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Let L (u, a), - oo < u < + oo denote the Fourier-Stieltjes transform,
00

f eluoda(x), of a distribution function u(x), - oo < x < + co . Thus if
00

/3(x) is the distribution function which is 0, J, 1 according as x
-1 < x ,< 1, 1 < x, then L (u,,8) = cos u ; and so, if b is a positive con-
stant, cos (u/b) is the transform of the distribution function /3(bx) . Hence,
if a is a positive constant, the infinite convolution

aa(x) =/3(ax) *,R (a 2x) * f (a8x) * . . .

is convergent if and only if a > 1 ; its Fourier-Stieltjes transform being
00

(1)

	

L(u,oa) = II cos (u/a'v),

	

(a > 1) .
n=1

It is known 1 that the distribution function a s is continuous for every
a > 1 and, in fact, is either absolutely continuous or purely singular, depend-
ing on the value of a . In this direction it is known 2 that the set of points x
in the neighborhood of which aa(x) is not constant is either the interval
a, '< a/ (a - 1) or a nowhere dense perfect set of measure zero contained in
this interval according as 1 < a< 2 or 2 < a. While this implies that aa (x)
is singular if 2 < a it does not imply that aa(x) is absolutely continuous if
a < 2. In fact it has recently s been shown that there exist certain algebraic
irrationalities a < 2 for which L(u,aa ) does not tend to zero with 1/u and
so as cannot be absolutely continuous . (It was conjectured, loc . cit .', that such
values of a are clustering at a =1 + 0 which would imply that they lie dense
in the interval 1 < a < 2) . On the other hand it is known 4 that those a < 2
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since if a = 2 1/r', where m is a positive integer, then Qa has a continuous
derivative of order m - 1 .

The object of the present paper is to show that the successive smoothing
of Qa can be considered as the general case when a-> 1 + 0 . In fact it will
be shown that there exists, for every positive integer m, a positive q(m) such
that the set of those points a of the interval 1 < a < 1 + 77 ( m) for which as

does not possess a continuous derivative of order m - 1 is a set of measure
zero . To this end it is sufficient to prove that there exists, for every positive
integer m, a positive 6(m) such that the set of those points a of the interval
l <a< 1+9(m) for which

(iv) there exists an a such that 21 < a < 2 and I ci+l- aci I < 2,
(i=1,2, • • •, N-1) .

LEMMA 1 . There exist two positive absolute constants -11,Y2 such that
if M is any fixed number > y2, there are less than [M 1 / 4] different sequences
c1, c2j • • •, cN satisfying the requirements (1)-(iv), the inequality CN < M,
and the condition that the number o f those indices i (i = 1, 2,

	

, N) which
satisfy I ci+1 - aci I > 1/1 0 is less than y 1 log M .

Proof . Suppose that I ci+i - aci I < 1/10 and I ci+2 - aci +l ~ < 1/1 e for

a fixed i. Then

ci+1

	

I

	

1-a
ci

	

loci '
hence

e 2 i+1

	

ci+1

	

3
Ci
- aci+1 < loci < 10

by (iii) . Consequently, since I ci+2-aci+1 I < 1/10 by assumption,

c ti+1

	

3

	

1

	

_
ci

		

1
- ci+2 < l0 + 10 < 2

and so ci+2 is uniquely determined as the nearest integer' to cti+1/ei •

5 The above considerations are suggested by the investigations of Ch . Pisot, " La
répartition modulo un et les nombres algébriques," Annali d. R . Sc . Norm . Sup . di Pisa,
ser . II, vol. VII, p . 238 .

(2)

	

L(u,(Ta ) =o (I u I -m ),

does not hold is a set of measure zero .

u-> oo,

Let c 1 , c 2j , CN be N positive integers which satisfy the following

conditions

(i) c 1 < 2 ;
(ii) ci < ci+1,

(iii) ci+1 < 3ci,
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for which 'tea is absolutely continuous are certainly clustering at a = 1 + 0,
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Consequently if i,, i2 j • • • , i1 denote all those among the N indices i which
satisfy the inequality I ca+1 - ac t I > '/o then all indices i which are not of
the form i, + 1 or i, + 2 for some r = 1, 2, • • • , 1, are such that c j is uniquely
determined by cti_1 and cd_ 2 . On the other hand, even if j is of the form i,, + 1
or i, + 2, so that c, is not uniquely determined by c ;_ 1 and c;_ 2, then there
are, by (iv), (or (i)), at most 4 choices for c ; after c;_ 1 has been determined .
Hence there are at most 41 1 different sequences c1, c2, , CN which have a
given set of exceptional indices i 1, i2 , • • . , i1 .

Finally (ii) and (iv) together with the assumption aN':5 M clearly imply
that N < 5 log M for sufficiently large M, say for M > ,y, Since the number
of exceptional indices i1 , i 2 , • • • , i1 is less than yl log M, by the hypothesis of
Lemma 1, it is seen that the number of distinct possible choices for a set of
exceptional indices cannot exceed

[5100 M] + \ [5 log M] / + . . . + ( [5 log M]
[yl log M]

and is therefore less than M1/ 8 if y, is chosen sufficiently small . Since it was
shown above that there are at most 411 sequences c1, C2," • •, cN with a given
set of exceptional indices, it follows that the number of distinct sequences
c,, c2j • • • , cN which satisfy the requirements of Lemma 1 for a fixed M >Y2

is less than
M1/8 . 421 < M1/8 . 4271 109 M < M1/4

if y, is sufficiently small . This completes the proof of Lemma 1 .
If a, A are positive numbers let Ak = Ak (a, A) and ck _ € ( a, A) be defined,

for k = 1, 2, • • • , by placing

(3)

	

AO= Ak + ek,

	

Ak integer, - j < ek J .

LEMMA 2 . There exists an absolute constant y3, which shall be chosen
to be > y2, such that, if M has a fixed value greater than y3j then the measure
o f the set r o f those values a in the interval

(4)

	

2'<a<2

for which there exists in the interval

(5) 1<A<2

a A=A(a) such that the inequalities

(6.1)

	

aak < M ;

	

(6 .2)

	

fk(a, A) I > % o

hold for at most jy, log M distinct values of k, is less than MA It is under-
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stood that ek = Ex (a, A) is defined as in (3), and that /,, y2 are the absolute
constants occurring in Lemma 1 .

Proof. Suppose, if possible, that Lemma 2 is false . Then there exist at
least [Ml/'] values of a in (4), say

a„

	

(j = 1, 2, . . . , [M 1/4 ] ),

which are in r and which are separated by [M 1 /4]-1 intervals each of which
has a length not less than M-3/ 4 ; so that

( 7 )

	

a; - ak I > M-3/4.

Since a; is in r, there exists a A = d (a;) in (5) such that

e (aj, A (ai)) < 1 30

holds for all but jy, log M values of k satisfying

a,k.k(a,) < Al,
where, according to (3)

(8)

	

agka(a,) = Ak(aj, A(a;) ) + ek(a,, A(ai) ) = A k (') ._4- ~k(j), say .

It will be shown that

(I) The finite sequence of integers Ak(3) belonging to a fixed j
(= 1, 2, • • • , [Ml/4]) satisfies the hypotheses of Lemma 1 if this sequence
of integers is identified with the sequence of integers c,, c2 j , cN occurring
there ; and that

(II) The sequences Ak ( ' ) corresponding to different values of j are
distinct . Since there are [Ml/4 ] such sequences this will contradict Lemma 1
and so complete the proof of Lemma 2 .

In order to prove (I) notice first that (i), (ii), (iii) are obviously
satisfied for ca = A m ( ~ ) . Furthermore, by (8)

A (f)
+

E (f) = a, (Ad(1)
+ E{i)

$+1

	

$+1

and so, by (3) and (4)
A (') - a)A i (n = I a, E/ (i) - E (J) I < 2 ;i+1

	

d+1

so that (iv) is also satisfied, with a = a5 . The hypothesis (6 . 1) assures that
the assumption cN < M of Lemma 1 is satisfied. In order to verify the
remaining assumption of Lemma 1 recall that there are at most J'/, log M
values of k satisfying (6 . 1), (6 . 2) . Thus there are at most yl log M values
of i such that (6 . 1), (6 . 2) are satisfied either for k = i or for k = i + 1 .
But if i has a value distinct from one of these y, log M values, so that

lei(i) I <%o and -E{+)<%0,

then, by (4),
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A" -a;Aq ` ' > _ a; EC`''
-E $

i I < % 0 -

Thus there are at most y 1 log M indices i for which
A c,> -a5A i c ;' I

i+%1

	

> %0-

This completes the proof of (1) .
In order to prove (II), suppose, if possible, that (II) is false . Then

there exists a pair of distinct indices j and k such that

A 1 . ( 5 ) = A.ck)

for all i = 1, 2,

	

, N. Thus, by (3),

(9)

	

1 ak 1A(ak) -aj'A(a,) I < 2

holds, for all l such that aklA(ak) < M. In particular (9) holds if l is an
index for which

(10)

	

4M > akl > 1M.0

Now it may be assumed that ai~ > a; so that, by (7), ak > of

ak '+1 A ( ak ) > ak'A(ak) (a, + M-3/4 )

+ M-3 /4 . Then

and so, by (9),

ak1+1A(ak) _>_ (a, 1A(a,) -2) (a; +1bl-3,4 ) = a,z+s a(ai)
+ ai 1A(a1)

M-3/4 - 2 (a3 +
M-1/4) .

Hence, by (5) and (10),

ak l+la(ak) > a;l+lA(a,) +

	

M 1 14 -2-2 (a; + M-114) ? all+ll(al) + 310

if M is sufficiently large, say 31 > y3 . Thus
a,k 1+ 1A(ak) -a ; 1+1A(a5) > 3 .

This contradicts (9) (since by (10) ak 1+1A (a *) < A1) where one could write
l + 1 for 1. This contradiction proves (II) .

The proof of Lemma 2 is now complete .

LEMMA 3 . There exists, on the interval (4) a zero set Z which has the
following property : if a is a point of (4) not contained in Z then there is a
positive /3 =/3(a) such that if M is any fixed number larger than /3 and if A
is any number in (5), then there are at least J7, log M values of k which
satisfy both conditions (6 . 1), (6 . 2) .

Proof. For any positive integer h let Ph denote the set of points a on
the interval (4) such that (6. 1), (6. 2) hold (for some A=A(a) in (5))

for less than 2y 1 1og M values of k if Ai = 2's . Then, by Lemma 2,

meas Ph < 2-jh if 2h > y3 .



Thus if rµ denotes for any fixed µ > y, the a-set

(11)

	

r = r µ = Y. r h then meas rµ < 4yµk
2h>A,

It is clear from the definition of r, that if a is not in rN, and if M > µ, then,
even if M is not of the form 2h for some h, there are still at least j -Y, log M
values of k satisfying (6. 1), (6 . 2) for any value of d in (5) . Thus if a is
not in ra then there is a f3=/?(a) satisfying the requirements of Lemma 3 ;
in fact one can choose f3=µ. Then the set of points a in (4) such that there
does not exist a f3= f3 (a) satisfying the requirements of Lemma 3 is con-
tained in r N, for every positive µ . Thus by (11), Z is a zero set . This
completes the proof of Lemma 3 .

LEMMA 4 . For every q > 0 there exists a p = p(q) .> 1 and a zero set
Z = Zq of a-values contained in the interval

( 12 )

	

1 < a < p(q)

with the following properties : if a is a point of (12) not contained in Z Q

then there exists an a = a (a) > 0 such that if M is any fixed number greater
than a, and if A is any point of the interval (5), then there are at least q log M
values of k satisfying (6. 1), (6 . 2) .

Proof . Let a be a point in the interval 1 < a < 2 1 such that no integral
power of a is a point of the zero set Z occurring in Lemma 3 . Let p1, p2, , p'.
be those prime numbers such that

21<af<aP2< . . .<aP,<2.
Now if x is such that ax = 2 then, by the elementary inequalities of Chebyshev,
there are two absolute constants 74, y5 such that

(13)

	

y4 log x > r > y5 log x

Since aP' (j = 1, 2,

	

, r) is in the interval (4) and not a point of Z, there
are, by Lemma 3, for every A in (5), at least -4 logM values of k satisfying

(14.1)

	

I \ .P", I < M,
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(14.2)

	

I 6* (0') ,k) I > Y30

provided M > f3 (aP') . Thus, if M > max f3 (ar' ), there are at least
1Gti <__,.

jy, logM values of k satisfying (14. 1), (14 .2) for each i (= 1, 2,

	

, r) .

But there are at most
x logM values of k such that
p ip; log 2

(aPtPf)k= (2P4PJ/s)k < 1111 < M.

Thus there are at least
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jryl log M -
log M

pipf log 2

values of k satisfying (6 . 1) and (6. 2) . Then by (13) the number of values
k which satisfy (6. 1) and (6 . 2) is not less than

Jyly5 log x
log M - 4y8 (log x) 2

log M.

But this expression can be made greater than q log M if x is chosen suffi-
ciently large, i . e ., if a is chosen sufficiently small, say a < p ( q) . This com-
pletes the proof of Lemma 4 since Zq may be defined to be the zero set of
points a in the interval (12), some integral power of which is a point of Z .

THEOREM. For every positive integer m, there exists a positive 8 = 8(m)
such that the set of points a of the interval 1 < a < 1 + 8(n) for which

L(u,aa) = O (I u

does not hold. is a set of measure zero .

Proof. According to (1)

L(u, aa) = II cos (u/an),

	

(a > 1) .
n=1

Thus, if u is in the interval ak < u'~ ak+1

k
L(u,ua) < II cos (ar(u/ak)) .

T1

Now let A = u/ak so that 1 < A < 2 . Then

k

L(u, aa) < II I cos (Aar) I = II

	

cos (Aa'') ~ .
r1

	

Xa*~.-u

By Lemma 4, with M = u, if a is chosen in the interval (12) and not in Zq

and if u > a (a) there are at least q log u factors in this last product which

are less than cos ir/30 so that

IL(u,aa )I <(cos r/30)glogu,

	

u>a(a) .

Since, according to Lemma 4, q (> 0) can be chosen arbitrarily this completes
the proof of the theorem .

u-* oo,

INSTITUTE FOE ADVANCED STUDY .
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