ON THE SMOOTHNESS PROPERTIES OF A FAMILY OF
BERNOULLI CONVOLUTIONS.*

By Paur Erpds.

Let L(u,0), — o < u < -+ o denote the Fourier-Stieltjes transform,
oo
f eiveda(x), of a distribution function ¢(z), — 0 < & < + w. Thus if
B(z) is the distribution function which is 0, 4, 1 according as 2 = —1,
—1<z=1, 1<« then L(u,B) =cosu; and so, if b is a positive con-
stant, cos (u/b) is the transform of the distribution function 8(bz). Hence,
if @ is a positive constant, the infinite convolution

oa(z) = B(az) * B(a’z) * B(a’z) *- - -
is convergent if and only if a > 1; its Fourier-Stieltjes transform heing

(1) L(u,a) = Ei cos (u/a"), (a >1).

It is known* that the distribution function o, is continuous for every
@ > 1 and, in faet, is either absolutely continuous or purely singular, depend-
ing on the value of a. In this direction it is known ? that the set of points
in the neighborhood of which ¢q(x) is not constant is either the interval
2= a/(a—1) or a nowhere dense perfect set of measure zero contained in
this interval according as 1 < 2 = 2 or 2 < a. While this implies that o.(z)
is singular if 2 < @ it does not imply that o.(2) is absolutely continuous if
a < 2. In fact it has recently ® been shown that there exist certain algebraic
irrationalities @ < 2 for which L (u, 0,) does not tend to zero with 1/ and
80 o cannot be absolutely continuous. (It was conjectured, loc. cit.?, that such
values of a are clustering at ¢ =1 - 0 which would imply that they lie dense
in the interval 1 < @ < 2). On the other hand it is known* that those a < 2
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for which o, is absolutely continuous are certainly clustering at a =1 -0,
since if @ = 2", where m is a positive integer, then o, has a continuous
derivative of order m — 1.

The object of the present paper is to show that the successive smoothing
of o4 can be considered as the general case when ¢ — 1+ 0. In fact it will
be shown that there exists, for every positive integer m, a positive 5(m) such
that the set of those points @ of the interval 1 << a < 1 4 y(m) for which o,
does not possess a continuous derivative of order m — 1 is a set of measure
zero. To this end it is sufficient to prove that there exists, for every positive
integer m, a positive 8(m) such that the set of those points a of the interval
1<a< 1+ 8(m) for which

(2) L(u,00) =—o(|u|™), u— oo,

does not hold is a set of measure zero.
Let €165, + +,cy be N positive integers which satisfy the following
conditions:

(1) 6 =2;
(11) Ci <cé+1: (1'=1?2: : sN'__l).!
(iii) Cin < 3¢, (6=1,%+ s N—1);

(iv) there exists an « such that 2 < & < 2 and | ¢on —aci | < 2,
(i=1,2, -, N—1).

LemMA 1. There exist two positive absolute constants vy, ys such that
if M is any fized number > vy, there are less than [M*/*] different sequences
€1y Coy* * * 5 Cn Salisfying the requirements (1)-(iv), the inequalily cy = M,
and the condition that the number of those indices ¢ (i=1,82,---, N) which
satisfy | o —aci| > Yo is less than v, log M.

Proof. Suppose that | ciy—acs | = Yo and | cie— acin | = Yo for
a fixed 4. Then

C,H_
| < 1o, 10(:
hence
cgh-‘] $+1 i
i ¢ — %Cisr < ].OC <
by (iii). Consequently, since | i — ain | < 1/10 by assumption,
C i+1 1 _1-
ci = é+2‘ < 0 < 2

and 80 ¢4, is uniquely determined as the nearest integer® to ¢%i./c.

*The above considerations are suggested by the investigations of Ch. Pisot, “La
répartition modulo un et les nombres algébriques,” Annali d. R. 8c. Norm. Sup. di Pisa,
ser. II, vol. VII, p. 238.
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Consequently if 4y, &, - - - , %; denote all those among the N indices ¢ which
satisfy the inequality | ci;; — ac¢i | > % then all indices ¢ which are not of
the form 4 4 1 or 4, 4- 2 for some r=1,2, -, I, are such that ¢; is uniquely
determined by ci-; and ¢;-.. On the other hand, even if j is of the form i, + 1
or ir - 2, so that c; is not uniquely determined by c¢;.; and ¢;_,, then there
are, by (iv), (or (1)), at most 4 choices for c; after ¢;, has been determined.
Hence there are at most 4*! different sequences c;, ¢5,- - -, ey which have a
given set of exceptional indices 4, 15, * - -, 1.

Finally (ii) and (iv) together with the assumption ay'= M clearly imply
that N < 5 log M for sufficiently large M, say for M > v,. Since the number
of exceptional indices 4,4, * *, i1 is less than y; log M, by the hypothesis of
Lemma 1, it is seen that the number of distinet possible choices for a set of
exceptional indices cannot exceed

[510gM]) ({5logM]) . [5og M]
( 0 + 1 + + [y1 log M
and is therefore less than M'/® if v; is chosen sufficiently small. Since it was
shown above that there are at most 42! sequences ¢y, ¢;,- * -, cy with a given
set of exceptional indices, it follows that the number of distinet sequences

€y, €2, ° - -, Cy Which satisfy the requirements of Lemma 1 for a fixed M >y,

is less than
M8 . 421 < Mre. 4™ log M < M4

if y, is sufficiently emall. This completes the proof of Lemma 1.
If g, A are positive numbers let Ax = Ax(a,A) and & = g (a,A) be defined,
for k=1,2,- - -, by placing

(3) AF— Ay + &, Ay integer, —3 < &= }.

LeMma 2. There exists an absolute constant ys, which shall be chosen
to be > y., such that if M has a fized value greater than ys, then the measure
of the set T of those values a in the interval

(4) R<a<?

for which there exists in the interval

(5) 1ex<s

a A= A(a) such that the inequalities

(6.1) AF< M; (6.2)  |e(a,2)| > Yo

hold for at most %y, log M distinct values of k, is less than M2 It ig under-
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stood that e — e (a, X) is defined as in (3), and that yi,y, are the absolute
constants occurring in Lemma 1.

Proof. Suppose, if possible, that Lemma 2 is false. Then there exist at

least [M*/*] values of @ in (4), say
aj, (j=1;2:' : 'J[-M”"l])s
which are in I' and which are separated by [M*/*] —1 intervals each of which
has a length not less than M-%/*; so that
(7) | a5 — ax | = M-/4,
Since a; is in T, there exists a A= A(¢;) in (5) such that
(a5, A(a5)) < Y30
holds for all but 4y, log M values of k satisfying
aik)‘(a.f) < M,

where, according to (3)
(8)  afr(ay) = Ai(as, A(a5)) + e(ay, M(a)) ) = 4”4 &9, say.

It will be shown that

(I) The finite sequence of integers Ax'? belonging to a fixed j
(=1,2,- - -, [M**]) satisfies the hypotheses of Lemma 1 if this sequence
of integers is identified with the sequence of integers ¢i, c2,* * *, ex occurring
there; and that

(II) The sequences Aj'¥’ corresponding to different values of j are
distinet. Since there are [M'/*] such sequences this will contradict Lemma 1
and so complete the proof of Lemma 2.

In order to prove (I) notice first that (i), (ii), (iii) are obviously
satisfied for ¢ = A;"’. Furthermore, by (8)

A%+ e =a( A +a)

and so, by (3) and (4)

|AD — D] = | gyt —e D) | < 25

so that (iv) is also satisfied, with @ =a;. * The hypothesis (6.1) assures that
the assumption ¢y = M of Lemma 1 is satisfied. In order to verify the
remaining assumption of Lemma 1 recall that there are at most §y, log M
values of % satisfying (6.1), (6.2). Thus there are at most y, log M values
of i such that (6.1), (6.2) are satisfied either for & =1 or for k=14 1,
But if ¢ has a value distinct from one of these v, log M values, so that

| & | < Y30 and €!f) < %0,
then, by (4),
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|48 —aidd® [ = | g — ) | < Yo

Thus there are at most y, log M indices i for which
| A —asde | > Ho.
This completes the proof of (I).

In order to prove (II), suppose, if possible, that (II) is false. Then
there exists a pair of distinct indices j and k such that

A‘(,f] =A‘{k)
for all 1=1,R,- - -, N. Thus, by (3),
(9) | ax'A(ax) — a;'A(ay)| < 2

holds, for all 7 such that a'A(az) = M. In particular (9) holds if I is an
index for which
1

19) 1
Now it may be assumed that ax > a; so that, by (7), ax = a; 4 M-*4. Then
@' A (ax) = ai'A(ax) (a; + M)

M>a*‘>%llf.

and so, by (9),
a7 (ar) = (ai®A(ay) —R) (aj + M34) = a; ) (ay)
+ " (ag) M4 — 2 ay + M),
Hence, by (5) and (10),

@A (ar) Z N () + g5 M —2 — 2 () + M) Z oA (a) + 3
if M is sufficiently large, say M > y;. Thus
| a™*x (ax) — a;*A(ay)| = 3.
This contradiets (9) (since by (10) a?"'A(m:) < M) where one could write

141 for I. This contradiction proves (IT).
The proof of Lemma 2 is now complete.

LemMMA 3. There exists, on the interval (4) a zero set Z which has the
following property: if a is a point of (4) not contained in Z then there is a
positive B = B(a) suchi that if M is any fivzed number larger than B and if A
is any number in (5), then there are at least %y, log M values of k which
satisfy both conditions (6.1), (6.2).

Proof. For any positive integer k let I'n denote the set of points a on
the interval (4) such that (6.1), (6.2) hold (for some A =A(a) in (5))
for less than 3y, log M values of & if M = 2% Then, by Lemma 2,

meas Iy, < 2780 if 20 >y,
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Thus if Ty denotes for any fixed p > vy, the a-set
(11) - IP'=Tuy= 3 T} then measTy < 4y,

21}#
It is clear from the definition of T, that if @ is not in Ty and if M > p, then,
even if M is not of the form 2" for some h, there are still at least 1y, log M
values of & satisfying (6.1), (6.2) for any value of A in (5). Thus if a is
not in Ty then there is a 8 = B(a) satisfying the requirements of Lemma 3;
in fact one can choose 8 = p. Then the set of points a in (4) such that there
does not exist a 8= B(a) satisfying the requirements of Lemma 3 is con-
tained in I'y for every positive g. Thus by (11), Z is a zero set. This
completes the proof of Lemma 3.

LemyMa 4. For every q > 0 there ewists a p=p(q) > 1 and a zero set
Z = Zq4 of a-values contained in the interval

(12) 1<a<p(g)

with the following properties: if a is a poinl of (12) not contained in Z,
then there exists an o = a(a) > 0 such that if M is any fized number greater
than a, and if A is any point of the interval (5), then there are at least q log M
values of k satisfying (6.1), (6.2).

Proof. Let a be a point in the interval 1 < a < 2% such that no integral
power of a is a point of the zero set Z occurring in Lemma 3. Let pi, ps, -, pr
be those prime numbers such that

RcamLarr - <L arr < 2.
Now if 2 is such that a® = 2 then, by the elementary inequalities of Chebyshey,
there are two absolute constants y,, ys such that

T
og

(13) Y47 >r>vs

.

logaz "~

Since a# (j=1,2,- + -, r) is in the interval (4) and not a point of Z, there

are, by Lemma 3, for every A in (5), at least }y, log M values of k satisfying

(141)  |at| <K, (14.2)  |a(@)N)] > %o

provided M > B(a?*). 'Thus, if M > max B(art), there are at least
1=

3y log M values of & satisfying (14.1), (14.2) for each ¢ (=1,2,- - -, 7).

M values of % such that
pipslog 2

(ap;j‘};)k= (21’59}/‘-‘)7‘ < %ﬂf < M.

But there are at most

Thus there are at least



186 PAUL ERDOS,

log M
log M — —
4rylog 1=i=s=r pipjlog 2
values of k satisfying (6.1) and (6.2). Then by (13) the number of values
k which satisfy (6.1) and (6.2) is not less than
z z
'&'}’175 T(J—g—'; logM— 4.‘]!3 W logM.

But this expression can be made greater than g log M if z is chosen suffi-
ciently large, i.e., if @ is chosen sufficiently small, say a < p(g). This com-
pletes the proof of Lemma 4 since Z, may be defined to be the zero set of
points ¢ in the interval (12), some integral power of which is a point of Z.

THEOREM. For every positive integer m, there exists a positive § —8(m)
such that the set of points a of the interval 1 < a < 14 8(n) for which

L(u,00) =o(|u|™), u—> co,
does not hold, is a set of measure zero.
Proof. According to (1)
o0
L(u,00) = I cos (u/a"), (e >1).
n=1
Thus, if u is in the interval a* < 4= a**
%
L(u,05) < II cos (a"(u/a¥)).
r=1

Now let A — u/a* so that 1 <A < 2. Then

&
L(u,05) < I |cos (Aa")| = I |cos (xa")|.
=1 Aar=u

By Lemma 4, with M = u, if a is chosen in the interval (12) and not in Z,
and if > a(a) there are at least ¢ logu factors in this last product which
are less than cos x/30 so that

| L(u, 0a)| < (cosm/30)¢18%,  u > a(a).

Since, according to Lemma. 4, ¢ (> 0) can be chosen arbitrarily this completes
the proof of the theorem.

INBTITUTE FOR ADVANCED STUDY.



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

