ON THE UNIFORMLY-DENSE DISTRIBUTION OF CERTAIN SEQUENCES OF POINTS

By Paul Erdös and Paul Turán
(Received December 15, 1938)

Let
(1)

$$
\mathfrak{M}_{1} \equiv\left\{\begin{array}{lll}
\varphi_{1}^{(1)} & & \\
\varphi_{1}^{(2)}, & \varphi_{2}^{(2)} & \\
\vdots & & \\
\varphi_{1}^{(n)}, & \cdots & \varphi_{n}^{(n)} \\
\vdots & & \ddots
\end{array}\right\}
$$

be a sequence of numbers, where for all n

$$
0 \leqq \varphi_{1}^{(n)}<\varphi_{2}^{(n)}<\cdots<\varphi_{n}^{(n)} \leqq \pi
$$

Weyl ${ }^{1}$ calls such a sequence uniformly-dense in $[0,2 \pi]$, if for every subinterval $[\alpha, \beta]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{v \\ \alpha \leqq \varphi_{n}^{(n)} \leq \beta}} 1=\frac{\beta-\alpha}{\pi} . \tag{2}
\end{equation*}
$$

Weyl proved that the sequence \mathfrak{M}_{1} is uniformly dense in $[0,2 \pi]$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{v=1}^{n} e^{k i \varphi_{e}^{(n)}}=0 \tag{3}
\end{equation*}
$$

for every integer k.
Suppose we are given on the unit circle of the complex z-plane a sequence of points

$$
\mathfrak{M}_{2} \equiv\left\{\begin{array}{lll}
z_{1}^{(1)} & & \\
z_{1}^{(2)}, z_{2}^{(2)} & & \\
\vdots & & \\
z_{1}^{(n)}, z_{2}^{(n)}, & \cdots & z_{n}^{(n)} \\
\vdots & \vdots & \\
\vdots & \ddots
\end{array}\right\} \equiv\left\{\begin{array}{l}
e^{i \varphi_{1}^{(1)}} \\
e^{i \varphi_{1}^{(2)}}, e^{i \varphi_{2}^{(2)}} \\
\vdots \\
e^{i \varphi \varphi_{1}^{(n)}}, \ldots \\
\vdots \\
\\
\\
\\
\end{array}\right.
$$

with

$$
0 \leqq \varphi_{1}^{(n)}<\varphi_{2}^{(n)}<\cdots<\varphi_{n}^{(n)} \leqq 2 \pi
$$

[^0]for all n. The sequence is called uniformly dense on the unit circle, if for any arc of the length l
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{v \\ z \frac{(n)}{n}<l}} 1=\frac{l}{2 \pi} \tag{4}
\end{equation*}
$$

\]

holds. It is satisfied if and only if the sequence of numbers

$$
\left\{\begin{array}{ccc}
\varphi_{1}^{(1)} & & \\
\vdots & & \\
\varphi_{1}^{(n)} & \cdots & \varphi_{n}^{(n)} \\
\vdots & & \ddots
\end{array}\right\}
$$

is, in the sense of (2), uniformly dense in $[0,2 \pi]$.
Let a closed Jordan-curve l of the complex ζ-plane be given. The sequence of points

$$
\mathfrak{M}_{3} \equiv\left\{\begin{array}{ccc}
\zeta_{1}^{(1)} & & \\
\vdots & & \\
\zeta_{1}^{(n)}, \zeta_{2}^{(n)}, & \cdots & \zeta_{n}^{(n)} \\
\vdots & \vdots & \\
\vdots & & \ddots
\end{array}\right\}
$$

lying on l is called uniformly dense if, mapping the exterior of l schlicht-conformally and the periphery continuously on the closed exterior of the unit circle of the z-plane, we obtain on the circumference of the unit circle a sequence of points

$$
\left\{\begin{array}{cccc}
z_{1}^{(1)} & & \tag{5}\\
\vdots & & & \\
z_{1}^{(n)}, & z_{2}^{(n)}, & \cdots & z_{n}^{(n)} \\
\vdots & \vdots & & \ddots
\end{array}\right\}
$$

uniformly dense in the sense of (4). ${ }^{2}$
We have to explain the case, when l degenerates into an open arc on the ζ-plane. In this case, in the same say as in (5), we obtain two $z_{\nu}^{(n)}$ belonging to one $\zeta_{\nu}^{(n)}$. Let l be e.g. the interval $[-1,+1]$; in this case the mapping function being $\zeta=\frac{1}{2}\left(z+\frac{1}{z}\right)$, the connection between the $\zeta_{\nu}^{(n)}$ and $z_{\nu}^{(n)}$, i.e. between $\zeta_{\nu}^{(n)}$ and $\varphi_{\nu}^{(n)}$, respectively, is

$$
\begin{gathered}
\zeta_{\nu}^{(n)}=\frac{1}{2}\left(e^{i \varphi_{\nu}^{(n)}}+e^{-i \varphi_{\nu}^{(n)}}\right)=\cos \varphi_{\nu}^{(n)} \\
\nu=1,2, \cdots n, \quad n=1,2, \cdots, \quad 0 \leqq \varphi_{\nu}^{(n)}<2 \pi .
\end{gathered}
$$

[^1]For fixed ν and $n, \varphi_{\nu}^{(n)}$ has two values, which lie symmetrically with respect to $\varphi=\pi$; so we call the sequence of points

$$
\left\{\begin{array}{ccc}
\zeta_{1}^{(1)} & & \tag{6}\\
\vdots & & \\
\zeta_{1}^{(n)}, & \cdots & \zeta_{n}^{(n)} \\
\vdots & & \ddots
\end{array}\right\}
$$

lying on $(-1,+1]$, with

$$
1 \geqq \zeta_{1}^{(n)}>\zeta_{2}^{(n)}>\cdots>\zeta_{n}^{(n)} \geqq-1, \quad n=1,2, \cdots
$$

uniformly dense, if for the sequence of numbers

$$
\left\{\begin{array}{llll}
\varphi_{1}^{(1)} & & \\
\vdots \\
& & \\
\varphi_{1}^{(n)}, & \varphi_{2}^{(n)}, & \cdots & \varphi_{n}^{(n)} \\
\vdots & \vdots & & \ddots
\end{array}\right\}
$$

defined by ${ }^{3}$

$$
\begin{gathered}
\zeta_{\nu}^{(n)}=\cos \varphi_{\nu}^{(n)}, 0 \leqq \varphi_{\nu}^{(n)} \leqq \pi, \nu=1,2, \ldots n, n=1,2, \cdots, \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\substack{(n) \leqq \beta}} 1=\frac{\beta-\alpha}{\pi},
\end{gathered}
$$

holds, where $[\alpha, \beta]$ means an arbitrary subinterval of $[0, \pi]$.
To this definition, appearing artificial at the first moment, we may give geometric sense in the following way: Let us draw upon $[-1,+1]$ a semicircle and project the point $x_{\nu}^{(n)}$ upon the circle and obtain $\hat{A}_{\nu}^{(n)}$. Then $\varphi_{\nu}^{(n)}$ means clearly the angle between the positive real axis and $0 A_{\nu}^{(n)}$. So the above definition means that a sequence of points in $[-1,+1]$ is here called uniformly dense if, projected upon the unit circle, the projections are uniformly distributed. According to this definition the most uniform distribution is the case $\varphi_{\nu}^{(n)}=\nu \pi /(n+1)$, ($\nu=1,2, \cdots n, n=1,2, \cdots$), attained when the sequence of points in $[-1,+1]$ is $\zeta_{\nu}^{(n)}=\cos \nu \pi /(n+1)(\nu=1,2, \cdots, n, n=1,2, \cdots)$. Let us observe that for this sequence

$$
\omega_{n}(\zeta)=\prod_{\nu=1}^{n}\left(\zeta-\zeta_{\nu}^{(n)}\right)=U_{n}(\zeta)
$$

where $U_{n}(\zeta)$ are the Tchebysheff-polynomials of second kind; $U_{n}(\cos \vartheta)$ differs only in a factor from $\sin (n+1) \theta / \sin \theta$, which is independent of ϑ; these polynomials are well known by their many important extremal properties. This

[^2]holds also in the important case $\varphi_{\nu}^{(n)}=\frac{2 \nu-1}{2 n} \pi$. In both cases exactly $\left[\frac{\beta-\alpha}{\pi} n\right] \varphi_{\nu}^{(n)}(n$ fixed), fall in any subinterval $[\alpha, \beta]$ of $[0, \pi]$; the bracket in the last expression means the largest integer contained in $\frac{\beta-\alpha}{\pi} n$.

According to Weyl's criterion the uniformly dense distribution of a sequence of points is assured by the asymptotic behaviour of certain sequences associated with it. Fekete ${ }^{4}$ gives another criterion of the uniform dense distribution; he forms with the sequence of points \mathfrak{M}_{3} the sequence of polynomials

$$
\omega_{n}(z)=\prod_{\nu=1}^{n}\left(z-z_{\nu}^{(n)}\right) \quad(n=1,2, \cdots)
$$

Fig. 1
and shows that \mathfrak{M}_{3} is uniformly distributed upon l when and only when at every fixed point z_{0} of l

$$
\varlimsup_{n \rightarrow \infty}\left(\left|\omega_{n}\left(z_{0}\right)\right|\right)^{1 / n} \leqq M
$$

where M is the so-called transfinite diameter ${ }^{5}$ of l. If l is the interval $[-1+1]$ then $M=\frac{1}{2}$; if l is a circle, the radius of which is 1 , then $M=1$. Thus Fekete's criterion requires instead of asymptotic equalities only inequalities.

Let us now consider the special case when l is the interval $[-1,+1]$. In this case we stated that the ideal case is obtained when $\left[\frac{\beta-\alpha}{\pi} n\right]$ numbers $\varphi_{v}^{(n)}$, (n fixed), fall in any subinterval $[\alpha, \beta]$ of $[0, \pi]$. The above mentioned theorems give no account of the measure of the deviation from this ideal case. In this direction we prove the following

[^3]Theorem: Let the sequence of points

$$
\mathfrak{M} \equiv\left\{\begin{array}{ccc}
\zeta_{1}^{(1)} & & \\
\vdots & & \\
\zeta_{1}^{(n)}, & \zeta_{2}^{(n)}, & \cdots \\
\vdots & \vdots & \\
\vdots & & \ddots
\end{array}\right\}
$$

with

$$
1 \geqq \zeta_{1}^{(n)}>\zeta_{2}^{(n)}>\cdots>\zeta_{n}^{(n)} \geqq-1
$$

be given. Let us construct the matrix

$$
\mathfrak{M}^{\prime} \equiv\left\{\begin{array}{ccc}
\varphi_{1}^{(1)} & & \\
\vdots \cdot & & \\
\varphi_{1}^{(n)}, & \varphi_{2}^{(n)}, \ldots & \varphi_{n}^{(n)} \\
\vdots & \vdots & \\
\vdots & \ddots
\end{array}\right\}
$$

with

$$
\zeta_{\nu}^{(n)}=\cos \varphi_{\nu}^{(n)}, \quad 0 \leqq \varphi_{\nu}^{(n)} \leqq \pi, \quad \nu=1,2, \cdots n, \quad n=1,2, \cdots
$$

If for the polynomials $\omega_{n}(\zeta)=\prod_{v=1}^{n}\left(\zeta-\zeta_{\nu}^{(n)}\right)$ the inequality

$$
\begin{equation*}
\left|\omega_{n}(\zeta)\right| \leqq \frac{A(n)}{2^{n}}, \quad-1 \leqq \zeta \leqq+1, n=1,2, \ldots \tag{7}
\end{equation*}
$$

holds, then for every subinterval $[\alpha, \beta]$ of $[0, \pi]$ we have

$$
\begin{equation*}
\left|\sum_{\substack{\nu \\ \alpha \leqq \varphi_{\sum}^{(n)} \leqq \beta}} 1-\frac{\beta-\alpha}{\pi} n\right|<\frac{8}{\log 3}(n \log A(n))^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

Our proof differs thoroughly from that of Fekete and besides it is elementary. $A(n)$ in (7) denotes any function of n tending monotonically to infinity and for which, following Tchebysheff, $A(n) \geqq 2$.

The proof requires a theorem of M. Riesz, ${ }^{6}$ the proof of which is so short that for sake of completeness we may reproduce it as a

Lemma. Let the trigonometric polynomial $f(\varphi)$ of order n take its absolute maximum in $[0,2 \pi]$ at $\varphi=\varphi_{0}$; then the distance of the next root from this φ_{0} is at least $\pi / 2 n$ to the right or to the left. Thus a fortiori: if $f(\varphi)$ takes its absolute maximum between two real roots, then the distance between these roots is $\geqq \pi / n$.

Proof. Suppose that the theorem is false. Without any loss of generality we may assume $\varphi_{0}=0$, there is a maximum at $\varphi=\varphi_{0}$ and the value of this maximum is 1. Suppose, that the next root lies to the right. Then for $\varphi=0$

[^4]the curves $y=f(\varphi)$ and $y=\cos n \varphi$ would have at least one point of intersection and according to the supposition at least three in $[0, \pi / n]$. There is evidently at least one point of intersection at each of the intervals $[\pi / n, 2 \pi / n],[2 \pi / n, 3 \pi / n]$, $\cdots[(2 n-2) \pi / n,(2 n-1) \pi / n]$ too; thus the trigonometric polynomial $f(\varphi)-$ $\cos n \varphi$, of order n, would have in $[0,2 \pi](2 n+1)$ roots, an obvious impossibility.

Now we proceed to prove our theorem. It will be sufficient to prove the upper estimate, for if we have proved

$$
\sum_{\substack{\nu \\ \alpha \leqq \varphi_{\eta}^{(n)} \leq \beta}} 1-\frac{\beta-\alpha}{\pi} n<\frac{4}{\log 3}(n \log A(n))^{\frac{1}{2}}
$$

for every subinterval $[\alpha, \beta]$ between 0 and π, then

$$
\begin{gather*}
\sum_{\substack{\nu \\
0 \leqq \varphi_{n}^{(n) \leqq \alpha}}} 1-\frac{\alpha}{\pi} n<\frac{4}{\log 3}(n \log A(n))^{\frac{1}{2}} \tag{9a}\\
\sum_{\substack{\nu \\
\beta \leq \varphi_{\nu}^{(n)} \leqq \pi}} 1-\frac{\pi-\beta}{\pi} n<\frac{4}{\log 3}(n \log A(n))^{\frac{1}{2}} \tag{9b}
\end{gather*}
$$

i.e. from (9a) and (9b)

$$
\sum_{\substack{v \\ \alpha \leqq \varphi_{i}^{(n)} \leqq \beta}} 1=n-\sum_{\substack{v \\ 0 \leqq \varphi_{i}^{(n) \leqq \alpha}}} 1-\sum_{\substack{v \\ \beta \leqq \varphi_{\nu}^{(n)} \leqq \pi}} 1>\frac{\beta-\alpha}{\pi}-\frac{8}{\log 3}(n \log A(n))^{\frac{3}{2}}
$$

which implies the lower estimate.
Let us now consider the upper estimate. Let $[\alpha, \beta]$ be any subinterval of $[0, \pi]$, but now we regard it as fixed. Let $k=\left[\frac{\beta-\alpha}{\pi} n\right]$, let l be any positive integer, and consider the following extremum problem of the Tchebysheff type: determine the minimum of the absolute maxima of the polynomials $f(\zeta)=$ $\zeta^{n}+a_{1} \zeta^{n-1}+\cdots+a_{n}$ taken in $[-1,+1]$ with the restriction, that $f(\zeta)$ has in the interval $[\cos \beta, \cos \alpha] \equiv[a, b], k+2 l$ roots, (counted by their multiplicity), where as a matter of fact $k+2 l \leqq n$. By a well known argument the existence of this polynomial is assured. We shall prove that the extremum polynomial $f_{1}(\zeta)$ takes its absolute maximum value with respect to $[-1,+1]$ in each of its root-intervals $\left[\zeta_{v+1}^{(n)}, \zeta_{\nu}^{(n)}\right]$ which is in the interior of $[a, b]$. For let the absolute value of the maximum of $f_{1}(\zeta)$ in $[-1,+1]$ be M and, in $\left[\zeta_{\nu+2}^{(n)}, \zeta_{\nu}^{(n)}\right],\left|f_{1}(\zeta)\right| \leqq$ $M-\eta$, with $\eta>0$. Then according to a fundamental theorem, for the polynomial

$$
f_{1}^{+}(\zeta) \equiv \frac{f_{1}(\zeta)}{\left(\zeta-\zeta_{\nu}^{(n)}\right)\left(\zeta-\zeta_{\nu+1}^{(n)}\right)}\left(\zeta-\zeta_{\nu}^{(n)}-\epsilon\right)\left(\zeta-\zeta_{\nu+1}^{(n)}+\epsilon\right)
$$

(where $\epsilon>0$), we have in $\left[\zeta_{\nu+1}^{(n)}-\epsilon^{\frac{1}{4}}, \zeta_{\nu}^{(n)}+\epsilon^{\frac{1}{3}}\right]\left|f_{1}^{+}(\zeta)\right| \leqq M-\frac{1}{2} \eta$, if ϵ sufficiently small. On the other hand in the exterior of $\left[\zeta_{v+1}^{(n)}-\epsilon^{\frac{1}{3}}, \zeta_{\nu}^{(n)}+\epsilon^{\frac{3}{3}}\right]$, since

$$
\begin{aligned}
& f_{1}^{+}(\zeta)=f_{1}(\zeta)\left(1-\frac{\epsilon}{\zeta-\zeta_{\nu}^{(n)}}\right)\left(1+\frac{\epsilon}{\zeta-\zeta_{\nu+1}^{(n)}}\right) \\
&=f_{1}(\zeta)\left\{1-\frac{\epsilon\left(\zeta_{\nu}^{(n)}-\zeta_{\nu+1}^{(n)}\right)}{\left(\zeta-\zeta_{\nu}^{(n)}\right)\left(\zeta-\zeta_{\nu+1}^{(n)}\right)}-\frac{\epsilon^{2}}{\left(\zeta-\zeta_{\nu}^{(n)}\right)\left(\zeta-\zeta_{\nu+1}^{(n)}\right)}\right\}
\end{aligned}
$$

we have, for $\epsilon<\frac{\zeta_{\nu}^{(n)}-\zeta_{\nu+1}^{(n)}}{2}$,

$$
\left|f_{1}^{+}(\zeta)\right|<\left|f_{1}(\zeta)\right|\left|1-\frac{\epsilon}{2} \frac{\zeta_{\nu}^{(n)}-\zeta_{\nu+1}^{(n)}}{\left|\zeta-\zeta_{\nu}^{(n)}\right|\left|\zeta-\zeta_{\nu+1}^{(n)}\right|}\right|<M\left|1-\frac{\epsilon^{\frac{1}{2}}}{2}\left(\zeta_{\nu}^{(n)}-\zeta_{\nu+1}^{(n)}\right)\right| .
$$

This is less than M for sufficiently small ϵ, which contradicts the fact that $f_{1}(\zeta)$ is an extremum polynomial. Thus $f_{1}(\cos \vartheta)$ is a polynomial of order n the $k+2 l$ roots of which in $[\alpha, \beta]$ determine intervals such that in each of these intervals $f(\cos \vartheta)$ takes its absolute maximum.

Now we apply the theorem of M. Riesz formulated in the Lemma. According to this $f(\cos \vartheta)$ cannot have in the interior of $[\alpha, \beta]$ more than $\left[\frac{\beta-\alpha}{\pi} n\right]=k$ roots i.e. $2 l$ roots must be located at the borders and consequently their multiplicity must be l at least at one of the borders.

By the premise, by the definition of $f_{1}(\zeta)$, and by the above, we obtain that if $\omega_{n}(\zeta)$ has $k+2 l$ roots in $[a, b]$, then

$$
\begin{equation*}
\frac{A(n)}{2^{n}} \geqq \max _{-1 \leqq \zeta \leqq+1}\left|\omega_{n}(\zeta)\right| \geqq \max _{-1 \leqq \zeta \leqq+1}\left|f_{1}(\zeta)\right| \geqq \max _{-1 \leqq \zeta \leqq+1}\left|\psi_{1}(\zeta)\right|, \tag{10}
\end{equation*}
$$

where $\psi_{1}(\zeta)=\zeta^{n}+b_{1} \zeta^{n+1}+\cdots+b_{n}$ denotes the polynomial of degree n the absolute maximum of which is a minimum for polynomials of degree n having somewhere in $[-1,+1]$ one root with multiplicity l. As

$$
\max _{-1 \leqq \zeta \leqq+1}\left|\psi_{1}(\zeta)\right| \geqq\left(\frac{1}{\pi} \int_{-1}^{1} \frac{\left|\psi_{1}(\zeta)\right|^{2}}{\left(1-\zeta^{2}\right)^{\frac{1}{2}}} d \zeta\right)^{\frac{1}{2}}
$$

we have, evidently, (by (10)),

$$
\frac{A(n)}{2^{n}} \geqq \min _{\psi_{2}}\left(\frac{1}{\pi} \int_{-1}^{1} \frac{\left|\psi_{2}(\zeta)\right|^{2}}{\left(1-\zeta^{2}\right)^{\frac{1}{2}}} d \zeta\right)^{\frac{1}{2}}
$$

where $\psi_{2}(\zeta)=\zeta^{n}+\cdots$ runs over the polynomials of order n having somewhere in $[-1,+1]$ a root of the multiplicity l. Let $I_{n}\left(\zeta_{0}\right)$ denote the minimum value of $\int_{-1}^{1} \frac{\left|\psi_{3}(\zeta)\right|^{2}}{\left(1-\zeta^{2}\right)^{\frac{1}{2}}} d \zeta$, if $\psi_{3}(\zeta)=\zeta^{n}+\cdots$ runs over the polynomials of degree n having at a fixed ζ_{0} in $[-1,+1]$ a root of multiplicity l. Then we have

$$
\begin{equation*}
\frac{A(n)}{2^{n}} \geqq \min _{\substack{\psi_{3} \\-1 \leqq \zeta \leqq+1}}\left(\frac{1}{\pi} I_{n}\left(\zeta_{0}\right)\right)^{\frac{1}{2}} . \tag{11}
\end{equation*}
$$

Let us now consider $I_{n}\left(\zeta_{0}\right)$. Every $\psi_{3}(\zeta)$ can be written in the form $\left(\zeta-\zeta_{0}\right)^{l}$ $\psi_{4}(\zeta)$, where $\psi_{4}(\zeta)=\zeta^{n-l}+\cdots$. Thus

$$
I_{n}\left(\zeta_{0}\right)=\min _{\psi_{4}(\zeta)=\zeta^{n-l_{+}} \ldots} \int_{-1}^{1} \frac{\left|\psi_{4}(\zeta)\right|^{2}\left|\zeta-\zeta_{0}\right|^{2 t}}{\left(1-\zeta^{2}\right)^{\frac{1}{2}}} d \zeta
$$

Let $\zeta=\frac{1}{2}\left(z+\frac{1}{z}\right)$, which transforms $[-1,+1]$ into the upper part of the unit circle of the z-plane. Then-for $z=e^{i \varphi}-$

$$
\begin{aligned}
I_{n}\left(\zeta_{0}\right) & =\min _{\psi_{4}(\zeta)=\zeta^{n-l_{+}} \cdots} \frac{1}{2^{2 l}} \int_{0}^{\pi}\left|\psi_{4}\left(\frac{z+\frac{1}{z}}{2}\right)\right|^{2}\left|z+\frac{1}{z}-2 \zeta_{0}\right|^{2 l} d \varphi \\
& =\min _{\psi_{4}(\zeta)=\zeta^{n-l_{+}} \cdots} \frac{1}{2^{2 l+1}} \int_{0}^{2 \pi}\left|\psi_{4}\left(\frac{z+\frac{1}{z}}{2}\right)\right|^{2}\left|z+\frac{1}{z}-2 \zeta_{0}\right|^{2 l} d \varphi
\end{aligned}
$$

as $|z|=1$, we have evidently for $\zeta_{0}=\cos \alpha_{0}$

$$
\begin{aligned}
I_{n}\left(\zeta_{0}\right) & =\frac{1}{2^{2 n+1}} \min _{\psi_{5}(z)=z^{2 n-2 l_{+}} \ldots} \int_{0}^{2 \pi}\left|\psi_{5}(z)\right|^{2}\left|z-e^{i \alpha_{0}}\right|^{2 l}\left|z-e^{-i \alpha_{0}}\right|^{2 l} d \varphi \\
& =\frac{1}{2^{2 n+1}} \min \int_{0}^{2 \pi}\left|\psi_{6}(z)\right|^{2} d \varphi
\end{aligned}
$$

where the last minimum is to be taken amongst the polynomials $\psi_{6}(z)=z^{2 n}+$ \ldots of degree $2 n$ having at $z=e^{i \alpha_{0}}$ and $z=e^{-i \alpha_{0}}$ roots of multiplicity l. Thus

$$
I_{n}\left(\zeta_{0}\right)>\frac{1}{2^{2 n+1}} \min _{\psi_{7}} \int_{|z|=1}\left|\psi_{7}(z)\right|^{2} d \varphi,
$$

where the minimum relates to the polynomials of degree $2 n \psi_{7}(z)=z^{2 n}+\cdots$ having an l-fold root only at $z=e^{i \alpha_{0}}$. But in this case, since $\psi_{7}(z)=$ $\left(z-e^{i \alpha_{0}}\right)^{l} \psi_{8}(z)$, we have

$$
I_{n}\left(\zeta_{0}\right)>\frac{1}{2^{2 n+1}} \min _{\psi_{8}} \int_{|z|=1}\left|\psi_{8}(z)\right|^{2}\left|z-e^{i \alpha_{0}}\right|^{2 l} d \varphi
$$

where $\psi_{8}(z)$ runs over the polynomials of degree $(2 n-l)$ beginning with $z^{2 n-1}$. Finally by replacing φ by $\alpha_{0}+\varphi+\pi$ we obtain

$$
\begin{equation*}
I_{n}\left(\zeta_{0}\right)>\frac{1}{2^{2 n+1}} \min \int_{|z|=1}\left|\psi_{9}(z)\right|^{2}|1+z|^{2 l} d \varphi \tag{12}
\end{equation*}
$$

the minimum being taken for all polynomials $\psi_{9}(z)=z^{2 n-l}+\ldots$ of degree $(2 n-l)$.

If $p(\varphi)$ defines in $[0,2 \pi$] a non negative and L-integrable function then, after Szegö we may define a sequence of polynomials $\phi_{0}(z), \phi_{1}(z), \ldots$ such that

$$
\begin{equation*}
\phi_{m}(z)=z^{m}+\cdots \quad \quad m=1,2, \ldots \tag{13a}
\end{equation*}
$$

$$
\int_{|z|=1} \phi_{m}(z)(\bar{z})^{\nu} p(\varphi) d \varphi=0 \quad \begin{align*}
\nu & =0,1, \cdots,(m-1) ; \tag{13b}\\
m & =1,2, \cdots
\end{align*}
$$

In this case $\phi_{m}(z)$ minimizes, for polynomials $U(z)$ of degree m of the form $U(z)=z^{m}+\cdots$, the integral $\int_{|z|=1}|U(z)|^{2} p(\varphi) d \varphi$. For any other such polynomial may be reduced the form $\phi_{m}(z)+\pi_{m-1}(z)$, where $\pi_{m-1}(z)$ is a polynomial of degree $(m-1)$. Then by (13 b)

$$
\begin{aligned}
& \int_{|z|=1}\left|\phi_{m}(z)+\pi_{m-1}(z)\right|^{2} p(\varphi) d \varphi \\
& =\int_{|z|=1}\left|\phi_{m}(z)\right|^{2} p(\varphi) d \varphi+2 \Re \int_{|z|=1} \phi_{m}(z) \overline{\pi_{m-1}(z)} p(\varphi) d \varphi+\int_{|z|=1}\left|\pi_{m-1}(z)\right|^{2} p(\varphi) d \varphi \\
& =\int_{|z|=1}\left|\phi_{m}(z)\right|^{2} p(\varphi) d \varphi+\int_{|z|=1}\left|\pi_{m-1}(z)\right|^{2} p(\varphi) d \varphi \geqq \int_{|z|=1}\left|\phi_{m}(z)\right|^{2} p(\varphi) d \varphi,
\end{aligned}
$$

and equality holds only for $\pi_{m-1}(z) \equiv 0$. The expression on the right side of (12) takes its minimum value for the $(2 n-l)^{\text {th }}$ polynomial orthogonal to the weightfunction $p(\varphi)=|1+z|^{2 l}$. According to a theorem of Szegö these polynomials may be expressed in terms of Jacobi polynomials but we prefer to present them in the form of an explicit integral interesting in itself. For $m=2 n-l$ we write

$$
\begin{equation*}
\phi_{2 n-l}(z)=\frac{l\binom{2 n+l}{l}}{(1+z)^{2 l}} \int_{-1}^{z}(z-t)^{l-1}(1+t)^{l} t^{2 n-l} d t \equiv \frac{l\binom{2 n+l}{l}}{(1+z)^{2 l}} F_{2 n+l}(z) \tag{14}
\end{equation*}
$$

This expression is a polynomial; we prove it by showing that $F_{2 n+l}(-1)=$ $F_{2 n+l}^{\prime}(-1)=\cdots=F_{2 n+l}^{(2 l-1)}(-1)=0$. The first of these equations is an immediate consequence of (14). Since for $1 \leqq \nu \leqq l-1$ we have by (14)

$$
F_{2 n+l}^{(\nu)}(z)=(l-1)(l-2) \cdots(l-\nu) \int_{-1}^{z}(z-t)^{l-p-1}(1+t)^{l} t^{2 n-l} d t
$$

it is evident that the assertion holds for $1 \leqq \nu \leqq l-1$. On the other hand

$$
F_{2 n+l}^{(l)}(z)=(l-1)!(1+z)^{l} z^{2 n-l}
$$

i.e. evidently $F_{2 n+l}^{(l)}(-1)=\cdots=F_{2 n+l}^{(2 l-1)}(-1)=0$. Hence the expression in (14) is a polynomial.

We now prove that the coefficient of $z^{2 n-l}$ in (14) equals 1 . The coefficient in question is

$$
\begin{aligned}
l\binom{2 n+l}{l} \lim _{z \rightarrow \infty} \frac{\int_{-1}^{z}(z-t)^{l-1}(1+t)^{l} t^{2 n-l} d t}{z^{2 n+l}} & \\
& =l\binom{2 n+l}{l} \lim _{z \rightarrow \infty} \frac{\int_{-1}^{z}(z-t)^{l-1} t^{2 n} d t}{z^{2 n+l}}
\end{aligned}
$$

which by the substitution $t=z w$ can be transformed into
$l\binom{2 n+l}{l} \lim _{z \rightarrow \infty} \int_{-1 / z}^{\infty}(1-w)^{l-1} w^{2 n} d w=l\binom{2 n+l}{l} \int_{0}^{\infty}(1-w)^{l-1} w^{2 n} d w=1$.
And now we have to verify the relation of orthogonality. Let

$$
\int_{|z|=1} \phi_{2 n-l}(z)(\bar{z})^{\nu}|1+z|^{2 l} d \varphi \equiv A_{\nu} . \quad \nu=0,1, \ldots(2 n-l-1) .
$$

Since, for $|z|=1$,

$$
|1+z|^{2 l}=\frac{(1+z)^{2 l}}{z^{l}}, \quad \bar{z}=\frac{1}{z}
$$

we have by (14)

$$
A_{\nu}=l\binom{2 n+l}{l} \int_{|z|=1} \frac{F_{2 n+l}(z)}{z^{\nu+l}} d \varphi=\frac{l\binom{2 n+l}{l}}{i} \int_{|z|=1} \frac{F_{2 n+l}(z)}{z^{\nu+l+1}} d z
$$

Hence if in $F_{2 n+l}(z)$ the coefficient of $z^{l}, z^{l+1}, \ldots, z^{2 n-1}$ equals $0,(13 \mathrm{~b})$ is verified. But according to the definition of $F_{2 n+l}(z)$

$$
\begin{equation*}
F_{2 n+l}(z)=\int_{-1}^{0}(z-t)^{l-1}(1+t)^{l} t^{2 n-l} d t+\int_{0}^{z}(z-t)^{l-1}(1+t)^{l} t^{2 n-l} d t \tag{15}
\end{equation*}
$$

Here the first integral is a polynomial of z of degree $(l-1)$; thus it has no influence upon our assertion. The second one we transform by the substitution $t=z w$ into

$$
z^{2 n} \int_{0}^{1}(1-w)^{l-1}(1+2 w)^{l} w^{2 n-l} d w
$$

Thus the second term is a polynomial the lowest term of which is $2 n$, which establishes the orthogonality.

The minimum value is given by

$$
\begin{aligned}
& \int_{|z|=1}\left|\phi_{2 n-l}(z)\right|^{2}|1+z|^{2 l} d \varphi=\int_{|z|=1} \phi_{2 n-l}(z)\left\{(\bar{z})^{2 n-l}+\cdots\right\}|1+z|^{2 l} d \varphi \\
&=\int_{|z|=1} \phi_{2 n-l}(z)(\bar{z})^{2 n-l}|1+z|^{2 l} d \varphi=\frac{l\binom{2 n+l}{l}}{i} \int_{|z|=1} \frac{F_{2 n+l}(z)}{z^{2 n+1}} d z \\
&=2 \pi l\binom{2 n+l}{l} \times\left(\text { the coefficient of } z^{2 n} \text { in } F_{2 n+l}(z)\right)
\end{aligned}
$$

which by the form of $\mathrm{F}_{2 n+l}(z)$ in (15) equals

$$
2 \pi\binom{2 n+l}{l} \int_{0}^{1}(1-w)^{l-1} w^{2 n-l} d w=2 \pi \frac{\binom{2 n+l}{l}}{\binom{2 n}{l}}
$$

By this and (12)

$$
I_{n}\left(\zeta_{0}\right)>\frac{\pi}{2^{2 n}} \frac{\binom{2 n+l}{l}}{\binom{2 n}{l}}
$$

i.e., by (11),

$$
\begin{equation*}
\frac{A(n)}{2^{n}}>\frac{1}{2^{n}}\left(\frac{\binom{2 n+l}{l}}{\binom{2 n}{l}}\right)^{\frac{1}{2}}=\frac{1}{2^{n}}\left(\prod_{\nu=0}^{l-1}\left(1+\frac{l}{2 n-\nu}\right)\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

Since $\frac{l}{2 n-\nu} \leqq 2$ and $\log (1+x) \geqq \frac{\log 3}{2} x$, (if $0 \leqq x \leqq 2$), we have, (by (16)),

$$
\begin{gathered}
A(n)>\operatorname{Exp}\left[\frac{\log 3}{4} l \sum_{\nu=2 n-l+1}^{2 n} \frac{1}{\nu}\right] \\
>\operatorname{Exp}\left[\frac{\log 3}{4} l \log \left(1+\frac{l}{2 n-l+1}\right)\right]>\operatorname{Exp}\left[\left(\frac{\log 3}{4}\right)^{2} \frac{l^{2}}{n}\right] \\
l<\frac{4}{\log 3}(n \log A(n))^{\frac{1}{2}}
\end{gathered}
$$

which establishes the result.
Note I. For the Tchebysheff-polynomial $T_{n}(x)$, where $T_{n}(\cos \vartheta)=\frac{\cos n \vartheta}{2^{n-1}}=$ $\cos ^{n} \vartheta+\cdots$, we have in $[-1,+1]$ evidently $\left|T_{n}(x)\right| \leqq \frac{1}{2^{n-1}}$, i.e. $T_{n}(x)$ approximates the function $y \equiv 0$ in Tchebysheff's sense, the error being less then $\frac{2}{2^{n}}$. By the above argument it can be seen that the function $y \equiv 0$ is to be approximated not essentially worse, in Bessel's sense, by a polynomial of the form $x^{n}+\cdots$, even when the polynomial has somewhere in $[-1,+1]$ a root the multiplicity of which is less than $[\sqrt{ } n]$. We are of the opinion that this very probably holds also for the Tchebysheff approximation; i.e. there exists a polynomial of degree $n f(x)=x^{n}+\cdots$, which has somewhere in $[-1,+1]$ a root of the multiplicity $[\sqrt{ } n]$, and yet in $[-1,+1]$

$$
\left|2^{n} f(x)\right|<B
$$

where B is independent of n. By this it is clear that in general, the above theorem is not to be improved.
Note II. Let $\omega_{n}(x)=x^{n}+\cdots$ be the polynomial of degree n minimizing for polynomials of degree n of the form $f(x)=x^{n}+\cdots$ the integral

$$
\begin{equation*}
I_{k}(f) \equiv \int_{-1}^{1}|f(x)|^{k} p(x) d x \tag{17}
\end{equation*}
$$

where k is a fixed positive number, $p(x)$ is L-integrable, and in $[-1,+1] p(x) \geqq$ $m(>0)$. According to a theorem of Fejér all roots of $\omega_{n}(x)$ are in $[-1,+1]$. Denote the absolute maximum of $\left|\omega_{n}(x)\right|$ by M; if this maximum is taken at $x=x_{0}$ and one of the intervals $\left[x_{0}-\frac{1}{2 n^{2}}, x_{0}\right],\left[x_{0}, x_{0}+\frac{1}{2 n^{2}}\right]$, suppose the latter, lies in $[-1,+1]$, then

$$
\int_{-1}^{1}\left|\omega_{n}(x)\right|^{k} p(x) d x>m \int_{x_{0}}^{x_{0}+H_{2} n^{-2}}\left|\omega_{n}(x)\right|^{k} d x
$$

But by Markoff's theorem $\left|\omega_{n}(x)\right|>\frac{M}{2}$ in $\left[x_{0}, x_{0}+\frac{1}{2 n^{2}}\right]$, i.e.

$$
\begin{equation*}
\int_{-1}^{1}\left|\omega_{n}(x)\right|^{k} p(x) d x>m\left(\frac{M}{2}\right)^{k} \frac{1}{2 n^{2}} . \tag{18}
\end{equation*}
$$

On the other hand, if $f(x)=T_{n}(\cos \vartheta)=\frac{\cos n \vartheta}{2^{n-1}}$, we obtain by the minimum-property of $\omega_{n}(x)$

$$
\begin{equation*}
\int_{-1}^{1}\left|\omega_{n}(x)\right|^{k} p(x) d x<\frac{1}{2^{k(n-1)}} \int_{-1}^{1} p(x) d x \tag{19}
\end{equation*}
$$

i.e. by (18) and (19), for $[-1,+1]$ we have

$$
\left|\omega_{n}(x)\right| \leqq M<\frac{2^{2+k^{-1}}}{m^{k^{-1}}}\left(\int_{-1}^{1} p(t) d t\right)^{k^{-1}} \frac{n^{2 k^{-1}}}{2^{n}}
$$

This by the theorem mentioned above we obtain for the roots of polynomials minimizing the expressions in (17) that if the roots on the $n^{\text {th }}$ polynomials are $x_{1}^{(n)}, x_{2}^{(n)} \cdots, x_{n}^{(n)}$, and $x_{\nu}^{(n)}=\cos \theta_{\nu}^{(n)}, 0 \leqq \vartheta_{\nu}^{(n)} \leqq \pi$, then for any fixed subinterval $[\alpha, \beta]$

$$
\left|\sum_{\alpha \leqq \varphi_{\nu}^{p}(n \leqq \beta} 1-\frac{\beta-\alpha}{\pi} n\right|<c(p, k)(n \log n)^{\frac{1}{2}}
$$

i.e., roughly speaking, the distribution of the roots of the minimizing polynomials is uniformly dense. Analogous theorems are to be deduced for the polynomials solving extremum problems of the Tchebysheff-type.

Institute for Advanced Study, Princeton, N. J.
and Budapest VI., Hungary.

[^0]: ${ }^{1}$ H. Weyl: Uber die Gleichverteilung von Zahlen mod Eins, Math. Ann., 1916, Bd. 77, pp. 313-352.

[^1]: ${ }^{2}$ The uniform-dense distribution of points lying on ρ, but with potential theoretic characterization, occurs at first in the investigations of Hilbert; see D. Hilbert: Über die Entwickelung einer beliebigen analytischen Function einer Variabeln \cdots, Nachrichten von der Königlichen Gesellschaft Göttingen, 1897, pp. 63-70. The above formalization, which is equivalent to Hilbert's, is due to L. Fejèr, see L. Fejèr: Interpolation und konforme Abbildung, Nachrichten van der Kön. Ges. Göttingen, 1918, pp. 319-331.

[^2]: ${ }^{3}$ Clearly $0 \leqq \varphi_{1}^{(n)}<\varphi_{2}^{(n)}<\cdots<\varphi_{n}^{(n)} \leqq \pi$.

[^3]: ${ }^{4}$ We know this theorem only from an oral communication.
 ${ }^{5}$ This notion was introduced by M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen, etc., Math. Zeit., 1923, pp. 228-249.

[^4]: ${ }^{6}$ M. Riesz: Eine trigonometrische Interpolations-formel etc., Jahresbericht der deutschen Mathematikerver, 1915, Bd. 23, pp. 354-368.

