ON EXTREMAL PROPERTIES OF THE DERIVATIVES OF POLYNOMIALS

By P. Erdös

(Received March 2, 1939)
Throughout this paper let $f(x)$ be a polynomial of degree n satisfying the inequality $|f(x)| \leqq 1$ for $-1 \leqq x \leqq 1$. A. Markoff ${ }^{1}$ showed that for $-1 \leqq$ $x \leqq 1,\left|f^{\prime}(x)\right| \leqq n^{2}$. Equality is obtained only for the Tchebicheff polynomial $T_{n}(x)$ for $x= \pm 1$. In the present paper we shall prove the following analogous

Theorem. ${ }^{2}$ Suppose $f(x)$ has only real roots and no roots in $-1,+1$; then for $-1 \leqq x \leqq 1,\left|f^{\prime}(x)\right|<\frac{1}{2} e n$. This is the best possible result.

Proof. We distinguish two cases. First we assume that $f^{\prime}(x)$ has a root x_{0} such that $-1 \leqq x_{0} \leqq 1$. A simple linear transformation enables us to put $\max f(x)=1$ for $-1 \leqq x \leqq 1$ and $f(-1)=f(+1)=0$. We prove the following

Lemma. Suppose $f(x)$ has only real roots none of which lie in the interval $-1,+1$ and let $f(-1)=f(+1)=0, \max _{-1 \leqq x \leq 1} f(x)=1$, then

$$
f(x)<e \frac{1+x}{1+x_{0}}
$$

Proof. Put $x_{0}-x=d$. Without loss of generality we may assume $-1<x<x_{0}$. Then if $x_{i}(i=1,2, \cdots, n), x_{1}=-1, x_{2}=+1$ denote the roots of $f(x)$, we have

$$
\begin{equation*}
1=f\left(x_{0}\right)=c \prod_{i \leqq n}\left(x_{0}-x_{i}\right), \quad \text { and } \quad \sum_{i \leqq n} \frac{1}{x_{0}-x_{i}}=0\left(f(x)=c x^{n}+\cdots\right) \tag{1}
\end{equation*}
$$

Now

$$
f(x)=c \prod_{i \leqq n}\left(x-x_{i}\right)=\varepsilon(1+x) \prod_{i=2}^{n}\left(-d+x_{0}-x_{i}\right) .
$$

Thus

$$
f(x)=\frac{f(x)}{f\left(x_{0}\right)}=\frac{1+x}{1+x_{0}} \prod_{i=2}^{n}\left(1-\frac{d}{x_{0}-x_{i}}\right)
$$

But by (1)

$$
\sum_{i=2}^{n} \frac{1}{x_{0}-x_{i}}=-\frac{1}{1+x_{0}}
$$

Hence from $\Pi\left(1+a_{i}\right)<\exp \sum a_{j}$, we have

$$
f(x)<\frac{1+x}{1+x_{0}} \exp \frac{d}{1+x_{0}}<e \frac{1+x}{1+x_{0}} . \text { q.e.d. }
$$

[^0]${ }^{2}$ The same result was obtained by Mr. Eröd by a different method.

By a slightly longer calculation we could show that

$$
\begin{equation*}
f(x) \leqq\left(1-\frac{1}{n}\right)^{-n+1} \frac{1+x}{1+x_{0}} \tag{2}
\end{equation*}
$$

equality occurring only for

$$
f(x)=\frac{n}{2^{n}\left(1-\frac{1}{n}\right)^{n-1}}(x+1)(x-1)^{n-1}
$$

and

$$
f(x)=\frac{n}{2^{n}\left(1-\frac{1}{n}\right)^{n-1}}(x+1)^{n-1}(x-1) .
$$

In these cases

$$
f^{\prime}(1)=\frac{n}{2\left(1-\frac{1}{n}\right)^{n-1}} \rightarrow \frac{e}{2} n
$$

Thus it can be shown by an easy calculation that the constant e of our Lemma cannot be improved. We have

$$
\begin{equation*}
\sum_{x_{i}>x_{0}} \frac{1}{x_{i}-x_{0}}=\sum_{x_{i}<x_{0}} \frac{1}{x_{0}-x_{i}} \leqq \min \left(\frac{k}{1-x_{0}}, \frac{n-k}{1+x_{0}}\right) \leqq \frac{n}{2} \tag{3}
\end{equation*}
$$

where k denotes the number of roots $>x_{0}$ of $f(x)$. Now by our Lemma we obtain

$$
\begin{aligned}
f(x)=f(x) \sum_{i=1}^{n} \frac{1}{x-x_{i}} & <e \frac{1+x}{1+x_{0}} \sum_{x_{i}<x_{0}} \frac{1}{x-x_{i}} \leqq e \frac{1+x}{1+x_{0}} \frac{1+x_{0}}{1+x} \sum_{x_{i}<x_{0}} \frac{1}{x_{0}-x_{i}} \\
& <\frac{e}{2} n
\end{aligned}
$$

by (3) which proves our Theorem for the first case. From (2) we can deduce that

$$
\left|f^{\prime}(x)\right| \leqq \frac{n}{2\left(1-\frac{1}{n}\right)^{n-1}} \quad \text { for } \quad-1 \leqq x \leqq 1
$$

Suppose now that $f^{\prime}(x) \neq 0$ for $-1 \leqq x \leqq 1$. A linear transformation enables us to put $f(-1)=0, f(+1)=1$. The roots of $f(x)$ are $x_{1}=-1, x_{2}$, x_{3}, \cdots, x_{n}. Now

$$
f^{\prime}(1) \leqq \sum_{x_{i}<1} \frac{1}{1-x_{i}} \leqq \frac{n}{2} .
$$

We have as in our Lemma

$$
\begin{aligned}
f(x)=\frac{f(x)}{f(1)}=\frac{1+x}{2} \prod_{i=2}^{n}\left(\frac{x-x_{i}}{1-x_{i}}\right)=\frac{1+x}{2} \prod_{i=2}^{n} & \left(1-\frac{1-x}{1-x_{i}}\right) \\
& <\frac{1+x}{2} \exp \frac{1-x}{2}<e \frac{1+x}{2} .
\end{aligned}
$$

In the above we used the fact that

$$
\frac{1}{2}+\sum_{i=2}^{n} \frac{1}{1-x_{i}} \geqq 0
$$

along with the inequality $\Pi\left(1+a_{j}\right)<\exp \sum a_{i}$. Thus
$f^{\prime}(x)=f(x) \sum_{i=1}^{n} \frac{1}{x-x_{i}}<e \frac{1+x}{2} \sum_{x_{i}<x} \frac{1}{x-x_{i}} \leqq e \frac{1+x}{2} \frac{2}{1+x} \sum_{x_{i}<1} \frac{1}{1-x_{i}} \leqq \frac{e}{2} n$.
This completes the proof of our Theorem. A slightly longer calculation would show that in the second case $f^{\prime}(x) \leqq \frac{1}{2} n$, where equality holds only for $f(x)=(1 \pm x)^{n} / 2^{n}$. A theorem of S . Bernstein ${ }^{3}$ states that for $-1 \leqq x \leqq 1$, $\left|f^{\prime}(x)\right| \leqq n /\left(1-x^{2}\right)^{\frac{1}{2}}$. For every subinterval of $-1,+1$ this result is very much better than the theorem of Markoff. By analogy we prove

Theorem. ${ }^{4}$ Let $f(x)$ be a (real valued) polynomial having no root in the interior of the unit circle; then for $-1+c<x<1+c,\left|f^{\prime}(x)\right|<\frac{4}{c^{2}} n^{3}$ for $n>n_{0}$.

Proof. Suppose that for a certain x_{0} in $-1+c, 1-c\left|f^{\prime}\left(x_{0}\right)\right| \geqq \frac{4}{c^{2}}$. Put $\left|x-x_{0}\right|<n^{-\frac{1}{2}}$ and denote by $x_{1}, x_{2}, \cdots, x_{n}$ the roots of $f(x)$. Then since $f(x)$ has no root in the unit circle
$\left|\frac{1}{x-x_{i}}-\frac{1}{x_{0}-x_{i}}\right| \leqq \frac{1}{c}-1 / c-n^{-\frac{1}{2}}=n^{-\frac{1}{2}} / c\left(c-n^{-\frac{1}{2}}\right)<2 / c^{2} n^{\frac{3}{4}}$ for $n>n_{0}$.
Without loss of generality we may assume that $f^{\prime}\left(x_{0}\right)>0$. Then

$$
\begin{equation*}
f^{\prime}(x)=f(x) \sum_{i=1}^{n} \frac{1}{x-x_{i}}>f(x) \sum_{i=1}^{n} \frac{1}{x_{0}-x_{i}}-\frac{2 n^{\frac{3}{2}}}{c^{2}}>0 . \tag{4}
\end{equation*}
$$

since

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{0}-x_{i}}=\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)} \geqq \frac{4}{c^{2}} n^{\frac{3}{2}} . \tag{5}
\end{equation*}
$$

Thus $f(x)$ increases for $x_{0}<x<x_{0}+n^{-\frac{1}{2}}$. Hence by (4) and (5) $f^{\prime}(x)>$ $\frac{f^{\prime}\left(x_{0}\right)}{2}>\frac{2 n^{\frac{3}{2}}}{c^{2}}$. But

$$
1>\int_{x_{0}}^{x_{0}+n^{-}} f^{\prime}(x) d x>\frac{2}{c^{2}}
$$

[^1]which leads to a contradiction. Put
$$
f(x)=\frac{1}{e}\left(x^{2}-1\right)^{n}(1+x)^{\left[n^{\left.\frac{1}{2}\right]} 5\right.}
$$

Writing $x=a n^{-\frac{1}{2}}$ we have,

$$
|f(x)|=\frac{1}{e}\left(1-\frac{a^{2}}{n}\right)^{n}\left(1+a n^{-\frac{1}{2}}\right)^{\left[n^{\left.\frac{1}{4}\right]}\right.}<\frac{1}{e} e^{-a^{2}+a}<1
$$

But $\left|f^{\prime}(0)\right|=\frac{\left[n^{\left.\frac{3}{3}\right]}\right.}{e}$ which shows that in Theorem 2. $n^{\frac{3}{2}}$ cannot be replaced by any function tending to infinity more slowly.

Institute for Advanced Study.

[^2]
[^0]: ${ }^{1}$ A. Markoff, Abh. Akad. Wiss. St. Petersburg, 1889, vol. 62, pp. 1-24.

[^1]: ${ }^{2}$ S. Bernstein, Belg. Mém. 1912, p. 19.
 ${ }^{4}$ This problem was suggested to me by Professor D. R. Curtiss.

[^2]: ${ }^{6}\left[n^{i}\right]$ denotes the greatest integer not exceeding $n^{\frac{1}{2}}$.

