ON A CONJECTURE OF STEINHAUS

By P. ERDÖS
(Institute for adranced study, Princeton, N. J.)

Steinhaus conjectured that if all the partial sums of

$$
1+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

are everywhere nou negative then $\lim a_{k}=\lim b_{k}=0$. Von Neamann' and Schur ${ }^{4}$ proved that $\lim \inf a_{k}=\lim \inf b_{k}=0$. Sidon ' proved that

$$
\lim \frac{1}{n} \sum_{k \leq n}\left|a_{k}\right|+\left|b_{k}\right|=0
$$

In the present paper we are going to sharpen these results by proving the following Theorem. Let each partial sum of

$$
1+\sum\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

be everywhere non negative; then the number of indices $k \leq n$ for which the inequality $a_{k}{ }^{2}+b_{k}{ }^{2}>c^{2}$ holds is not greater than

$$
\left(\log _{,} n\right)^{4 / e^{x}+1}
$$

Proof. Our chief tool will be the following classical theorem of Fejér ': Let

$$
0 \leq 1+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \text { for } 0 \leq x<2 \pi
$$

' Unpublished.
${ }^{2}$ Leta Litt. ac Scient. Szeged, Tom. II, pp. 43-47.
${ }^{3} \log _{3} n$ deuotes the logarithm of n to the base 2 .

+ Journal für reine und angevandle Mathematik, Vol. 146, 1916, p. 63.
then real nnmbers $x_{0}, x_{1} \ldots x_{n}, y_{0}, y_{1}, \ldots y_{n}$ exist snch that

$$
\begin{array}{r}
1=\sum_{i=0}^{n} x_{i}^{2}+\sum_{i=0}^{n} y_{i}^{2}, \quad a_{k}=2 \sum_{l=0}^{n-k}\left(x_{k+l} x_{l}+y_{k+l} y_{l}\right) \\
b_{k}=2 \sum_{l=0}^{n-k} x_{k+l} y_{l}-y_{l+l} x_{l} . \tag{1}
\end{array}
$$

Conversely if we choose $2 n+2$ real numbers $x_{0}, x_{1} \ldots x_{n}, y_{0}, y_{1}, \ldots y_{n}$ with

$$
\sum_{i=0}^{n}\left(x_{i}^{2}+y_{i}^{2}\right)=1
$$

arbitrarily and determine the $a^{\prime} s$ and $b^{\prime} s$ by (1), the resulting trigonometric polynomial will be everywhere non negative.

If we replace x_{i} by $\gamma_{x_{i}^{2}+y_{i}{ }^{2}}$ and y_{i} by 0 we obtain a non negative pure cosine polynomial

$$
1+\sum_{k=1}^{n} \mathbf{A}_{k}^{2} \cos k x, \quad A_{k^{2}}^{2}=a_{k}^{2}+b_{k}^{2}
$$

Thus $A_{k} \geq \max \left(\left|a_{k}\right|,\left|b_{k}\right|\right)$ which shows that it suffices to prove Lemma 1 for pure cosine polynomials. For these polynomials ${ }^{1}$ we obtain from (1)

$$
1=\sum_{i=0}^{n} x_{i}^{2}, \quad a_{k}=2 \sum_{l=0}^{n-k} x_{l} x_{k+l}
$$

First we prove two lemmas.
Lemina $1^{\text {2 }}$. Let $i_{1}<i_{s}<\ldots i_{p}<\frac{n}{2}$ be a sequence of integers such that $i_{r}>2 i_{r-1}(r=2,3 \ldots p)$ then

$$
\sum_{j=1}^{p} a_{n}^{2}-i \ll 4
$$

Proof. We have by Schwartz's inequality

$$
a_{n}{ }^{2}-i_{j} \leq 4 \sum y_{j}{ }^{4} \sum z_{j}{ }^{3}<4 \sum y_{j}{ }^{2}
$$

[^0]where the $y_{j}^{\prime} s$ and $z_{j}^{\prime} s$ run over $x_{i}, x_{i}, \ldots x_{i}, x_{n-i_{j}} \ldots x_{n}$ such that if x_{k} is a y_{j} then $x_{k+n-i j}$ is a z_{j}. Now we can choose the y_{j+1} 's belonging to $a_{n}{ }^{2}-i_{j+1}$ in such a way that no y_{j+1} equals any of the $y_{r}{ }^{\prime} s(r=1,2 \ldots j)$. For if this were not possible then for a certain $k x_{k}$ would be a $y_{r_{\text {}}}$ and $x_{k+n-i_{j+1}}$ would be a $y_{r_{2}}\left(r_{1}, r_{1} \leq j\right)$. But by definition the y_{r} 's $(r \leq j)$ are a subset of the $x_{i}^{\prime} s$ with $0 \leq l \leq i j$, or $n-i_{j} \leq l \leq n$. But from $i_{j+1}>2 i_{j}$ it follows that x_{k} and $x_{k+n-i_{j+1}}$ can not both satisfy one of these inequalities, which completes the proof. Hence
$$
\sum_{j=1}^{s} a_{n^{3}-i_{j}}^{3}<4 \sum_{j=1}^{n} \sum y_{j}{ }^{2} \leq 4 \sum_{i=0}^{n} x_{i}{ }^{2}=4
$$
which proves the Lemma ${ }^{1}$.
Lemma 2. Let $i_{1}<i_{2}<\ldots<i_{p} \leq n$ be a sequence of integers with $p>\left(\log _{2} n\right)^{t}(t$ integer $)$ then there exist $t+2 i^{\prime} s, i_{1}^{\prime}<i_{2}^{\prime}<\ldots i_{t+2}^{\prime}$ such that for every $r<t+2 i_{r+1}^{\prime}-i_{r}^{\prime}>2\left(i_{r}{ }^{\prime}-i_{1}{ }^{\prime}\right)$.

Proof. The Lemma holds for $t=0$, we use induction. Suppose the Lemma holds for $t-1$.

If the interval : $i_{1}, \frac{i_{1}+i_{p}}{3}$ contains more than $(\log n)^{t-1} i^{\prime} s$ our Lemma holds ; for then we can find $t+1 \quad i^{\prime \prime} s \quad i_{s}^{\prime}<i_{s}^{\prime}<\ldots$ $i_{t+1}^{\prime}<\frac{i_{1}+i_{p}}{2}$ satisfying the Lemma and we can choose $i_{t+2}^{\prime}=i_{p}$. If the interval does not contain more than $(\log n)^{t-1}$ integers then we take the least i not less than $\frac{i_{1}+i_{p}}{2}$, say $i^{(2)}$, and consider the interval $i^{(2)}$, $\frac{i^{(2)}+i_{p}}{2}$; if it contains more than $(\log n)^{t-1} i^{\prime} s$ the Lemma is proved; if not we consider the least i not less than $\frac{i^{(2)}+i_{p}}{2}$ say $i^{(3)}$ etc. But the number of the intervals of the form $i^{(q)}, \frac{i^{(q)}+i_{p}}{2}$ is at most $\log n$ since the length of each of them is not greater than half the length of the preceeding one. Hence at least one of them contains more than $(\log , n)^{t-1} i \prime s$ which proves the Lemma.

[^1]We can now prove our Theorem. Suppose it is false and let a_{n-i}, $a_{n-i}, \ldots a_{n-i_{p}}, p>\left(\log _{2} n\right)^{4 / e^{2}+1}$ be the $a^{\prime} s$ which are greater than c. By Lemma 2, there exist $\left[\frac{4}{c^{2}}\right]+3=\tau a^{\prime} s, a_{n-i_{1}^{\prime}+1}, a_{n-i_{2}}, \ldots a_{n-i_{-}}$satisfying $i_{r^{\prime}+1}^{\prime}-i_{r}^{\prime}>2\left(i_{r}^{\prime}-i_{t}^{\prime}\right)(r<\tau)$ By the hypothesis

$$
1+\sum_{k=1}^{n-i} a_{k} \cos k x \geq 0, \quad \text { for } \quad 0 \leq x<2 \pi
$$

thus by Lemma 1.

$$
\sum_{r=1}^{-1} a_{n-i_{r}^{\prime}}^{\prime}<4\left(\text { for } i_{t-1}^{\prime}-i_{1}^{\prime}<\frac{i_{\tau}^{\prime}-i_{1}^{\prime}}{2} \leq \frac{n-i_{1}^{\prime}}{2}\right)
$$

which does not hold since $a^{\prime}{ }_{n-i_{r}^{*}} \geq c^{*}>\frac{4}{\tau-1}$; this completes the proof.

[^2] Serie A: Matemáticas y fisica teómica (vol. I, nos y y, 1940)

[^0]: - Fejér, ibid., p. 64.
 * S. Sidon, Journal London Math. Soc., Vol. VIII, 1938, p. 181.

[^1]: - It would be easy to show that the Lemma remains true if only $i_{r}>\sum_{j<r} i j$ for $r=1,2 \ldots p$.
 : Our intervals are closed from below and open from above.

[^2]: Apartado de la Revista de la Universidad Nacionai, de Tucumán

