geqq C^{\prime} \prod_{n=1}^{\infty}\left|\cos \left(\theta^{n} \pi\right)\right|=\text { const. }>0
$$

if θ is chosen to be distinct from $\frac{1}{2}$. Since $\alpha^{k} \rightarrow+\infty$ as $k \rightarrow+\infty$, it follows that $L(u ; a)$ does not tend to 0 as $u \rightarrow \infty$, and so the distribution function $\lambda(x ; a)$ is singular, for any $a=1 / \alpha$ of the type described above.

It seems to be likely that these a are clustering at $a=1$ (this would imply that these a lie everywhere dense between $a=0$ and $a=1$).
3. Needless to say, $L(u ; a) \rightarrow 0, u \rightarrow \infty$, only is a necessary condition in order that $\lambda(x ; a)$ be absolutely continuous. In fact, it is known ${ }^{4}$ that

[^1]if α has any rational value which is not the reciprocal value of an integer, then there exists a positive $\gamma=\gamma(a)$ such that $L(u ; a)=O\left(|\log u|^{-\gamma}\right)$ as $u \rightarrow \infty$, whether the positive number $a(<1)$ is or is not greater than $\frac{1}{2}$. (It is easy to see ${ }^{5}$ that if $a=\frac{1}{3}, \frac{1}{4}, \cdots$, then $L(u ; a) \rightarrow 0$ does not hold; while $L(u ; a)=(\sin u) / u$ if $a=\frac{1}{2}$.) Actually, it may be shown that, whether $a>\frac{1}{2}$ or $a<\frac{1}{2}$, the Fourier-Stieltjes transform $L(u ; a)$ tends, as $u \rightarrow \infty$, to 0 , not only when a is any rational number distinct from $\frac{1}{3}, \frac{1}{4}, \cdots$, but also for all irrational values of a which do not belong to a certain enumerable set.

In order to prove this, notice first that all values a between 0 and 1 which do not belong to a certain enumerable set are known ${ }^{6}$ to possess the following property: There does not exist any number $b>0$ in such a way that if ϵ_{n} denotes, for fixed a and fixed b, the distance between $b a^{-n}$ and the nearest integer to $b a^{-n}$, then $\epsilon_{n}<\frac{1}{2}\left(a^{-1}+1\right)^{-2}$ for every sufficiently large n. Let a be chosen such as to possess this property.

Suppose, if possible, that $L(u ; a)$ does not tend to 0 as $u \rightarrow x$, i. e., that there exists a sequence $u_{1}, \cdots, u_{j}, \cdots$ for which one has $u_{i} \rightarrow \infty$ as $j \rightarrow \infty$, while $\left|L\left(u_{j} ; a\right)\right|>c$ holds for a sufficiently small positive $c=c(a)$ which is independent of j. Clearly, one can choose these u_{j} in such a way that the sequence $\left\{b_{j}\right\}$ defined by $b_{j}=u_{j} a^{k}$ tends, as $j \rightarrow \infty$, to a limit, say b, where $k=k_{j}$ denotes the unique positive integer satisfying $a<u_{j} a^{k} \leqq 1$; so that $k_{j} \rightarrow \infty$ as $j \rightarrow \infty$, and $a \leqq b \leqq 1$. But $\left|L\left(u_{j} ; a\right)\right|>c$ may be written in the form

$$
\left|L\left(b_{j} a^{-k} ; a\right)\right|=\left|\prod_{n=0}^{\infty} \cos \left(b_{j} a^{n-k}\right)\right|>c>0
$$

for every j and $k=k_{j}$. Since $k_{j} \rightarrow \infty$ and $b_{j} \rightarrow b$ as $j \rightarrow \infty$, it follows by an obvious adaptation of the inequalities applied in $\S 2$, that b has the property excluded above by the choice of a. This contradiction completes the proof of the fact that $L(u ; a) \rightarrow 0, u \rightarrow \infty$, holds for any of the a-values under consideration.

The Institcte for Advanced Stcdy.

[^2]
[^0]: * Received May 12, 1939.
 ${ }^{1}$ B. Jessen and A. Wintner, Transactions of the American Mathematical Society, vol. 38 (1935), p. 61.
 ${ }^{2}$ R. Kershner and A. Wintner, American Journal of Mathematics, vol. 57 (1935), pp. 546-547.
 ${ }^{3}$ A. Wintner, American Journal of Mathematics, vol. 57 (1935), p. 837.

[^1]: ${ }^{4}$ R. Kershner, American Journal of Mathematics, vol. 58 (1936), pp. 450-452.

[^2]: ${ }^{5}$ Cf. B. Jessen and A. Wintner, loc. cit., Example 1.
 ${ }^{6}$ C. Pisot, Annali di Pisa, ser. 2, vol. 7 (1938), p. 238.

