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Weyl’ calls such a sequence uniformly-dense in [0, 2~1, if for every subinterval 
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Weyl proved that the sequence !I& is uniformly dense in [0, 2~1 if and only if 
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for every integer k. 
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1 R. Weyl: iiber die Gleichwrtei1un.g van Zahlen mod Eins, Math. Ann., 1916, Bd. 77, 
pp. 313-352. 
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for all a. The sequence is called uniformly dense on the unit, circle, if for any 
arc of the length 2 

(4) ld c l=&, 
n-02 n v 

@<Z 

holds. It is satisfied if and only if the sequence of numbers 
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is, in the sense of (2), uniformly dense in [0, 2a]. 
Let a closed Jordan-curve 1 of the complex r-plane be given. The sequence of 

points 
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lying on 1 is called uniformly dense if, mapping the exterior of I schlicht-con- 
formally and the periphery continuously on the closed exterior of the unit 
circle of the z-plane, we obtain on the circumference of the unit, circle a sequence 
of points 

(1) 
21 

. 

(5) 

I -1 

p (n) ,zz (n) , ..‘2% 
. . . 0 . . . . 

uniformly dense in the sense of (4).2 
We have to explain the case, when 1 degenerates into an open arc on the 

f-plane. In this case, in the same say as in (5), we obtain two zin) belonging to 
one my’“‘. Let I be e.g. the interval [-1, +l]; in this case the mapping function 

being{=; z+; 
( > 

, the connection between the [i”’ and z,!~), i.e. between 

r!“’ and (pin), respectively, is 
p = $(ew + e-++‘) = cos $p 

v = 1,2, a’* n, n = 1,2, a*., 0 i cp!“’ < 2X. 

* The uniform-dense distribution of points lying on p, but with potential theoretic 
characterization, occurs at Crst in the investigations of Hilbert; see D. Hilbert: Uber die 
Entwickelung einer beliebigen analytischen Function einer VariabeZn . . * , Nachrichten von 
der Kijniglichen Gesellschaft Giittingen, 1897, pp. 63-70. The above formalization, which 
is equivalent to Hilbert’s, is due to L. FejBr, see L. FejBr: Interpolation und konforme 
Abbildung, Nachrichten van der Kiin. Ges. Giittingen, 1918, pp. 319-331 I 
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For fixed v and n, 05”’ has two values, which lie symmetrica,lly with respect to 
(O = T; so we call the sequence of points 

03) 

lying on (-1, +l], with 

(1) !?I . . . 
(7-l) r r?’ 1 ,I‘. 
. . 

. 
. m 

uniformly dense, if for t.he sequence of numbers 

defined by3 

(!n) = cos pi*), 0 s cp:“’ 5 ?r, v = 1, 2, - . . 12, n = 1, 2, . . . , 

holds, where [a, p] means an arbitrary subinterval of [0, T]. 
To this definition, appearing art.ificial at t,he first moment, we may give geo- 

met.ric sense in the following way: Let us draw upon [ - 1, + 11 a semicircle and 
project the point z!~) upon the circle and obtain Ai n). Then 9:“’ means clearly 
t.he angle between the posit’ive real axis and OA:“‘. So t.he above definition 
means that a sequence of points in [ - 1, + 11 is here called uniformly dense if, 
projected upon the unit circle, the projections are uniformly distributed. Accord- 
ing to this definition the most uniform distribution is the case cp!“’ = vr/(n + l), 
(v = 1, 2, . . . n, n = 1, 2, . . . ), attained when the sequence of points in 
[-1, fl] is [S”’ = 120s m/(n + 1) (v = 1,2, . . . , n, n = 1,2, . . . ). Let us 
observe that for t,his sequence 

where U,(S) are the Tchebysheff-polynomials of second kind; U, (cos Zp) differs 
only in a factor from sin (n + l)O/sin 0, which is independent of 29; these poly- 
nomials are well known by t>heir many important ext.remal propert#ies. This 
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2v - 1 
holds also in the important case 6pbn) = 2n r. In both cases exactly 

II 1 B - 01 n p y (n fixed), fall in any subinterval [a, 131 of [O, ?r]; the bracket 
7r 

P-a in the last expression means the largest integer contained in I_ n. 

According to Weyl’s criterion the uniformly dense distributioi of a sequence of 
points is assured by the asymptotic behaviour of certain sequences associated 
with it. Fekete4 gives another criterion of the uniform dense distribution; he 
forms with the sequence of points !J& the sequence of polynomials 

n 
wn(z> = J-J (2 - z!*)> 

v-1 

FIG. 1 

and shows t,hat !lX$ is uniformly distributed upon 1 when and only when at every 
fixed point zo of 1 

lim (1 WJZO) I)“” 5 M, 
n-c4 

where M is the so-called transfinite diameter5 of 1. If 2 is the interval [ - 1 + l] 
then M = +; if 2 is a circle, the radius of which is 1, then M = 1. Thus Fekete’s 
criterion requires instead of asymptotic equalities only inequalities. 

Let us now consider the special case when I is the interval [ - 1, + 11. In this 

case we stated that the ideal case is obtained when [‘+ n] numbers ‘pbn), 

{n fixed), fall in any subinterval [cr, /3] of [O, ?r]. The above mentioned theorems 
give no account of the measure of the deviation from this ideal case. In this 
direct.ion we prove the following 

4 We know this theorem only from an oral communicatioh. 
6 This notion was introduced by M. Fekete: tiber die Verteilung der Wurzeln bei ge.wissen 

algebra&hen Gleichungen, etc., Math. Zeit., 1923, pp. 228-249. 



166 PAUL ERDijS AND PAUL TURiiN 

THEOREM: Let the sequence of points 

= 
1 

PF’ . . . . . . {in), $), . . . . . . . . 
with 

be given. Let us construct the matrix 

91' G 

with 

r!“’ = cos cpy, 0 6 cpy s 7r, Y = 1,2, -*. 11, n = 1,2, ** 

Iffor the poZynomiuZsw,(~) = nYn=l ({ - S-in’) the inequdity 

(7) l4r> I 5 q , -1 5 r 5 +l,n = 1,2, .a., 

holds, thenjor every subinterval [a, fi] of [Q, T] we have 

Our proof diiers thoroughly from Ohat of Fekete and besides it is elementary. 
A(n) in (7) denotes any function of n tending monotonically to infinity and for 
which, following Tchebysheff, A(n) 2 2. 

The proof requires a theorem of M. Riesz,’ the proof of which is so short that 
for sake of completeness we may reproduce it as a 

LEMMA. Let the trigonometric polynomial f(q) of order n take its absolute 
maximum in [O, 27r] at cp = cpO ; then the distance of the next root from this (a0 is at 
least a/2n to the right or to the left. Thus a jortiori: if j(p) takes its absolute maxi- 
mum between two real roots, then the distance between these roots is 2 r/n. 

PROOF. Suppose that the theorem is -false. Without any loss of generality 
we may assume ~0 = 0, there is a maximum at CP = q. and t.he value of this 
maximum is 1. Suppose, that the next root, lies to the right. Then for (o = 0 

6 M. Riesa: Eine trigonometrische Interpolatiu7Ls-forl~ael etc., Jahresbericht der deutschen 
Rlathematikerver, 1915, Bd. 23, pp. 354-368. 
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the curves y = f(q) and 1~ = cos 7t.p would have at least one point of intersection 
and according to’ t,he suppo&ion at least, three in [0, r/n]. There is evident,ly 
at least one point of intersect.ion at ea.& of t,he intervals [a,$27r/n], [2~/71,37r/n], 
*. . [(2n - 2)s/n, (2n - l)?r/n] too; thus the trigonometric polynomial f(q) - 
cos qo, of order n, would have in [0, 24 (272 + 1) roots, an obvious impossibility. 

Now we proceed to prove our theorem. It will be sufficient to prove the 
upper estimate, for if we have proved 

for every subinterval [OL, p] between 0 and r, then 

i.e. from (9a) and (9b) 

which implies the lower estimate. 
Let, us now consider the upper estimate. Let [cz, P] be any subinterval of 

[0, r], but now we regard it as fixed. Let Ic = [ 1 c2!, 
a ’ 

let’ I be any positive 

integer, and consider the following extremum problem of the Tchebysheff type: 
determine the minimum of the absolute maxima of the polynomials f(l) = 
p” f up + * . * + a, taken in [-1, +l] with the restriction, that f(l) has in 
the interval [cos /3, cos CY] = [a, b] , k + 21 roots, (counted by their multiplicity), 
where as a matter of fact k + 21 5 n. By a well known argument. the existence 
of this polynomial is assured. We shall prove that the extremum polynomial 
fi(r) takes its absolute maximum value with respect to [ - 1, +l] in each of its 
root-intervals [CS;:, {!“‘I which is in the interior of [a, b]. For let the absolut,e 
value of the maximum of fi({) in [ - 1, +l] be M and, in [{!$, ljn)], j fi(S) ( S 
M - 7, with 7 > 0. Then according to a fundamental theorem, for the poly- 
nomial 
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(where E > O), we have in [Sizi - 9, b?” + 21 If:(l) j I ill - &I, if E suffici- 
ently small. On t,he other hand in the ext,erior of [{!T?- c*, c?’ -I- ~$1~ since 

= fl(*) 
{ 
1 _ 4!$) - !a) 2 

(r - s-?%t - rm - Q- - r& - r2, > ’ 
we have, for E < rl”’ - r!+“l 

This is less than 1M for sufficiently small c, which contradicts the fact that 
fi({) is an extremum polynomial. Thus ji(cos 8) is a polynomial of order n the 
k + 21 roots of which in [CY, p] determine intervals such that in each of these 
intervals f(cos 8) Oakes its absolute maximum. 

Now we apply the Oheorem of M. Riesz formulated in the Lemma. According 

to thisf(cos 0) cannot have in the interior of [a, /3] more than [ 1 tz2, =k 7r 
roots i.e. 21 roots must be located at the borders and consequently Oh&r mul- 
tiplicity must, be I at least at one of the borders. 

By the premise, by the definition of fi([), and by the above, we obtain that 
if wn(C) has k $ 21 roots in [a, b], then 

where $I({) = {” + blln+’ + . . . + b, denotes the polynomial of degree n the 
absolute maximum of which is a minimum for polynomials of degree n having 
somewhere in [ - 1, +l] one root with multiplicity b. As 

we have, evidently, (by (lo)), 

where t+C.&) = l” + . . . runs over the polynomials of order n having somewhere 
in [ - 1, + l] a root of the multiplicity I. Let In(co) denote the minimum value of 

s 
l I1c/3W I2 -l (1 _ r2)g a-, if #3(C) = r” + . . . runs over the polynomials of degree n having 

at ct fixed lo in [ - 1, +I] a root of multiplicity 1. Then we have 
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Let us now consider In({o). Every $&) can be written in t.he form ({ - lo)’ 
$4({), where +&) = I”-” + . . . . Thus 

I&d = min s 
l I v54k) I2 I t - lo l2L #, 

$*(~)=p-q-.*’ 1 (1 - r2>+ 

, which transforms [- 1, +I] into the upper part of the unit 

circle of the z-plane. Then-for z = eia- 

as 1 x 1 = 1, we have evidently for co = cos a0 

I&J = &Tl $6( )=!$ll+... 12’ 1 #b(Z) I2 I 2 - ciao IZE 12 - e+o ]ZE dp E 
1 = __ min 

22n+1 s 
o2r I h&> I2 4% 

where the last minimum is to be taken amongst the polynomials $6(z) = z2n + 
. . . of degree 2n having at z = eioro and z = Ciao roots of multiplicity 1. Thus 

where the minimum relates to the polynomials of degree 2n $7(z) = z2n + . . . 
having an &fold root only at z = ciao, But in this case, since #r(z) = 
(2 - eirro) ‘&&z), we have 

where &&z) runs over the polynomials of degree (2n - Z) beginning with z2n* ‘, 
Finally by replacing (c by cuo + (o + a we obtain 

(12) 

the minimum being taken for all polynomials &(9(z) = zfLn-’ + . . . of degree 
(2n - I). 

If p(p) defines in [0, 27r] a non negative and L-integrable function then, after 
Szegii we may define a sequence of polynomials C&(Z), &(z), . . . such that 

03d c#lm(z> = P + * 0 * m = 1,2, . . . 

Wb) J ,2,=1 cp,(X>WP(~) + = O v = O,l, . . . . (m - 1); 
m = 1,2, . . . . 
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In this c&se (b,,,(z) minimizes, for polynomials U(z) of degree m of the form 

U(z) = 2”’ + . . . , the integral J 
, , 1 1 U(z) /“p(cp) C&X For any ot,her such poly- 

nomial may be reduced the form i:(z) -I- *m-1(z), where a,.-l(z) is a polynomial 
of degree (m - 1). Then by (13b) 

and equality holds only for a,-&) = 0. The expression on the right side of (12) 
takes its minimum value for the (2n - l)th polynomial orthogonal to the weight- 
function p(p) = 1 1 + x j2’. According to a theorem of Szegij these polynomials 
may be expressed in terms of Jacobi polynomials but we prefer to present them 
in the form of an explicit integral interesting in itself. For m = 2n - 1 we write 

(14) dzn-dz) = s: (z - t)‘-‘(1 + t)‘t2”-‘dt = 

This expression is a polynomial; we prove it by showing that R&- 1) = 
F;,+(- 1) = . * . = Fg$$l’ (- 1) = 0. The first of these equations is an imme- 
diate consequence of (14). Since for 1 S Y I 2 - 1 we have by (14) 

Fg+*(Z) = (1 - 1)(1 - 2) * . . (I - Y) s 
- ,)‘-‘“(1 + t)‘t2”“dt, 

it is evident that the assertion holds for 1 r v 5 1 - 1. On the other hand 

F$J+,:l(z) = (I - l)! (1 + Z)zZ2n-r, 

i.e. evidently F$$,:l(-1) = . . . = F:f$i’ (-1) = 0. Hence the expression 
in (14) is a polynomial. 

We now prove that the coeffiicient of Zig-’ in (14) equals 1. The coefficient in 
question is 

I 

z 2n -l-Z lim ( > s 
(z - t)l=-‘(1 + t)Q2’“-‘CB I 

1 I-+ca Z2n+E 

’ (z - t)‘-‘tzndt 
I 

ZZni-2 9 
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which by the substitution t = zw can be transformed into 

l(2nlf 1) hil fp,, (1 - W)1-1W2ndw = 1(2n: “) I- (1 - W)1--1W2ndw = 1. 

And now we have to verify the relation of orthogonality. Let 

I , , 1 ~s&)W 11 + z 12’ dp = A. u=O,l,--* (2n - I - 1). 
z= 

Since, for[zl = 1, 

1 1 + 2 122 = 0 ; z)pz, 1 2 = -, 
z 

we have by (14) 

Hence if in Fz,+.&) the coefficient of a’, z’+l, b . . , z2n-1 equals 0, (13b) is verified. 
But according to the definition of Fz&z) 

(15) F2n+dz) = f: (z - $‘(l + t)Et2n-E dt + J,’ (2 - t)E-‘(l -l- t)Et2n--Idt. 

Here the first integral is a polynomial of z of degree (1 - 1) ; thus it has no 
influence upon our assertion. The second one we transform by the substitution 
t = zw into 

2 2n o1 (1 s - w)l-‘(1 + 2w)l wzn--l dw. 

Thus the second term is a polynomial the lowest term of which is 2n, which 
establishes the orthogonality. 

The minimum value is given by 

&& (z)2n-z 1 1 + 2 jzz drp = 

X (the coefficient of zzn in Fz,&z)), 

which by the form of Fz,,+&z) in (15) equals 
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By this and (12) 

2n + 1 

~?A-ci) > & ( > 1 

2n f 
0 1 

i.e., by (ll), 

06) 
Ah) ->f 

Since 2+ 
iv 

s 2 and log (1 + z) 2 ‘F cc, (if 0 s CC $ 2), we have, (by (IS)), 

A(n) > Exp 
[ 

kg1 2 ‘1 
v=2n-2+-l v 

> Exp[h89log(I +&&)] > Exp[(y>‘;], 

2 < I&3 (,n log A(n))+, 

which establishes the result. 

NOTE 1. For the Tchebysheff-polynomial T,(z), where Z’,(cos S) = g = 

cosn 6 + * - . , we have in [ - 1, + l] evidently 1 T,(z) 1 4 2+1, i.e. Tn(z) approxi- 

mates the function 2/ = 0 in Tchebysheff’s sense, the error being less then 2 
2” * 

By the above argument it can be seen that the function y = 0 is to be approxi- 
mated not essentially worse, in Bessel’s sense, by a polynomial of the form 
3.T + 3.. , even when the polynomial has somewhere in [ - 1, +l] a root t,he 
multiplicity of which is less than [t/n]. We are of the opinion that this very 
probably holds also for the Tchebysheff approximation; i.e. there exists a poly- 
nomial of degree nf(x) = xn + . . . , which has somewhere in [ - 1, + l] a root 
of the multiplicity [dn], and yet in [ - 1, +l] 

where B is independent of n. By this it is clear that in general, the above 
theorem is not to be improved. 
NOTE II. Let w&c) = 2- + . . . be the polynomial of degree n minimizing for 
polynomials of degree n of the form f(z) = 2% + . . . the integral 

(17) 
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where k is a fixed positive number, p(s) is L-integrable, and in [ - 1, +l]p(z) 2 
m(> 0). According to a theorem of Fej6r all roots of w,(z) are in [-I, fl]. 
Denote the absolute maximum of 1 w,(z) 1 by M; if this maximum is taken at 

CC = q, and one of t,he intervals 
[ 

1 
xo - - , Q 

2n2 ll- , xo , zo + ?- 1 2n2 ’ suppose the 

latter, lies in [-1, t-l], then 

s: 1 wn.(x) Ikp(x) dx > m~:“*n-’ 1 w,(x) Jkdx. 

But by Markoff’s theorem j w,(s) j > $ in ti , xo -I- 2i2 1 , i.e. 

On the other hand, if&) = T,(cos 8) = ‘g, we obtain by the minimum-prop- 

erty of tin(s) 

(19) 

i.e. by (18) and (19), for [-1, +l] we have 

I cd*(x) 1 I J!f < 

Thus by the theorem mentioned above we obtain for the roots of polynomials 
minimizing the expressions in (17) that if the roots on the nfh polynomials are 

(4 (4 
51 ,%a * * * , CC~), and zJn) = cos 0!“‘, 0 S 0:“’ =( *, then for any tied sub- 
interval [LY, /3] 

/ c < c(p, U(n log n>f 
.&)l$ 

1 - fl+ ,n 
/ 

i.e., roughly speaking, the distribution of the roots of the minimizing poly- 
nomials is uniformly dense. Analogous t’heorems are to be deduced for the 
polynomials solving extremum problems of the Tchebysheff-type. 
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