ON A CONJECTURE OF STEINHAUS

BY P. ERDÖS

(Institute for advanced study, Princeton, N. J.)

Steinhaus conjectured that if all the partial sums of

$$1+\sum_{k=1}^{\infty}(a_k\cos kx+b_k\sin kx),$$

are everywhere non negative then $\lim a_k = \lim b_k = 0$. Von Neamann' and Schur' proved that $\lim \inf a_k = \lim \inf b_k = 0$. Sidon ' proved that

$$\lim \frac{1}{n} \sum_{k \leq n} |a_k| + |b_k| = 0.$$

In the present paper we are going to sharpen these results by proving the following Theorem. Let each partial sum of

 $1 + \sum (a_k \cos kx + b_k \sin kx)$

be everywhere non negative; then the number of indices $k \le n$ for which the inequality $a_{k}^{*} + b_{k}^{*} > c^{*}$ holds is not greater than

$$(\log_{1} n)^{4/e^{3}+1}$$

Proof. Our chief tool will be the following classical theorem of Fejér ': Let

$$0 \le 1 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$
 for $0 \le x < 2\pi$,

' Unpublished.

* Acta Litt. ac Scient. Szeged, Tom. II, pp. 43-47.

³ $\log_n n$ denotes the logarithm of n to the base 2.

⁴ Journal für reine und angewandte Mathematik, Vol. 146, 1916, p. 63.

then real numbers $x_0, x_1 \dots x_n, y_0, y_1 \dots y_n$ exist such that

$$1 = \sum_{i=0}^{n} x_{i}^{2} + \sum_{i=0}^{n} y_{i}^{2}, \qquad a_{k} = 2 \sum_{l=0}^{n-k} (x_{k+l}x_{l} + y_{k+l}y_{l}),$$
$$b_{k} = 2 \sum_{l=0}^{n-k} x_{k+l}y_{l} - y_{k+l}x_{l}. \qquad (1)$$

Conversely if we choose 2n + 2 real numbers $x_0, x_1 \dots x_n, y_0, y_1, \dots y_n$ with

$$\sum_{i=0}^{n} (x_i^{i} + y_i^{i}) = 1$$

arbitrarily and determine the a's and b's by (1), the resulting trigonometric polynomial will be everywhere non negative.

If we replace x_i by $\sqrt[y]{x_i^2 + y_i^2}$ and y_i by 0 we obtain a non negative pure cosine polynomial

$$1 + \sum_{k=1}^{n} A_k^* \cos kx, \quad A_k^* = a_k^* + b_k^*.$$

Thus $A_k \ge \max(|a_k|, |b_k|)$ which shows that it suffices to prove Lemma 1 for pure cosine polynomials. For these polynomials ' we obtain from (1)

$$1 = \sum_{i=0}^{n} x_i^{s}, \qquad a_k = 2 \sum_{l=0}^{n-k} x_l x_{k+l}.$$

First we prove two lemmas.

Lemma 1³. Let $i_1 < i_1 < ... i_p < \frac{n}{2}$ be a sequence of integers such that $i_r > 2i_{r-1}$ (r = 2, 3 ... p) then

$$\sum_{j=1}^p a_n^{i} - i_j < 4$$

Proof. We have by Schwartz's inequality

$$a_n \cdot _{-i_j} \leq 4 \sum y_j \cdot \sum z_j \cdot < 4 \sum y_j \cdot$$

' Fejér, ibid., p. 64.

* S. SIDON, Journal London Math. Soc., Vol. VIII, 1938, p. 181.

where the y_j 's and z_j 's run over x_i , x_i , ..., $x_{i,j}$, x_{n-i_j} ..., x_n such that if x_k is a y_j then x_{k+n-i_j} is a z_j . Now we can choose the y_{j+1} 's belonging to $a_n^{z_{-j_{j+1}}}$ in such a way that no y_{j+1} equals any of the y_r 's (r=1, 2...j). For if this were not possible then for a certain $k x_k$ would be a y_{r_i} and $x_{k+n-i_{j+1}}$ would be a y_{r_2} $(r_1, r_2 \leq j)$. But by definition the y_r 's $(r \leq j)$ are a subset of the x_l 's with $0 \leq l \leq i_j$, or $n - i_j \leq l \leq n$. But from $i_{j+1} > 2i_j$ it follows that x_k and $x_{k+n-i_{j+1}}$ can not both satisfy one of these inequalities, which completes the proof. Hence

$$\sum_{j=1}^{n} a_{n^{3}-i_{j}} < 4 \sum_{j=1}^{n} \sum y_{j} \le 4 \sum_{i=0}^{n} x_{i}^{2} = 4$$

which proves the Lemma'.

Lemma 2. Let $i_1 < i_2 < ... < i_p \le n$ be a sequence of integers with $p > (\log_t n)^t$ (t integer) then there exist t + 2 i's, $i_1' < i_1' < ... i'_{t+2}$ such that for every r < t + 2 i' $r_{t+1} - i_{t'} > 2$ ($i_{t'} - i_1$).

Proof. The Lemma holds for t = 0, we use induction. Suppose the Lemma holds for t - 1.

If the interval $i_{i_1}, \frac{i_i + i_p}{2}$ contains more than $(\log n)^{i-1} i's$ our Lemma holds; for then we can find t + 1 i''s $i_i' < i_i' < ...$ $i'_{t'+1} < \frac{i_i + i_p}{2}$ satisfying the Lemma and we can choose $i'_{t+2} = i_p$. If the interval does not contain more than $(\log n)^{i-1}$ integers then we take the least *i* not less than $\frac{i_1 + i_p}{2}$, say $i^{(2)}$, and consider the interval $i^{(2)}$, $\frac{i^{(2)} + i_p}{2}$; if it contains more than $(\log n)^{i-1}i's$ the Lemma is proved; if not we consider the least *i* not less than $\frac{i^{(2)} + i_p}{2}$ say $i^{(3)}$ etc. But the number of the intervals of the form $i^{(q)}, \frac{i^{(q)} + i_p}{2}$ is at most log *n* since the length of each of them is not greater than half the length of the preceeding one. Hence at least one of them contains more than $(\log, n)^{t-1} i's$ which proves the Lemma.

' It would be easy to show that the Lemma remains true if only $i_r > \sum_{\substack{j < r \\ j < r}} i_j$

^{*} Our intervals are closed from below and open from above.

- 220 -

We can now prove our Theorem. Suppose it is false and let a_{n-i_1} , $a_{n-i_2} \dots a_{n-i_r}$, $p > (\log_1 n)^{4/c^2+1}$ be the *a's* which are greater than *c*. By Lemma 2, there exist $\left[\frac{4}{c^2}\right] + 3 = \tau \ a's$, $a_{n-i_1'+1}$, $a_{n-i'_2}, \dots a_{n-i'_r}$ satisfying $i'_{r'+1} - i_{r'} > 2 (i_{r'} - i'_i) (r < \tau)$ By the hypothesis

$$1 + \sum_{k=1}^{\infty} a_k \cos kx \ge 0, \quad \text{for} \quad 0 \le x < 2\pi,$$

thus by Lemma 1.

$$\sum_{r=1}^{\tau-1} a^{*}_{n-i'_{r}} < 4 \left(\text{for } i'_{\tau-1} - i_{i}' < \frac{i_{\tau}' - i_{i}'}{2} \le \frac{n-i'_{i}}{2} \right)$$

which does not hold since $a_{n-i} \ge c^i > \frac{4}{\tau-1}$; this completes the proof.

Apartado de la Revista de la Universidad Nacional de Tucumán Serie A : Matemáticas y física teórica (vol. I, nºs 1 y 2, 1940)