ON THE INTEGERS OF THE FORM $x^{k}+y^{k}$

P. Eriös**

In a previous paper, which I wrote in collaboration with Mahlert, it was proved that, if $f(x, y)$ is a binary form of degree $k \geqslant 3$ with integer coefficients and non-vanishing discriminant, then the number of integers not exceeding n representable by the binary form with positive x and y is $\Omega\left(n^{2 / k}\right)$. The proof was simple but not elementary. For the special form $x^{k}+y^{k}, k$ odd, I have found an elementary proof which may be of some interest.

So far as I know, the first non-trivial estimation of the number of integers not exceeding n of the form $x^{k}+y^{k}$ is due to Landaut. He proved that for even k the number of integers in question is $\Omega\left(n^{2 / k} / \log n\right)$. Later this result was improved by S. S. Pillai§ to $\Omega\left\{n^{2 / k} /(\log n)^{n}\right\}, 0<\alpha<1$, in the cases $k \equiv 1,2,3(\bmod 4)$. The method used in this paper is a refinement of that of Pillai.

First we prove five lemmas.
Lemma 1. Let A and B be arbitrary positive integers, $A<B$. Write

$$
\begin{equation*}
x^{k}+(A-x)^{k}=y^{k}+(B-y)^{k}, \quad 0<x<\frac{1}{2} A, \quad 0<y<\frac{1}{2} B . \tag{1}
\end{equation*}
$$

Then y is a convex function of x.
Proof $\|$. We note first that y is an increasing function of x, since the left-hand side of (1) is a decreasing function of x, while the right-hand side is a decreasing function of y. Considering y as a function of x and B, we obtain

$$
\frac{\partial y}{\partial B}=\frac{1}{1-(y / B-y)^{k-1}}
$$

Differentiating this equation with respect to x, we obtain

$$
\frac{\partial^{2} y}{\partial B \partial x}=\frac{1}{\left\{1-(y / B-y)^{k-1}\right\}^{2}}(k-1)\left(\frac{y}{(B-y)}\right)^{k-2} \frac{B}{(B-y)^{2}} \frac{\partial y}{\partial x} .
$$

[^0]Hence $\frac{\partial}{\partial B}\left(\log \frac{\partial y}{\partial x}\right)$ increases with x for any value of B. Integrating with respect to B, from A to $B_{0}>A$, we conclude that

$$
\left.\log \frac{\partial y}{\partial x}\right|_{A} ^{B_{0}}
$$

increases with x. Since $y=x$ when $B=A$, this implies that

$$
\left.\frac{\partial y}{\partial x}\right|_{B-B_{0}}
$$

increases with x, so that (1) defines as a convex function of x.

Lempa 2. The number of solutions in integers x and y of (1) is less than $7 A^{3}$

Proof. First we show that, if (1) is solvable, $2 A>B$. It is evident that both $f(A, x)=x^{k}+(A-x)^{k}$ and $f(B, y)=y^{k}+(B-y)^{k}$ are monotonously decreasing for $0<x<\frac{1}{2} A, 0<y<\frac{1}{2} B$, and that $f(A, u)<f(B, u)$. Thus, if (1) holds, $y>x, A-x>B-y$, i.e. $2 A>B$.

Let now $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{r}, y_{r}\right)$ be the solutions of (1). From Lemma 1 it follows that

$$
\begin{equation*}
\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}>\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}} . \tag{2}
\end{equation*}
$$

We now split the $\left(x_{i}, y_{i}\right)$'s into two classes. In the first class we put the $\left(x_{i}, y_{i}\right)$ for which one of the equations $y_{i+1}-y_{i}>2 A^{4}, x_{i+1}-x_{i}>2 A^{\text {t }}$ holds, and in the second class all the other $\left(x_{i}, y_{i}\right)$. Obviously the number of the $\left(x_{i}, y_{i}\right)$ of the first class is less than $2 A^{2}$. Thus, if the result is false, the scoond class contains at least $5 A^{\frac{1}{2}}\left(x_{i}, y_{i}\right)$. Thus we obtain from (2) that there are at least $\overline{5} A^{1}$ different fractions $u_{i} v_{i}$ with $u_{i} \leqslant 2 A^{\dagger}$, $v_{i} \leqslant 2 A$, an obvious contradiction.

Lemms 3. Let $k=r_{1}^{2} r_{2}^{3} \ldots r j_{j}^{3}$, where the $r^{\prime} s$ are odd primes. Then all prime factors $p,(p, k)=1$, of

$$
\frac{x^{k}+y^{k}}{x+y}, \quad(x, y)=1
$$

are of the form $2 r_{1} r_{2} \ldots r_{3} d+1$.

This result is well known*.
Lemma 4. Denotet $\prod_{\substack{p=1 \mid m \\\left(\bmod r_{1} r_{2} \ldots r_{j}\right)}} p^{a}$ by $\psi(m)$. Then the number of
integers $m \leqslant n$ with $(m, k)=1$ and $\psi(m)<m^{\frac{1}{n}}$ is greater than $c_{1} n$, where c_{1} depends only on k.

Proof. Consider the integers not exceeding n of the form $p a$, with p prime, $p>n^{\text {s5 }}, a<n^{3},(a, k)=1, p \neq 1 \bmod \left(r_{1} r_{2} \ldots r_{j}\right)$. They obviously satisfy the requirements of the lemma. We estimate the number β of these integers. Denote by $\phi(k, d)$ the number of integers not exceeding d and relatively prime to k. Then

$$
\beta=\sum_{\substack{p \neq 1\left(\bmod \mathrm{r}_{1} r_{3} \ldots, r_{j}\right) \\ n>p>n r_{5}}} \phi\left(k, \frac{n}{p}\right) .
$$

By the sieve of Eratosthenes, we get \ddagger
thus

$$
\phi(k, d)>d \prod_{P \mid k}\left(1-\frac{1}{P}\right)-2^{\imath(k)}
$$

$$
\beta>\prod_{P \mid k}\left(1-\frac{1}{P}\right) \sum_{\substack{p \neq 1 \bmod \left(r_{1} r_{2} \ldots r_{j}\right) \\ n>p>n \neq \beta}} \frac{n}{p}-\pi(n) 2^{k}
$$

where $\pi(n)$ denotes the number of primes not exceeding n. But, by the prime number theorem or by a more elementary result,
hence

$$
\begin{gathered}
\underset{\substack{p \neq 1 \\
\bmod \left(r_{1} r_{2} \ldots r_{j}\right) \\
n>p>n n_{0}}}{ } \frac{1}{p}>c_{2}, \quad \pi(n)=o(n) \\
\beta>c_{2} n \Pi\left(1-\frac{1}{r_{i}}\right)-o(n)>c_{1} n
\end{gathered}
$$

which proves the lemma.
Lemma 5. Let $a_{1}<a_{2} \ldots<a_{i}<m$ be integers with $t>c_{3} m$, then \S

$$
\sum_{i=1}^{1} \phi\left(a_{i}\right)>c_{4} m^{2}
$$

[^1]Proof. First we show that the number of integers s not exceeding m for which $\phi(s)<c_{5} m$ is, for suitable c_{5}, less than $\frac{1}{2} c_{3} m$. Obviously

$$
\begin{aligned}
\prod_{v=1}^{m} \phi(v) & =m!\prod_{p \leqslant m}\left(1-\frac{1}{p}\right)^{[m / p]}>\frac{m^{m}}{e^{m}} \prod_{p \leqslant m}\left(1-\frac{1}{p}\right)^{m / p} \\
& >\frac{m^{m}}{e^{m}} \prod_{p-1}^{\infty}\left(1-\frac{c_{G}}{p^{2}}\right)^{m}>m^{m} c_{7}{ }^{m} .
\end{aligned}
$$

But if our result is not true we should have

$$
\prod_{n=1}^{m} \phi(v)<m^{m} c_{5}^{c_{3} m}
$$

which is impossible if $c_{5}^{k_{3}}<c_{7}$
Thus we obtain

$$
\sum_{i=1}^{t} \phi\left(a_{i}\right)>\frac{c_{7} c_{5}}{2} m^{2}=c_{4} m^{2}
$$

which proves the lemma.
Theorim. The number of integers not exceeding n of the form $x^{k}+y^{k}$, where $k \geqslant 3$ is odd and $(x, y)=1$, is greater than $c_{8} n^{2 / k}$.

Proof. Denote by $a_{1}<a_{2}<\ldots<a_{1}$ the integers a with $2<a<n^{1 / k}$, $(a, k)=1$ and $\psi(a)<a^{\text {衣. }}$. Consider the integer3

$$
\begin{equation*}
x^{k}+y^{k} \tag{3}
\end{equation*}
$$

with $x+y=a_{i},(x, y)=1, x<\frac{1}{2} a_{i}(i=1,2, \ldots, l)$. These are obviously all less than n.

The number γ of these integers, not necessarily all different, is equal to

$$
\frac{1}{2} \sum_{i=1} \phi\left(a_{i}\right)>c_{9} n^{2 / k}
$$

by Lemmas 4 and 5 .
We now estimate the number δ of solutions of

$$
\begin{equation*}
x^{k}+y^{k}=u^{k}+v^{k} \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
& x+y=a_{i}, \quad(x, y)=1, \quad u+v=a_{j}, \quad(u, v)=1 \\
& i \leqslant j ; \quad u, j=1,2, \ldots, l ; \quad x \leqslant \frac{1}{2} a_{i}, u \leqslant \frac{1}{2} a_{j} .
\end{aligned}
$$

Write (4) in the form

$$
\begin{equation*}
\psi\left(a_{i}\right) \frac{a_{i}}{\psi\left(a_{i}\right)} \frac{x^{k}+y^{k}}{x+y}=\psi\left(a_{j}\right) \frac{a_{j}}{\psi\left(a_{j}\right)} \frac{u^{k}+v^{k}}{u+v} . \tag{5}
\end{equation*}
$$

By Lemma 3, (5) is possible only if

$$
\frac{a_{i}}{\psi\left(a_{i}\right)}=\frac{a_{j}}{\psi\left(a_{i}\right)},
$$

which means that, for fixed a_{i}, there are at most

$$
\frac{n^{1 / k}}{a_{i}^{\prime} \psi^{\prime}\left(a_{i}\right)}<\frac{n^{1 / k}}{a_{i}^{2}}
$$

possible values for a_{i}; thus, by Lemma 2, the number δ_{i} of solutions of (5) for fixed a_{i} is less than

$$
7 a_{i}{ }^{\ddagger} \frac{n^{1 / k}}{a_{i}^{\prime i}}<7 \frac{n^{1 / k}}{a_{i}^{k}}
$$

Hence, finally,

$$
\begin{equation*}
\delta=\sum_{i=1} \delta_{i}<7 n^{1 / k} \sum_{i \leqslant n^{1 / k}} \frac{1}{\dot{j}^{*}}<100 n^{2 / k-1 /(a k)} . \tag{6}
\end{equation*}
$$

Obviously the number of different integers represented by (4) is not less than*

$$
\gamma-\delta>c_{9} n^{2 / k}-100 n^{n k}>c_{8} n^{2 / k}
$$

which proves the theorem.
By similar but slightly more complicated arguments we can prove that the number of integers not exceeding n of the form $x^{k}+y^{k}, x \geqslant y>0$, is equal to

$$
\frac{1}{2} \sum_{x<n / k}\left(n-x^{k}\right)^{1 / k}+o\left(n^{2 / k}\right)
$$

From this result it evidently follows that the number of integers m not exceeding n for which the equation $m=x^{k}+y^{k}, x \geqslant y>0$, has more than one solution is $o\left(n^{2 / k}\right)$.

The University,
Manchester.

[^2]
[^0]: * Received 24 February, 1939; read 23 March, 1939.
 \dagger P. Erdōs and K. Mahler, Journal London Math. Soc., 13 (1938), 134-139.
 : E. Landau, Journat London Mafh. Soc., 1 (1928), 72-74.
 § S. S. Pillai, Journal London Math. Soc., 3 (1028), 56-61.
 || This proof is due to Dr. W. Strodt,

[^1]: * L. Euler, Comm. Arish. Coll. (Petropoli, 1849), (1), 50 and (II), 523.
 $\dagger p^{0} \| m$ means that $p^{*} \mid m$ but $p^{+1+1}+m$.
 $\ddagger v(k)$ denotes the number of different prime factors of k.
 § $\Phi\left(a_{i}\right)$ denotep Euler's ϕ-function.

[^2]: * Denote by $f(m)$ the number of times that m is repreaented by (3). Then

 $$
 \underset{m=1}{n} f(m)=\gamma \quad \text { and } \sum_{m=1}^{n}\binom{f(m)}{2}=8 \quad\left[\text { if } f(m)=1, \quad\binom{f(m)}{2}=0\right] ;
 $$

 thus it is clear that

 $$
 \sum_{\delta \sin \neq 0}^{\mathrm{s}} 1>\gamma-\delta
 $$

