SOME ARITHMETICAL PROPERTIES OF THE CONVERGENTS OF A CONTINUED FRACTION

P. Erdös and K. Mahler \dagger.

In this note, we consider the greatest prime factor $G\left(B_{n}\right)$ of the denominator of the n-th convergent A_{n} / B_{n} of an infinite continued fraction

$$
\zeta=a_{0}+\frac{1}{\mid a_{1}}\left|+\frac{1}{\mid a_{2}}\right|+\ldots
$$

where the a_{1}, a_{2}, \ldots are positive integers.
We show in § 1 that, for "almost all" $\zeta, G\left(B_{n}\right)$ increases rapidly with n (Theorem 1). In $\S 2$, we prove that ζ is a Liouville number (i.e. $B_{n}<B_{n+1}^{e}$ for arbitrary $\epsilon>0$ and an infinity of n) if $G\left(B_{n}\right)$ is bounded for all n (Theorem 2); and, in fact, there are Liouville numbers with bounded $G\left(B_{n}\right)$. If the denominators a_{n+1} are bounded or increase slowly, then we can prove sharper results (B and C) ; but we omit the proofs, since they are similar to that of Theorem 2.

Corresponding results hold for the numerators A_{n} of the convergents A_{n} / B_{n} of ζ.

Notation. In the following, ζ is a positive irrational number,

$$
\zeta=a_{0}+\frac{1}{\left|a_{1}\right|}+\frac{1}{\mid a_{2}}+\ldots
$$

is its regular continued fraction, and

$$
\frac{A_{-1}}{B_{-1}}=\frac{1}{0}, \quad \frac{A_{0}}{B_{0}}=\frac{a_{0}}{1}, \quad \frac{A_{1}}{B_{1}}=\frac{a_{0} a_{1}+1}{a_{1}}, \quad \ldots
$$

is the sequence of its convergents. If

$$
\{P\}=\left\{P_{1}, P_{2}, \ldots, P_{t}\right\}
$$

is an arbitrary finite set of different prime numbers, then $M(\{P\})$ denotes the set of all indices n for which all prime factors of B_{n} belong to $\{P\}$, and

[^0]$N(x ;\{P\})$ denotes the number of elements $n \leqslant x$ of this set. Finally, $G(k)$ denotes the greatest prime factor of $k \neq 0$.
I.

1. In this first paragraph, we prove that for "almost all" ζ the function $G\left(B_{n}\right)$ increases rapidly with n.

Lemma 1. Let S be the set of all positive integers k for which

$$
k \geqslant \xi, \quad G(k) \leqslant \exp \left(\frac{\log k}{20 \log \log k}\right) ;
$$

then, for large $\xi>0$,

$$
\sum_{k \operatorname{in} S}^{\sum} \frac{1}{k}=O\left((\log \xi)^{-3}\right)
$$

Proof. We divide the set of all positive integers k for which

$$
\begin{equation*}
k \leqslant x, \quad G(k) \leqslant \exp \left(\frac{\log k}{20 \log \log k}\right) \tag{1}
\end{equation*}
$$

into three classes A, B, and C, such that A consists of those elements which are divisible by a square greater than or equal to $(\log x)^{10}$, and the remaining elements k belong to B or C, according as $k \geqslant \sqrt{ } x$ or $k<\sqrt{ } x$. Then A has at most

$$
\sum_{r \geqslant(\log x)^{\mathrm{s}}} \frac{x}{r^{2}}=O\left(\frac{x}{(\log x)^{5}}\right)
$$

elements. Next, let k be an element of B, and let

$$
k=P_{1}^{h_{1}} P_{2}^{h_{2}} \ldots P_{t}^{h_{l}}
$$

be its representation as a product of powers of different primes. Then, if an exponent $h \geqslant 2$, either P^{h-1} or P^{h} is a square factor of k, and therefore

$$
P^{h-1}<(\log x)^{10}
$$

Since $\sqrt{ } x \leqslant k \leqslant x$, for large x, we have

$$
P^{h} \leqslant(\log x)^{10 h /(h-1)} \leqslant(\log x)^{20} \leqslant \exp \left(\frac{\log x}{40 \log \log x}\right) \leqslant \exp \left(\frac{\log k}{20 \log \log k}\right)
$$

Since this inequality holds also for $h=1$, we have

$$
k \leqslant \exp \left(\frac{t \log k}{20 \log \log k}\right)
$$

and k is divisible by at least $20 \log \log k \geqslant 10 \log \log x$ different prime numbers, when x is sufficiently large. Therefore the number of divisors of k

$$
d(k) \geqslant 2^{10 \log \log x} \geqslant(\log x)^{5} .
$$

Now

$$
\sum_{k \leqslant x} d(k)=O(x \log x)
$$

so that B has at most

$$
(\log x)^{-5} O(x \log x)=O\left(\frac{x}{(\log x)^{4}}\right)
$$

elements. Since C has less than $\sqrt{ } x$ elements, there are therefore only

$$
O\left(\frac{x}{(\log x)^{5}}\right)+O\left(\frac{x}{(\log x)^{4}}\right)+\sqrt{ } x=O\left(\frac{x}{(\log x)^{4}}\right)
$$

integers k satisfying (1).
Suppose now that

$$
k_{1}, \quad k_{2}, \quad k_{3}, \quad \ldots \quad\left(1 \leqslant k_{1}<k_{2}<k_{3}<\ldots\right)
$$

is the sequence of all positive integers k for which

$$
G(k) \leqslant \exp \left(\frac{\log k}{20 \log \log k}\right)
$$

Then, by the last result,

$$
\frac{1}{k_{v}}=O\left(\frac{1}{\nu(\log \nu)^{4}}\right)
$$

and the lemma follows immediately, since

$$
\sum_{v \geqslant n} \frac{1}{\nu(\log \nu)^{4}}=O\left((\log n)^{-3}\right)
$$

Lemma 2. The measure of the set of all ζ in $0 \leqslant \zeta \leqslant 1$, such that the denominator B_{n} of one of the convergents A_{n} / B_{n} of ζ is equal to a given integer $k \geqslant 1$, is not greater than $1 / k$.

This is trivial, since

$$
\left|\zeta-\frac{A_{n}}{B_{n}}\right| \leqslant \frac{1}{2 B_{n}{ }^{2}} .
$$

Theorem 1. The set of all ζ in $0 \leqslant \zeta \leqslant 1$, for which an infinity of indices n exist satisfying

$$
\begin{equation*}
G\left(B_{n}\right) \leqslant \exp \left(\frac{\log B_{n}}{20 \log \log B_{n}}\right), \tag{2}
\end{equation*}
$$

is of measure zero.
Proof. Obviously $B_{n} \geqslant B_{n}{ }^{\prime}$, where $A_{n}{ }^{\prime} / B_{n}{ }^{\prime}$ is the convergent of order n of the special continued fraction

Now

$$
\begin{gathered}
\frac{1}{\mid 1}\left|+\frac{1}{\mid 1}\right|+\frac{1}{\mid 1}+\ldots \\
B_{n}{ }^{\prime}=\frac{1}{\sqrt{ } 5}\left\{\left(\frac{1+\sqrt{ } 5}{2}\right)^{n+1}-\left(\frac{1-\sqrt{ } 5}{2}\right)^{n+1}\right\},
\end{gathered}
$$

and therefore

$$
\begin{equation*}
B_{n}{ }^{\prime} \geqslant \frac{1}{2}\left(\frac{1+\sqrt{ } 5}{2}\right)^{n} \quad(n=1,2,3, \ldots) . \tag{3}
\end{equation*}
$$

Let n be an arbitrary index. Then, by Lemmas 1 and 2 , the measure of all ζ in $0 \leqslant \zeta \leqslant 1$, for which (2) holds, is not greater than

$$
\Sigma^{\prime} \frac{1}{k}=O\left(n^{-3}\right)
$$

where the summation extends over all integers k for which

$$
k \geqslant \frac{1}{2}\left(\frac{1+\sqrt{ } 5}{2}\right)^{n}, \quad G(k) \leqslant \exp \left(\frac{\log k}{20 \log \log k}\right) .
$$

Therefore the measure of all ζ in $0 \leqslant \zeta \leqslant 1$, for which (2) is satisfied for an infinity of indices $n \geqslant N$, is not greater than

$$
O\left(\sum_{n \geq N} n^{-3}\right)=O\left(N^{-2}\right)=o(1)
$$

and hence the theorem follows immediately.
In particular, from Theorem 1 and (3), for "almost all" ζ in $0 \leqslant \zeta \leqslant 1$ and all sufficiently large n, we have

$$
G\left(B_{n}\right) \geqslant \exp \left(\frac{n}{50 \log n}\right) .
$$

II.

2. In this second paragraph, we give some properties of the set $M(\{P\})$ and the arithmetical function $N(x ;\{P\})$ for special classes of irrational numbers ζ.

Lemma 3. For every $\epsilon>0$ and every finite system $\{P\}$ of given prime numbers P_{1}, \ldots, P_{l}, there is at most a finite number of systems of three integers

$$
X_{1} \neq 0, \quad X_{2} \neq 0, \quad X_{3}=\xi X_{3} * \neq 0
$$

such that

$$
X_{1}-X_{2}=X_{3}, \quad\left(X_{1}, X_{2}\right)=1, \quad\left|X_{3} *\right| \geqslant \max \left(\left|X_{1}\right|,\left|X_{2}\right|\right)^{\epsilon}
$$

where ξ and X_{3}^{*} are integers, and all prime factors of $X_{1} X_{2} X_{3}^{*}$ belong to $\{P\}$.

Proof. Take a prime number n, for which

$$
n \geqslant 5, \quad \frac{1+2 \sqrt{ }(n-1)}{n}<\epsilon, \quad \frac{2}{\sqrt{ } n}<\epsilon
$$

By hypothesis, X_{1} and X_{2} can be written in the form

$$
X_{1}=\eta_{1} P_{1}^{h_{1}} \ldots P_{t}^{h_{t}}, \quad X_{2}=\eta_{2} P_{1}^{k_{1}} \ldots P_{t}^{k_{t}} \quad\left(\eta_{1}= \pm 1, \quad \eta_{2}= \pm 1\right)
$$

with non-negative exponents. Dividing them by n, we get, say,

$$
h_{\tau}=n h_{\tau}^{\prime}+h_{\tau}^{\prime \prime}, \quad k_{\tau}=n k_{\tau}^{\prime}+k_{\tau}^{\prime \prime} \quad(\tau=1,2, \ldots, t),
$$

where $h_{\tau}{ }^{\prime}, h_{\tau}{ }^{\prime \prime}, k_{\tau}{ }^{\prime}, k_{\tau}{ }^{\prime \prime}$ are integers, and

$$
0 \leqslant h_{\tau}{ }^{\prime \prime} \leqslant n-1, \quad 0 \leqslant k_{\tau}^{\prime \prime} \leqslant n-1 \quad(\tau=1,2, \ldots, t)
$$

Put

$$
x=P_{1}^{h_{1}} \ldots P_{t}^{h_{t}^{\prime}}, \quad y=P_{1}^{k_{1}} \ldots P_{t}^{k_{t^{\prime}}}, \quad a=P_{1}^{h_{1}{ }^{\prime \prime}} \ldots P_{t}^{h_{t^{\prime}}{ }^{\prime}} \eta_{1}, \quad b=P_{1}^{k_{1}{ }^{\prime \prime}} \ldots P_{t}^{k_{t^{\prime \prime}}} \eta_{2}
$$

Then there are only $4 n^{2 t}$ possible sets (a, b). Also

$$
X_{1}=a x^{n}, \quad X_{2}=b y^{n}
$$

hence $(x, y)=1$ and

$$
a x^{n}-b y^{n}=\xi X_{3}^{*} .
$$

The binary form on the left-hand side is either irreducible, or is the product of an irreducible form of degree $n-1 \geqslant 3$ and a linear factor. Also there are only a finite number of possible forms. On the right,
all prime factors of $X_{3} *$ belong to $\{P\}$. Hence, by the p-adic generalization of the Thue-Siegel theorem \dagger, we must have

$$
\begin{aligned}
X * & =O\left(\max (|x|,|y|)^{\max \{2 \sqrt{ }, 1+2 \vee(n-1)\}}\right) \\
& =O\left(\max \left(\left|X_{1}\right|,\left|X_{2}\right|\right)^{2 / \sqrt{ } n, 1+2 \vee(n-1) / n}\right),
\end{aligned}
$$

except for at most a finite number of solutions. Hence the lemma follows immediately.

Theorem 2. Suppose that for an infinity of different indices

$$
\begin{equation*}
n=n_{1}, \quad n_{2}, \quad n_{3}, \quad \ldots \tag{4}
\end{equation*}
$$

the denominators B_{n-1}, B_{n}, B_{n+1} of three consecutive convergents of ζ are divisible by only a finite system of prime numbers $\{P\}$. Then ζ is a Liouville number, and is therefore transcendental.

Proof. Obviously

$$
\begin{equation*}
B_{n+1}-B_{n-1}=a_{n+1} B_{n} . \tag{5}
\end{equation*}
$$

Put $d=\left(B_{n-1}, B_{n+1}\right)$. Then $\left(d, B_{n}\right)=1$, since any two consecutive B 's are relatively prime; and so, by (5), d is a divisor of a_{n+1}. Write

$$
B_{n+1}=d B_{n+1}^{*}, \quad B_{n-1}=d B_{n-1}^{*}, \quad a_{n+1}=d a_{n+1}^{*}
$$

Then $\left(B_{n-1}^{*}, B_{n+1}^{*}\right)=1$, and all prime factors of $B_{n-1}^{*}, B_{n}, B_{n+1}^{*}$ belong to $\{P\}$ if n is an element of the sequence (4). From (5) and Lemma 3,

$$
\begin{gathered}
B_{n+1}^{*}-B_{n-1}^{*}=a_{n+1}^{*} B_{n} \\
B_{n} \leqslant \max \left(\left|B_{n-1}^{*}\right|,\left|B_{n+1}^{*}\right|\right)^{e} \leqslant B_{n+1}^{\epsilon}
\end{gathered}
$$

for sufficiently large n; and this is the defining property of a Liouville number.
3. By the last proof, for all sufficiently large n at least one of any three consecutive indices $n-1, n, n+1$ does not belong to $M(\{P\})$, if ζ is not a Liouville number; hence we have the inequality
(A)

$$
\limsup _{x \rightarrow \infty} N(x ;\{P\}) / x \leqslant \frac{2}{3}, \quad \text { if } \quad \log a_{n+1}=O\left(\log B_{n}\right)
$$

\dagger K. Mahler, Math, Annalen, 107 (1933), 691-730, Satz 2, 722. JOUR. 53.

In a similar way, by considering a sufficiently large number of consecutive indices and applying a lemma similar to Lemma 3, we can prove the following two results:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} N(x ;\{P\}) / x=0, \text { if } \log a_{n+1}=o\left(\log B_{n}\right), \tag{B}
\end{equation*}
$$

$$
\begin{equation*}
N(x ;\{P\})=O(\log x) \text {, if all } a_{n+1} \text { are bounded. } \tag{C}
\end{equation*}
$$

We mention as examples for these theorems:
(A) All real irrational algebraic numbers, the number π, the logarithms of all real rational numbers, the powers e^{a} with real irrational algebraic exponents.
(B) The powers e^{a} with rational exponents $a \neq 0$.
(C) All real quadratic irrational numbers.
(For these quadratic irrationals, it is even possible to show that $M(\{P\})$ has only a finite number of elements.)

Since any two consecutive B_{n} are relatively prime, all B_{n} cannot be powers of one single prime number. It is, however, easy to construct a Liouville number for which all B_{n} are only divisible by two arbitrary given prime numbers. On the other hand there are Liouville numbers for which all B_{n} are prime numbers. Assuming Riemann's hypothesis to be true, it is easy to show that there exist also non-Liouville numbers with this property.

Added 28 October, 1938. With respect to Theorem 2, it may be remarked that there are transcendental non-Liouville numbers, for which the greatest prime divisor of q_{n} is bounded for an infinity of indices n; e.g.,

$$
\zeta=3^{-1}+3^{-3}+3^{-9}+3^{-27}+3^{-81}+\ldots .
$$

We can show further that there exist real numbers ζ, for which the greatest prime factor of both p_{n} and q_{n} is bounded for an infinity of n. These numbers are necessarily transcendental, and probably they are Liouville numbers ; but this we have not yet proved.

Mathematics Department, Manchester University.

[^0]: \dagger Received 18 June, 1938; read 17 November, 1938 ,

