Made in the United States of America Annals of Mathematics

Vol. 41, No. 1, January, 1940

ON THE UNIFORMLY-DENSE DISTRIBUTION OF CERTAIN SEQUENCES OF POINTS

BY PAUL ERDÖS AND PAUL TURÁN

(Received December 15, 1938)

Let

(1)
$$\mathfrak{M}_{1} \equiv \begin{cases} \varphi_{1}^{(1)} \\ \varphi_{1}^{(2)}, \varphi_{2}^{(2)} \\ \vdots \\ \varphi_{1}^{(n)}, \cdots \varphi_{n}^{(n)} \\ \vdots & \ddots \end{cases}$$

be a sequence of numbers, where for all n

$$0 \leq \varphi_1^{(n)} < \varphi_2^{(n)} < \cdots < \varphi_n^{(n)} \leq \pi.$$

Weyl¹ calls such a sequence uniformly-dense in $[0, 2\pi]$, if for every subinterval $[\alpha, \beta]$

(2)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{\substack{\nu \\ \alpha \le \varphi_{\nu}^{(n)} \le \beta}} 1 = \frac{\beta - \alpha}{\pi}.$$

Weyl proved that the sequence \mathfrak{M}_1 is uniformly dense in $[0, 2\pi]$ if and only if

(3)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} e^{ki\varphi_{r}^{(n)}} = 0$$

for every integer k.

Suppose we are given on the unit circle of the complex z-plane a sequence of points

$$\mathfrak{M}_{2} \equiv \begin{cases} z_{1}^{(1)} & & \\ z_{1}^{(2)}, z_{2}^{(2)} & & \\ \vdots & & \\ z_{1}^{(n)}, z_{2}^{(n)}, & \cdots & z_{n}^{(n)} \\ \vdots & \vdots & & \vdots & \ddots \end{cases} \\ \equiv \begin{cases} e^{i\varphi_{1}^{(1)}} & e^{i\varphi_{2}^{(2)}} & \\ e^{i\varphi_{1}^{(1)}}, & e^{i\varphi_{n}^{(n)}} \\ \vdots & & \\ \vdots & & \ddots \end{cases}$$

with

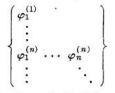
 $0 \leq \varphi_1^{(n)} < \varphi_2^{(n)} < \cdots < \varphi_n^{(n)} \leq 2\pi$

¹ H. Weyl: Über die Gleichverteilung von Zahlen mod Eins, Math. Ann., 1916, Bd. 77, pp. 313-352.

for all n. The sequence is called uniformly dense on the unit circle, if for any arc of the length l

(4)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{\substack{r \\ r(n) < l}} 1 = \frac{l}{2\pi},$$

holds. It is satisfied if and only if the sequence of numbers



is, in the sense of (2), uniformly dense in $[0, 2\pi]$.

Let a closed Jordan-curve l of the complex ζ -plane be given. The sequence of points

$$\mathfrak{M}_{3} = \begin{cases} \zeta_{1}^{(1)} \\ \vdots \\ \zeta_{1}^{(n)}, \zeta_{2}^{(n)}, \cdots, \zeta_{n}^{(n)} \\ \vdots & \vdots & \ddots \end{cases}$$

lying on l is called uniformly dense if, mapping the exterior of l schlicht-conformally and the periphery continuously on the closed exterior of the unit circle of the z-plane, we obtain on the circumference of the unit circle a sequence of points

(5)
$$\begin{cases} z_1^{(1)} \\ \vdots \\ z_1^{(n)}, z_2^{(n)}, \cdots , z_n^{(n)} \\ \vdots \\ \vdots \\ \vdots \\ \ddots \\ \end{cases} \end{cases}$$

uniformly dense in the sense of (4).²

We have to explain the case, when l degenerates into an open arc on the ζ -plane. In this case, in the same say as in (5), we obtain two $z_r^{(n)}$ belonging to one $\zeta_r^{(n)}$. Let l be e.g. the interval [-1, +1]; in this case the mapping function being $\zeta = \frac{1}{2} \left(z + \frac{1}{z} \right)$, the connection between the $\zeta_r^{(n)}$ and $z_r^{(n)}$, i.e. between $\zeta_r^{(n)}$ and $\varphi_r^{(n)}$, respectively, is

$$\zeta_{\nu}^{(n)} = \frac{1}{2} (e^{i\varphi_{\nu}^{(n)}} + e^{-i\varphi_{\nu}^{(n)}}) = \cos \varphi_{\nu}^{(n)}$$

$$\nu = 1, 2, \dots n, \qquad n = 1, 2, \dots, \qquad 0 \leq \varphi_{\nu}^{(n)} < 2\pi.$$

² The uniform-dense distribution of points lying on ρ , but with potential theoretic characterization, occurs at first in the investigations of Hilbert; see D. Hilbert: Über die Entwickelung einer beliebigen analytischen Function einer Variabeln \cdots , Nachrichten von der Königlichen Gesellschaft Göttingen, 1897, pp. 63-70. The above formalization, which is equivalent to Hilbert's, is due to L. Fejèr, see L. Fejèr: Interpolation und konforme Abbildung, Nachrichten van der Kön. Ges. Göttingen, 1918, pp. 319-331.

For fixed ν and $n, \varphi_{\nu}^{(n)}$ has two values, which lie symmetrically with respect to $\varphi = \pi$; so we call the sequence of points

(6)
$$\begin{cases} \zeta_1^{(1)} \\ \vdots \\ \zeta_1^{(n)}, \cdots \zeta_n^{(n)} \\ \vdots \\ \vdots \\ \ddots \\ \end{cases}$$

lying on (-1, +1], with

$$1 \ge \zeta_1^{(n)} > \zeta_2^{(n)} > \cdots > \zeta_n^{(n)} \ge -1, \qquad n = 1, 2, \cdots,$$

uniformly dense, if for the sequence of numbers

 $\begin{cases} \varphi_1^{(1)} \\ \vdots \\ \varphi_1^{(n)}, \varphi_2^{(n)}, \cdots , \varphi_n^{(n)} \\ \vdots \\ \vdots \\ \vdots \\ \ddots \\ \ddots \\ \end{cases} \end{cases}$

defined by³

$$\zeta_{\nu}^{(n)} = \cos \varphi_{\nu}^{(n)}, 0 \leq \varphi_{\nu}^{(n)} \leq \pi, \nu = 1, 2, \dots, n, n = 1, 2, \dots,$$
$$\lim_{n \to \infty} \frac{1}{n} \sum_{\substack{\nu \\ \alpha \leq \varphi_{\nu}^{(n)} \leq \beta}} 1 = \frac{\beta - \alpha}{\pi},$$

holds, where $[\alpha, \beta]$ means an arbitrary subinterval of $[0, \pi]$.

To this definition, appearing artificial at the first moment, we may give geometric sense in the following way: Let us draw upon [-1, +1] a semicircle and project the point $x_{\nu}^{(n)}$ upon the circle and obtain $A_{\nu}^{(n)}$. Then $\varphi_{\nu}^{(n)}$ means clearly the angle between the positive real axis and $0A_{\nu}^{(n)}$. So the above definition means that a sequence of points in [-1, +1] is here called uniformly dense if, projected upon the unit circle, the projections are uniformly distributed. According to this definition the most uniform distribution is the case $\varphi_{\nu}^{(n)} = \nu \pi/(n+1)$, $(\nu = 1, 2, \dots, n, n = 1, 2, \dots)$, attained when the sequence of points in [-1, +1] is $\zeta_{\nu}^{(n)} = \cos \nu \pi/(n+1)$ $(\nu = 1, 2, \dots, n, n = 1, 2, \dots)$. Let us observe that for this sequence

$$\omega_n(\zeta) = \prod_{\nu=1}^n (\zeta - \zeta_{\nu}^{(n)}) = U_n(\zeta),$$

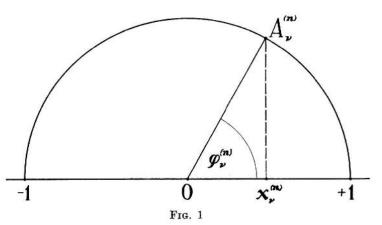
where $U_n(\zeta)$ are the Tchebysheff-polynomials of second kind; $U_n(\cos \vartheta)$ differs only in a factor from sin $(n + 1)\theta/\sin \theta$, which is independent of ϑ ; these polynomials are well known by their many important extremal properties. This

³ Clearly $0 \leq \varphi_1^{(n)} < \varphi_2^{(n)} < \cdots < \varphi_n^{(n)} \leq \pi$.

holds also in the important case $\varphi_{\nu}^{(n)} = \frac{2\nu - 1}{2n} \pi$. In both cases exactly $\left[\frac{\beta - \alpha}{\pi} n\right] \varphi_{\nu}^{(n)}$ (*n* fixed), fall in any subinterval $[\alpha, \beta]$ of $[0, \pi]$; the bracket in the last expression means the largest integer contained in $\frac{\beta - \alpha}{\pi} n$.

According to Weyl's criterion the uniformly dense distribution of a sequence of points is assured by the asymptotic behaviour of certain sequences associated with it. Fekete⁴ gives another criterion of the uniform dense distribution; he forms with the sequence of points \mathfrak{M}_3 the sequence of polynomials

$$\omega_n(z) = \prod_{\nu=1}^n (z - z_{\nu}^{(n)}) \qquad (n = 1, 2, \ldots)$$



and shows that \mathfrak{M}_3 is uniformly distributed upon l when and only when at every fixed point z_0 of l

$$\lim_{n\to\infty} (|\omega_n(z_0)|)^{1/n} \leq M,$$

where M is the so-called transfinite diameter⁵ of l. If l is the interval [-1 + 1] then $M = \frac{1}{2}$; if l is a circle, the radius of which is 1, then M = 1. Thus Fekete's criterion requires instead of asymptotic equalities only inequalities.

Let us now consider the special case when l is the interval [-1, +1]. In this case we stated that the ideal case is obtained when $\left[\frac{\beta - \alpha}{\pi}n\right]$ numbers $\varphi_{\nu}^{(n)}$, (n fixed), fall in any subinterval $[\alpha, \beta]$ of $[0, \pi]$. The above mentioned theorems give no account of the measure of the deviation from this ideal case. In this direction we prove the following

⁴ We know this theorem only from an oral communication.

⁵ This notion was introduced by M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen, etc., Math. Zeit., 1923, pp. 228-249.

THEOREM: Let the sequence of points

$$\mathfrak{M} \equiv \begin{cases} \zeta_{1}^{(1)} \\ \vdots \\ \zeta_{1}^{(n)}, \zeta_{2}^{(n)}, \cdots, \zeta_{n}^{(n)} \\ \vdots \\ \vdots \\ \vdots \\ \ddots \\ \ddots \\ \ddots \\ \end{cases}$$

with

$$1 \ge \zeta_1^{(n)} > \zeta_2^{(n)} > \cdots > \zeta_n^{(n)} \ge -1$$

be given. Let us construct the matrix

$$\mathfrak{M}' \equiv \begin{cases} \varphi_1^{(1)} & & \\ \vdots & \vdots & \\ \varphi_1^{(n)}, \varphi_2^{(n)}, \cdots & \varphi_n^{(n)} \\ \vdots & \vdots & \ddots \end{cases}$$

with

 $\zeta_{\nu}^{(n)} = \cos \varphi_{\nu}^{(n)}, \qquad 0 \leq \varphi_{\nu}^{(n)} \leq \pi, \qquad \nu = 1, 2, \dots n, \qquad n = 1, 2, \dots$ If for the polynomials $\omega_n(\zeta) = \prod_{\nu=1}^n (\zeta - \zeta_{\nu}^{(n)})$ the inequality

(7)
$$|\omega_n(\zeta)| \leq \frac{A(n)}{2^n}, \qquad -1 \leq \zeta \leq +1, n = 1, 2, \cdots,$$

holds, then for every subinterval $[\alpha, \beta]$ of $[0, \pi]$ we have

(8)
$$\left|\sum_{\substack{\nu\\\alpha\leq\varphi_{p}^{(n)}\leq\beta}}1-\frac{\beta-\alpha}{\pi}n\right|<\frac{8}{\log 3}\left(n\,\log\,A(n)\right)^{\frac{1}{2}}.$$

Our proof differs thoroughly from that of Fekete and besides it is elementary. A(n) in (7) denotes any function of n tending monotonically to infinity and for which, following Tchebysheff, $A(n) \ge 2$.

The proof requires a theorem of M. Riesz,⁶ the proof of which is so short that for sake of completeness we may reproduce it as a

LEMMA. Let the trigonometric polynomial $f(\varphi)$ of order n take its absolute maximum in $[0, 2\pi]$ at $\varphi = \varphi_0$; then the distance of the next root from this φ_0 is at least $\pi/2n$ to the right or to the left. Thus a fortiori: if $f(\varphi)$ takes its absolute maximum between two real roots, then the distance between these roots is $\geq \pi/n$.

PROOF. Suppose that the theorem is false. Without any loss of generality we may assume $\varphi_0 = 0$, there is a maximum at $\varphi = \varphi_0$ and the value of this maximum is 1. Suppose, that the next root lies to the right. Then for $\varphi = 0$

⁶ M. Riesz: *Eine trigonometrische Interpolations-formel etc.*, Jahresbericht der deutschen Mathematikerver, 1915, Bd. 23, pp. 354-368.

the curves $y = f(\varphi)$ and $y = \cos n\varphi$ would have at least one point of intersection and according to the supposition at least three in $[0, \pi/n]$. There is evidently at least one point of intersection at each of the intervals $[\pi/n, 2\pi/n], [2\pi/n, 3\pi/n],$ $\cdots [(2n-2)\pi/n, (2n-1)\pi/n]$ too; thus the trigonometric polynomial $f(\varphi) - \cos n\varphi$, of order n, would have in $[0, 2\pi]$ (2n + 1) roots, an obvious impossibility.

Now we proceed to prove our theorem. It will be sufficient to prove the upper estimate, for if we have proved

$$\sum_{\substack{n \\ \alpha \le \varphi_{x}^{(n)} \le \beta}} 1 - \frac{\beta - \alpha}{\pi} n < \frac{4}{\log 3} (n \log A(n))^{\frac{1}{2}}$$

for every subinterval $[\alpha, \beta]$ between 0 and π , then

(9a)
$$\sum_{\substack{\nu \\ 0 \le \varphi_{n}^{(n)} \le \alpha}} 1 - \frac{\alpha}{\pi}n < \frac{4}{\log 3} (n \log A(n))^{\frac{1}{2}}$$

(9b)
$$\sum_{\substack{\nu \\ \beta \leq \varphi_{\nu}^{(n)} \leq \pi}} 1 - \frac{\pi - \beta}{\pi} n < \frac{4}{\log 3} (n \log A(n))^{\frac{1}{2}}$$

i.e. from (9a) and (9b)

$$\sum_{\substack{\mathbf{r} \\ \alpha \leq \varphi^{(n)} \leq \beta}} 1 = n - \sum_{\substack{\mathbf{r} \\ 0 \leq \varphi^{(n)} \leq \alpha}} 1 - \sum_{\substack{\mathbf{r} \\ \beta \leq \varphi^{(n)} \leq \pi}} 1 > \frac{\beta - \alpha}{\pi} - \frac{8}{\log 3} \left(n \log A(n) \right)^{\frac{1}{2}},$$

which implies the lower estimate.

Let us now consider the upper estimate. Let $[\alpha, \beta]$ be any subinterval of $[0, \pi]$, but now we regard it as fixed. Let $k = \left[\frac{\beta - \alpha}{\pi}n\right]$, let l be any positive integer, and consider the following extremum problem of the Tchebysheff type: determine the minimum of the absolute maxima of the polynomials $f(\zeta) = \zeta^n + a_i \zeta^{n-1} + \cdots + a_n$ taken in [-1, +1] with the restriction, that $f(\zeta)$ has in the interval $[\cos \beta, \cos \alpha] \equiv [a, b], k + 2l \operatorname{roots}$, (counted by their multiplicity), where as a matter of fact $k + 2l \leq n$. By a well known argument the existence of this polynomial is assured. We shall prove that the extremum polynomial $f_i(\zeta)$ takes its absolute maximum value with respect to [-1, +1] in each of its root-intervals $[\zeta_{r+1}^{(n)}, \zeta_{r}^{(n)}]$ which is in the interior of [a, b]. For let the absolute value of the maximum of $f_1(\zeta)$ in [-1, +1] be M and, in $[\zeta_{r+2}^{(n)}, \zeta_{r}^{(n)}], |f_1(\zeta)| \leq M - \eta$, with $\eta > 0$. Then according to a fundamental theorem, for the polynomial

$$f_1^+(\zeta) = \frac{f_1(\zeta)}{(\zeta - \zeta_{\nu}^{(n)})(\zeta - \zeta_{\nu+1}^{(n)})} (\zeta - \zeta_{\nu}^{(n)} - \epsilon)(\zeta - \zeta_{\nu+1}^{(n)} + \epsilon)$$

(where $\epsilon > 0$), we have in $[\zeta_{\nu+1}^{(n)} - \epsilon^{\frac{1}{2}}, \zeta_{\nu}^{(n)} + \epsilon^{\frac{1}{2}}] |f_1^+(\zeta)| \leq M - \frac{1}{2}\eta$, if ϵ sufficiently small. On the other hand in the exterior of $[\zeta_{\nu+1}^{(n)} - \epsilon^{\frac{1}{2}}, \zeta_{\nu}^{(n)} + \epsilon^{\frac{1}{2}}]$, since

$$\begin{split} f_{1}^{+}(\zeta) &= f_{1}(\zeta) \left(1 - \frac{\epsilon}{\zeta - \zeta_{\nu}^{(n)}} \right) \left(1 + \frac{\epsilon}{\zeta - \zeta_{\nu+1}^{(n)}} \right) \\ &= f_{1}(\zeta) \left\{ 1 - \frac{\epsilon(\zeta_{\nu}^{(n)} - \zeta_{\nu+1}^{(n)})}{(\zeta - \zeta_{\nu}^{(n)})(\zeta - \zeta_{\nu+1}^{(n)})} - \frac{\epsilon^{2}}{(\zeta - \zeta_{\nu}^{(n)})(\zeta - \zeta_{\nu+1}^{(n)})} \right\}, \end{split}$$

we have, for $\epsilon < \frac{\zeta_{\nu}^{(n)} - \zeta_{\nu+1}^{(n)}}{2}$,

$$|f_1^+(\zeta)| < |f_1(\zeta)| \left| 1 - \frac{\epsilon}{2} \frac{\zeta_{\nu}^{(n)} - \zeta_{\nu+1}^{(n)}}{|\zeta - \zeta_{\nu}^{(n)}||\zeta - \zeta_{\nu+1}^{(n)}|} \right| < M \left| 1 - \frac{\epsilon^3}{2} (\zeta_{\nu}^{(n)} - \zeta_{\nu+1}^{(n)}) \right|.$$

This is less than M for sufficiently small ϵ , which contradicts the fact that $f_1(\zeta)$ is an extremum polynomial. Thus $f_1(\cos \vartheta)$ is a polynomial of order n the k + 2l roots of which in $[\alpha, \beta]$ determine intervals such that in each of these intervals $f(\cos \vartheta)$ takes its absolute maximum.

Now we apply the theorem of M. Riesz formulated in the Lemma. According to this $f(\cos \vartheta)$ cannot have in the interior of $[\alpha, \beta]$ more than $\left[\frac{\beta - \alpha}{\pi}n\right] = k$ roots i.e. 2l roots must be located at the borders and consequently their multiplicity must be l at least at one of the borders.

By the premise, by the definition of $f_1(\zeta)$, and by the above, we obtain that if $\omega_n(\zeta)$ has k + 2l roots in [a, b], then

$$(10) \qquad \frac{A(n)}{2^n} \ge \max_{-1 \le l \le +1} |\omega_n(\zeta)| \ge \max_{-1 \le l \le +1} |f_l(\zeta)| \ge \max_{-1 \le l \le +1} |\psi_l(\zeta)|,$$

where $\psi_1(\zeta) = \zeta^n + b_1 \zeta^{n+1} + \cdots + b_n$ denotes the polynomial of degree *n* the absolute maximum of which is a minimum for polynomials of degree *n* having *somewhere* in [-1, +1] one root with multiplicity *l*. As

$$\max_{-1 \leq l \leq +1} |\psi_1(\zeta)| \geq \left(\frac{1}{\pi} \int_{-1}^1 \frac{|\psi_1(\zeta)|^2}{(1-\zeta^2)^{\frac{1}{2}}} d\zeta\right)^{\frac{1}{2}}$$

we have, evidently, (by (10)),

$$\frac{A(n)}{2^n} \ge \min_{\psi_2} \left(\frac{1}{\pi} \int_{-1}^1 \frac{|\psi_2(\zeta)|^2}{(1-\zeta^2)^{\frac{1}{2}}} d\zeta \right)^{\frac{1}{2}},$$

where $\psi_2(\zeta) = \zeta^n + \cdots$ runs over the polynomials of order *n* having somewhere in [-1, +1] a root of the multiplicity *l*. Let $I_n(\zeta_0)$ denote the minimum value of $\int_{-1}^{1} \frac{|\psi_3(\zeta)|^2}{(1-\zeta^2)^{\frac{1}{2}}} d\zeta$, if $\psi_3(\zeta) = \zeta^n + \cdots$ runs over the polynomials of degree *n* having at a fixed ζ_0 in [-1, +1] a root of multiplicity *l*. Then we have

(11)
$$\frac{A(n)}{2^n} \ge \min_{\substack{\psi_3\\ -1 \le \xi \le +1}} \left(\frac{1}{\pi} I_n(\zeta_0)\right)^{\frac{1}{2}}.$$

Let us now consider $I_n(\zeta_0)$. Every $\psi_3(\zeta)$ can be written in the form $(\zeta - \zeta_0)^l \psi_4(\zeta)$, where $\psi_4(\zeta) = \zeta^{n-l} + \cdots$. Thus

$$I_n(\zeta_0) = \min_{\psi_4(\zeta) = \zeta^{n-l} + \cdots} \int_{-1}^1 \frac{|\psi_4(\zeta)|^2 |\zeta - \zeta_0|^{2l}}{(1 - \zeta^2)^{\frac{1}{2}}} d\zeta.$$

Let $\zeta = \frac{1}{2}\left(z + \frac{1}{z}\right)$, which transforms [-1, +1] into the upper part of the unit circle of the z-plane. Then—for $z = e^{i\varphi}$ —

$$\begin{split} I_n(\zeta_0) &= \min_{\psi_4(\zeta) = \zeta^{n-l} + \cdots} \frac{1}{2^{2l}} \int_0^\pi \left| \psi_4 \left(\frac{z + \frac{1}{z}}{2} \right) \right|^2 \left| z + \frac{1}{z} - 2\zeta_0 \right|^{2l} d\varphi \\ &= \min_{\psi_4(\zeta) = \zeta^{n-l} + \cdots} \frac{1}{2^{2l+1}} \int_0^{2\pi} \left| \psi_4 \left(\frac{z + \frac{1}{z}}{2} \right) \right|^2 \left| z + \frac{1}{z} - 2\zeta_0 \right|^{2l} d\varphi \end{split}$$

as |z| = 1, we have evidently for $\zeta_0 = \cos \alpha_0$

$$\begin{split} I_n(\zeta_0) &= \frac{1}{2^{2n+1}} \min_{\psi_{\mathfrak{b}}(z)=z^{2n-2}l_+ \dots} \int_0^{2\pi} |\psi_{\mathfrak{b}}(z)|^2 |z - e^{i\alpha_0}|^{2l} |z - e^{-i\alpha_0}|^{2l} d\varphi \\ &= \frac{1}{2^{2n+1}} \min \int_0^{2\pi} |\psi_{\mathfrak{b}}(z)|^2 d\varphi, \end{split}$$

where the last minimum is to be taken amongst the polynomials $\psi_6(z) = z^{2n} + \cdots$ of degree 2n having at $z = e^{i\alpha_0}$ and $z = e^{-i\alpha_0}$ roots of multiplicity *l*. Thus

$$I_n(\zeta_0) > \frac{1}{2^{2n+1}} \min_{\psi_7} \int_{|z|=1} |\psi_7(z)|^2 d\varphi,$$

where the minimum relates to the polynomials of degree $2n \psi_7(z) = z^{2n} + \cdots$ having an *l*-fold root only at $z = e^{i\alpha_0}$. But in this case, since $\psi_7(z) = (z - e^{i\alpha_0})^l \psi_8(z)$, we have

$$I_n(\zeta_0) > rac{1}{2^{2n+1}} \min_{\psi_8} \int_{|z|=1} |\psi_8(z)|^2 |z - e^{i \alpha_0}|^{2l} d\varphi,$$

where $\psi_8(z)$ runs over the polynomials of degree (2n - l) beginning with z^{2n-l} . Finally by replacing φ by $\alpha_0 + \varphi + \pi$ we obtain

(12)
$$I_n(\zeta_0) > \frac{1}{2^{2n+1}} \min \int_{|z|=1} |\psi_9(z)|^2 |1+z|^{2l} d\varphi,$$

the minimum being taken for all polynomials $\psi_9(z) = z^{2n-l} + \cdots$ of degree (2n - l).

If $p(\varphi)$ defines in $[0, 2\pi]$ a non negative and *L*-integrable function then, after Szegö we may define a sequence of polynomials $\phi_0(z)$, $\phi_1(z)$, \cdots such that

(13a)
$$\phi_m(z) = z^m + \cdots \qquad m = 1, 2, \cdots$$

(13b)
$$\int_{|z|=1} \phi_m(z)(\bar{z})^{\nu} p(\varphi) \, d\varphi = 0 \qquad \qquad \begin{array}{l} \nu = 0, \, 1, \, \cdots, \, (m-1); \\ m = 1, \, 2, \, \cdots. \end{array}$$

In this case $\phi_m(z)$ minimizes, for polynomials U(z) of degree m of the form $U(z) = z^m + \cdots$, the integral $\int_{|z|=1} |U(z)|^2 p(\varphi) d\varphi$. For any other such polynomial may be reduced the form $\phi_m(z) + \pi_{m-1}(z)$, where $\pi_{m-1}(z)$ is a polynomial of degree (m - 1). Then by (13b)

$$\begin{split} &\int_{|z|=1} |\phi_m(z) + \pi_{m-1}(z)|^2 p(\varphi) \, d\varphi \\ &= \int_{|z|=1} |\phi_m(z)|^2 p(\varphi) \, d\varphi + 2\Re \int_{|z|=1} \phi_m(z) \overline{\pi_{m-1}(z)} p(\varphi) \, d\varphi + \int_{|z|=1} |\pi_{m-1}(z)|^2 p(\varphi) \, d\varphi \\ &= \int_{|z|=1} |\phi_m(z)|^2 p(\varphi) \, d\varphi + \int_{|z|=1} |\pi_{m-1}(z)|^2 p(\varphi) \, d\varphi \ge \int_{|z|=1} |\phi_m(z)|^2 p(\varphi) \, d\varphi, \end{split}$$

and equality holds only for $\pi_{m-1}(z) \equiv 0$. The expression on the right side of (12) takes its minimum value for the $(2n - l)^{\text{th}}$ polynomial orthogonal to the weight-function $p(\varphi) = |1 + z|^{2l}$. According to a theorem of Szegö these polynomials may be expressed in terms of Jacobi polynomials but we prefer to present them in the form of an explicit integral interesting in itself. For m = 2n - l we write

(14)
$$\phi_{2n-l}(z) = \frac{l\binom{2n+l}{l}}{(1+z)^{2l}} \int_{-1}^{z} (z-t)^{l-1}(1+t)^{l} t^{2n-l} dt \equiv \frac{l\binom{2n+l}{l}}{(1+z)^{2l}} F_{2n+l}(z).$$

This expression is a polynomial; we prove it by showing that $F_{2n+l}(-1) = F'_{2n+l}(-1) = \cdots = F_{2n+l}^{(2l-1)}(-1) = 0$. The first of these equations is an immediate consequence of (14). Since for $1 \leq \nu \leq l-1$ we have by (14)

$$F_{2n+l}^{(\nu)}(z) = (l-1)(l-2) \cdots (l-\nu) \int_{-1}^{z} (z-t)^{l-\nu-1} (1+t)^{l} t^{2n-l} dt,$$

it is evident that the assertion holds for $1 \leq \nu \leq l-1$. On the other hand

$$F_{2n+l}^{(l)}(z) = (l-1)! (1+z)^{l} z^{2n-l},$$

i.e. evidently $F_{2n+l}^{(l)}(-1) = \cdots = F_{2n+l}^{(2l-1)}(-1) = 0$. Hence the expression in (14) is a polynomial.

We now prove that the coefficient of z^{2n-l} in (14) equals 1. The coefficient in question is

$$l \binom{2n+l}{l} \lim_{z \to \infty} \frac{\int_{-1}^{z} (z-t)^{l-1} (1+t)^{l} t^{2n-l} dt}{z^{2n+l}} = l \binom{2n+l}{l} \lim_{z \to \infty} \frac{\int_{-1}^{z} (z-t)^{l-1} t^{2n} dt}{z^{2n+l}},$$

which by the substitution t = zw can be transformed into

$$l\binom{2n+l}{l}\lim_{z\to\infty}\int_{-1/z}^{\infty}(1-w)^{l-1}w^{2n}\,dw=l\binom{2n+l}{l}\int_{0}^{\infty}(1-w)^{l-1}w^{2n}\,dw=1.$$

And now we have to verify the relation of orthogonality. Let

$$\int_{|z|=1} \phi_{2n-l}(z)(\bar{z})^{\nu} |1 + z|^{2l} d\varphi \equiv A_{\nu}. \qquad \nu = 0, 1, \cdots (2n - l - 1).$$

Since, for |z| = 1,

$$|1+z|^{2l} = \frac{(1+z)^{2l}}{z^l}, \qquad \bar{z} = \frac{1}{z},$$

we have by (14)

$$A_{r} = l \binom{2n+l}{l} \int_{|z|=1} \frac{F_{2n+l}(z)}{z^{\nu+l}} d\varphi = \frac{l \binom{2n+l}{l}}{i} \int_{|z|=1} \frac{F_{2n+l}(z)}{z^{\nu+l+1}} dz.$$

Hence if in $F_{2n+l}(z)$ the coefficient of $z^l, z^{l+1}, \cdots, z^{2n-1}$ equals 0, (13b) is verified. But according to the definition of $F_{2n+l}(z)$

(15)
$$F_{2n+l}(z) = \int_{-1}^{0} (z-t)^{l-1} (1+t)^{l} t^{2n-l} dt + \int_{0}^{z} (z-t)^{l-1} (1+t)^{l} t^{2n-l} dt.$$

Here the first integral is a polynomial of z of degree (l - 1); thus it has no influence upon our assertion. The second one we transform by the substitution t = zw into

$$z^{2n}\int_0^1 (1-w)^{l-1}(1+2w)^l w^{2n-l} dw.$$

Thus the second term is a polynomial the *lowest* term of which is 2n, which establishes the orthogonality.

The minimum value is given by

$$\begin{split} \int_{|z|=1} |\phi_{2n-l}(z)|^2 |1+z|^{2l} d\varphi &= \int_{|z|=1} \phi_{2n-l}(z) \{ (\bar{z})^{2n-l} + \cdots \} |1+z|^{2l} d\varphi \\ &= \int_{|z|=1} \phi_{2n-l}(z) (\bar{z})^{2n-l} |1+z|^{2l} d\varphi = \frac{l \binom{2n+l}{l}}{i} \int_{|z|=1} \frac{F_{2n+l}(z)}{z^{2n+1}} dz \\ &= 2\pi l \binom{2n+l}{l} \times \text{ (the coefficient of } z^{2n} \text{ in } F_{2n+l}(z)), \end{split}$$

which by the form of $F_{2n+l}(z)$ in (15) equals

$$2\pi \binom{2n+l}{l} \int_0^1 (1-w)^{l-1} w^{2n-l} dw = 2\pi \frac{\binom{2n+l}{l}}{\binom{2n}{l}}.$$

By this and (12)

$$I_n(\zeta_0) > \frac{\pi}{2^{2n}} \frac{\binom{2n+l}{l}}{\binom{2n}{l}},$$

i.e., by (11),

(16)
$$\frac{A(n)}{2^n} > \frac{1}{2^n} \left(\frac{\binom{2n+l}{l}}{\binom{2n}{l}} \right)^{\frac{1}{2}} = \frac{1}{2^n} \left(\prod_{\nu=0}^{l-1} \left(1 + \frac{l}{2n-\nu} \right) \right)^{\frac{1}{2}}.$$

Since $\frac{l}{2n-\nu} \leq 2$ and $\log(1+x) \geq \frac{\log 3}{2}x$, (if $0 \leq x \leq 2$), we have, (by (16)),

$$\begin{aligned} A(n) > & \operatorname{Exp}\left[\frac{\log 3}{4} l \sum_{\nu=2n-l+1}^{2n} \frac{1}{\nu}\right] \\ > & \operatorname{Exp}\left[\frac{\log 3}{4} l \log\left(1 + \frac{l}{2n-l+1}\right)\right] > \operatorname{Exp}\left[\left(\frac{\log 3}{4}\right)^2 \frac{l^2}{n}\right], \\ & l < \frac{4}{\log 3} (n \log A(n))^{\frac{1}{2}}, \end{aligned}$$

which establishes the result.

NOTE I. For the Tchebysheff-polynomial $T_n(x)$, where $T_n(\cos \vartheta) = \frac{\cos n\vartheta}{2^{n-1}} = \cos^n \vartheta + \cdots$, we have in [-1, +1] evidently $|T_n(x)| \leq \frac{1}{2^{n-1}}$, i.e. $T_n(x)$ approximates the function $y \equiv 0$ in Tchebysheff's sense, the error being less then $\frac{2}{2^n}$. By the above argument it can be seen that the function $y \equiv 0$ is to be approximated not essentially worse, in Bessel's sense, by a polynomial of the form $x^n + \cdots$, even when the polynomial has somewhere in [-1, +1] a root the multiplicity of which is less than $[\sqrt{n}]$. We are of the opinion that this very probably holds also for the Tchebysheff approximation; i.e. there exists a polynomial of degree $n f(x) = x^n + \cdots$, which has somewhere in [-1, +1] a root of the multiplicity $[\sqrt{n}]$, and yet in [-1, +1]

$$|2^n f(x)| < B,$$

where B is independent of n. By this it is clear that in general, the above theorem is not to be improved.

NOTE II. Let $\omega_n(x) = x^n + \cdots$ be the polynomial of degree *n* minimizing for polynomials of degree *n* of the form $f(x) = x^n + \cdots$ the integral

(17)
$$I_k(f) \equiv \int_{-1}^1 |f(x)|^k p(x) \, dx,$$

where k is a fixed positive number, p(x) is L-integrable, and in $[-1, +1]p(x) \ge m(> 0)$. According to a theorem of Fejér all roots of $\omega_n(x)$ are in [-1, +1]. Denote the absolute maximum of $|\omega_n(x)|$ by M; if this maximum is taken at $x = x_0$ and one of the intervals $\left[x_0 - \frac{1}{2n^2}, x_0\right], \left[x_0, x_0 + \frac{1}{2n^2}\right]$, suppose the latter, lies in [-1, +1], then

$$\int_{-1}^{1} |\omega_n(x)|^k p(x) \, dx > m \int_{x_0}^{x_0 + \frac{1}{2}n^{-2}} |\omega_n(x)|^k \, dx.$$

But by Markoff's theorem $|\omega_n(x)| > \frac{M}{2} \ln \left[x_0, x_0 + \frac{1}{2n^2} \right]$, i.e.

(18)
$$\int_{-1}^{1} |\omega_n(x)|^k p(x) \, dx > m \left(\frac{M}{2}\right)^k \frac{1}{2n^2}.$$

On the other hand, if $f(x) = T_n(\cos \vartheta) = \frac{\cos n\vartheta}{2^{n-1}}$, we obtain by the minimum-property of $\omega_n(x)$

(19)
$$\int_{-1}^{1} |\omega_n(x)|^k p(x) \, dx < \frac{1}{2^{k(n-1)}} \int_{-1}^{1} p(x) \, dx,$$

i.e. by (18) and (19), for [-1, +1] we have

$$|\omega_n(x)| \leq M < \frac{2^{2+k-1}}{m^{k-1}} \left(\int_{-1}^1 p(t) dt \right)^{k-1} \frac{n^{2k-1}}{2^n}.$$

Thus by the theorem mentioned above we obtain for the roots of polynomials minimizing the expressions in (17) that if the roots on the n^{th} polynomials are $x_1^{(n)}, x_2^{(n)}, \dots, x_n^{(n)}$, and $x_r^{(n)} = \cos \theta_r^{(n)}, 0 \leq \vartheta_r^{(n)} \leq \pi$, then for any fixed sub-interval $[\alpha, \beta]$

$$\left|\sum_{\substack{p \\ \alpha \leq \varphi_{n}^{(n)} \leq \beta}} 1 - \frac{\beta - \alpha}{\pi} n\right| < c(p, k) (n \log n)^{\frac{1}{2}}$$

i.e., roughly speaking, the distribution of the roots of the minimizing polynomials is uniformly dense. Analogous theorems are to be deduced for the polynomials solving extremum problems of the Tchebysheff-type.

Institute for Advanced Study, Princeton, N. J. and Budapest VI., Hungary.