ON THE DISTRIBUTION OF NORMAL POINT GROUPS

By P. ERDös

Institute for Advanced Study

Communicated February 3, 1940
Let $-1 \leqslant x_{1}<x_{2}<\ldots<x_{n} \leqslant 1$ be n real numbers, and let us write $\omega_{n}(x)$ $=\prod_{k=1}^{n}\left(x-x_{k}\right)$. Consider the unique polynominal $f_{n}(x)$ of degree not exceeding $2 n-1$ such that

$$
f\left(x_{k}\right)=y_{k}, f^{\prime}\left(x_{k}\right)=0 .
$$

$f_{n}(x)$ is called the step parabola. It is well known ${ }^{1}$ that

$$
\begin{equation*}
f_{n}(x)=\sum_{k=1}^{n} y_{k} l_{k}^{2}(x) v_{k}(x)=\sum_{k=1}^{n} y_{k} h_{k}(x) \tag{1}
\end{equation*}
$$

where

$$
l_{k}(x)=\frac{\omega_{n}(x)}{\omega_{n}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)} \text { and } v_{k}(x)=1-2 l_{k}^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

Thus the linear function $v_{k}(x)$ is 1 at x_{k} and 0 at

$$
X_{k}=x_{k}+\frac{\omega^{\prime}\left(x_{k}\right)}{\omega^{\prime \prime}\left(x_{k}\right)}=x_{k}+\frac{1 / 2}{\sum_{k \neq v} \frac{1}{x_{k}-x_{v}}}
$$

The system $X_{1}, X_{2}, \ldots, X_{n}$ is called by Fejér ${ }^{2}$ the conjugate point system of $x_{1}, x_{2}, \ldots, x_{n}$. If all the X_{i} are outside $-1,+1$, Fejér calls the point group normal. He pointed out that the roots of many of the classical polynomials are normal, e.g., the roots of the Tchebicheff and Legendre polynomials.

Fejer ${ }^{3}$ proved that if $x_{1}, x_{2}, \ldots x_{n}$ is a normal point group then $\lim _{x \rightarrow \infty}\left(x_{i+1}-x_{i}\right)=0$. Turán and I^{4} improved this to

$$
x_{i+1}-x_{i}<\frac{c_{1}}{n \sqrt{1-x_{i}^{2}}}
$$

Recently I proved that for the x_{i} satisfying $-1+c_{2}<x<1-c_{2}$

$$
\begin{equation*}
x_{i+1}-x_{i}=\frac{\pi}{n \sqrt{1-x_{i}^{2}}}+0\left(\frac{1}{n^{3 / 2}}\right) \tag{2}
\end{equation*}
$$

It seems likely that if $-1+c_{2}<x<1-c_{2}$ then

$$
x_{i+1}-x_{i}=\frac{\pi}{n \sqrt{1-x_{i}^{2}}}+0\left(\frac{1}{n^{2}}\right) .
$$

Let now $-1=z_{1}<z_{2}<\ldots<z_{n}<1$ be the roots of the polynomial $P_{n}(z)+P_{n-1}(z)$ (where $P_{n}(z)$ denotes the nth Legendre polynomial). It is known ${ }^{5}$ that $Z_{2}=Z_{3}=\ldots=Z_{n}=1$, and $Z_{1}<-1$ (the Z_{i} are the conjugate points); i.e., this polynomial is barely normal. It is also easy to show that if for a certain point group $z_{1}=-1$ and $Z_{2}=\ldots=$ $Z_{n}=1$, then

$$
P_{n}(z)+P_{n-1}(z)=\prod_{i=1}^{n}\left(z-z_{i}\right)
$$

Thus $P_{n}(z)+P_{n-1}(z)$ is characterized by this property. Now we prove the following Theorem 1: Let $-1 \leqslant x_{1}<x_{2}<\ldots<x_{n} \leqslant 1$ be a normal point group. Then

$$
z_{i} \leqslant x_{i} \leqslant-z_{n-i}
$$

It is easy to see that these limits are the best possible since the point group $-z_{i}$ is also normal.

Proof. It will be sufficient to prove that

$$
z_{i} \leqslant x_{i}
$$

We prove the following stronger result: Suppose $-1 \leqslant x_{1}<x_{2}<\ldots<$ $x_{n} \leqslant 1$ is such that X_{i} does not fall in the interval $\left(x_{i}, 1\right)$ (we will refer to this property as A). Then

$$
z_{i} \leqslant x_{i} .
$$

Let us investigate the point group satisfying A and for which x_{i} is as small as possible. It is easy to see that such a point group exists. ${ }^{6}$ Now we prove that this point group is $z_{1}, z_{2}, \ldots z_{n}$, and this will complete our proof. Suppose that this is not true. Then either $x_{1} \neq-1$ or there exists an x, say x_{j}, such that $X_{j} \neq 1$. Suppose first $x_{1} \neq-1$. Consider the point group $-1<x_{1}-\epsilon_{1}<x_{2}<\ldots x_{n} \leqslant 1$ (ϵ_{1} sufficiently small). A simple calculation shows that the new point group also satisfies A, and in fact the conjugate points which were not less than 1 increased in absolute value. Thus if we denote by $X_{1}^{\prime}, X_{2}^{\prime}, \ldots X_{n}^{\prime}$ the conjugate points of $x_{1}-\epsilon_{1}, x_{2} \ldots x_{n}$, we have $X_{i}^{\prime} \neq 1$. Consider now the point group $x_{1}-$ $\epsilon_{1}, x_{2} \ldots x_{i}-\epsilon_{i} \ldots x_{n}$ (ϵ_{i} sufficiently small). A simple calculation shows that this point group also satisfies A, which contradicts the minimum property of x_{i}. In the second case we consider the point group $x_{1}, x_{2} \ldots$
$x_{j}-\epsilon_{j}, \ldots x_{n}$ (ϵ_{j} sufficiently small) which also satisfies A and the whole proof goes through as before.

Let $\varphi(x)$ be any continuous function in $(-1,+1)$, and let
$x_{1}^{(2)} x_{1}^{(2)} x_{2}^{(2)}$
be any infinite sequence of normal point systems. (Fejér' calls a sequence of point groups strongly normal if for any k and $n, v_{k}(x) \geqslant c_{3},-1 \leqslant x \geqslant 1$ (c_{3} independent of k and n). Consider the polynomial $f_{n}(x)$ of degree not greater than $2 n-1$ for which

$$
f_{n}\left(x_{i}^{(n)}\right)=\varphi\left(x_{i}^{(n)}\right) \text { and } f_{n}^{\prime}\left(x_{i}^{(n)}\right)=0 .
$$

By (1),

$$
f_{n}(x)=\sum_{k=1}^{n} y_{k} h_{k}(x) .
$$

Fejér ${ }^{8}$ conjectured that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\varphi(x)
$$

uniformly in $(-1,+1)$. Recently I succeeded in proving that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\varphi(x),-1+\epsilon<x<1-\epsilon
$$

uniformly for every $\epsilon>0$. In fact it suffices to suppose that the sequence of point groups is normal.

The proof of this result is not quite simple (it uses (2)) so that we do not give it here.

In a previous paper ${ }^{9}$ Turán and I proved that if $x_{1}, x_{2} \ldots x_{n}$ is a normal point group, then

$$
\max _{-1+e<x<1-e} \prod_{i=1}^{n}\left(x-x_{i}\right)<\frac{c_{4} \sqrt{n}}{2^{n}}
$$

By using Theorem 1, I can prove that

$$
\max _{-1 \leq x \leq 1} \prod_{i=1}^{n}\left(x-x_{i}\right)<\frac{c_{4} \sqrt{n}}{2^{n}}
$$

[^0]${ }^{3}$ L. Fejér, Ibid., p. 27.
${ }^{4}$ P. Erdős and P. Turán, "On Interpolation, II," Ann. Math., 39, 702-724 (1938).
${ }^{5}$ L. Fejér, Ibid. p. 32.

- Denote by a_{i} the lower limit of the x_{i}. To prove the existence of the point group in question it suffices to show that there exists a δ such that if $x_{1}, x_{2} \ldots x_{n}$ is a point group satisfying A and for which $x_{i}-a_{i}<\epsilon_{i}$ (ϵ_{i} sufficiently small), then $x_{r}+1-x_{r}>\delta, r=$ $1,2, \ldots n-1$. This is not difficult.
${ }^{7}$ L. Fejér, Amer. Math. Monthly, 41, 8 (1934).
${ }^{8}$ L. Fejér, "On the Characterization of Some . . .," Amer. Math. Monthly, 41, 13 (1934).
${ }^{\bullet}$ P. Erdós and P. Turán, Ibid.

[^0]: ${ }^{1}$ L. Fejér, "Lagrangesche Interpolation und die zugehőrigen konjugierten Punkte," Math. Ann., 106, 1-55 (1932). See also "On the Characterization of Some" Amer. Math. Monthly, 41, 1-14 (1934).
 ${ }^{2}$ L. Fejér, Ibid., p. 3.

