THE DIMENSION OF THE RATIONAL POINTS IN HILBERT SPACE

By Paul Erdös

(Received May 24, 1940)
Let H denote the Hilbert-space consisting of all sequences of real numbers

$$
\begin{equation*}
\xi=\left(x_{1}, x_{2}, \ldots\right) \tag{1}
\end{equation*}
$$

such that

$$
\sum_{i=1}^{\infty} x_{i}^{2}<\infty
$$

with the distance defined as usual. R will denote the set of points of H having all coordinates rational. R_{0} will denote the set of points of H of the form

$$
\begin{equation*}
\nu=\left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \cdots\right) \tag{2}
\end{equation*}
$$

where n_{i} are positive integers.
Let $R_{1}=\bar{R}_{0}$. Clearly $R_{0} \subset R_{1} \subset R$.
Theorem. ${ }^{1} \quad \operatorname{Dim} R_{0}=\operatorname{dim} R_{1}=\operatorname{dim} R=1$.
Before we proceed with the proof let us remark that the cartesian product $R_{1} \times R_{1}$ is homeomorphic to R_{1}. Hence we obtain that

There exists a metric separable complete space X such that $\operatorname{dim} X=\operatorname{dim}$ $X \times X=1$.

This seems to be a new contribution to the "product problem" of the theory of dimensions. It might also be worth noticing that R_{1} is disconnected between any two of its points.

Proof that $\operatorname{dim} R_{0}>0$. Let U be an open subset of H of diameter less than $\frac{1}{2}$ and such that $U R_{0} \neq 0$. Let therefore (2) belong to U.

We shall define a sequence of natural numbers m_{1}, m_{2}, \ldots such that

$$
\begin{align*}
& \nu_{k}=\left(\frac{1}{m_{1}}, \frac{1}{m_{2}}, \cdots, \frac{1}{m_{k-1}}, \frac{1}{m_{k}}, \frac{1}{n_{k+1}}, \frac{1}{n_{k+2}}, \cdots\right) \in U \tag{3}\\
& \mu_{k}=\left(\frac{1}{m_{1}}, \frac{1}{m_{2}}, \cdots, \frac{1}{m_{k-1}}, \frac{1}{m_{k}-1}, \frac{1}{n_{k+1}}, \frac{1}{n_{k+2}}, \cdots\right) \oplus U .
\end{align*}
$$

Suppose that the m_{i} are already defined for $i<k$. Let m_{k} be the smallest integer such that (3) holds. Since the diameter of U is less than $\frac{1}{2}$ it is clear that $m_{k}>1$ and that (4) holds.

[^0]Since U is bounded there is a number N such that $\left|\nu_{k}\right|<N$. Therefore $\sum_{i=1}^{\infty}\left(\frac{1}{m_{d}}\right)^{2}<\infty$ and the point

$$
\mu=\left(\frac{1}{m_{1}}, \frac{1}{m_{2}}, \ldots\right)
$$

is in R. Clearly $\mu=\lim \nu_{k}$. Since $\left|\nu_{k}-\mu_{k}\right|=\frac{1}{m_{k}\left(m_{k}-1\right)}$ and $m_{k} \rightarrow \infty$ we have also $\mu=\lim \mu_{\text {}}$. In view of (3) and (4) μ is then on the boundary of U.

This proves that R_{0} has positive dimension at every one of its points. The same holds for R_{1} and R.

Proof that $\operatorname{dim} R \leqq 1$. Let S be the sphere consisting of all points (1) such that

$$
\sum_{i=1}^{\infty} x_{i}^{2}=1
$$

It is elearly sufficient to prove that $\operatorname{dim} R \cdot S=0$. Let

$$
\rho=\left(r_{1}, r_{2}, \cdots\right)
$$

be any point of $R \cdot S$. Given any positive irrational number δ choose n so that

$$
\begin{equation*}
\sum_{i=n+1}^{\infty} r_{i}^{2}<\delta . \tag{5}
\end{equation*}
$$

Let V_{s} be the set of all points (1) such that

$$
\sum_{i=1}^{n} r_{i} x_{i}>1-\delta .
$$

Clearly V_{8} is an open set. If a point (1) is on the boundary of V_{s} then

$$
\sum_{i=1}^{n} r_{i} x_{i}=1-\delta
$$

hence $x_{1}, x_{2}, \ldots, x_{n}$ cannot all be rational. We have proved therefore that the boundary of V_{6} contains no point of R.
Since $\rho \in S$ we have $\sum_{i=1}^{\infty} r_{i}^{2}=1$, therefore by (5) $\sum_{i=1}^{n} r_{i}^{2}>1-\delta$ and $\rho \in V_{s}$.

To finish the proof it is therefore sufficient to prove that the diameter of $S \cdot V_{\delta}$ tends to zero as δ tends to zero. Let

$$
\xi=\left(x_{1}, x_{2}, \cdots\right)
$$

be a point if $S \cdot V_{3}$. We have then

$$
\sum_{i=1}^{\infty}\left(r_{i}-x_{i}\right)^{2}=\sum_{i=1}^{\infty} r_{i}^{2}+\sum_{i=1}^{\infty} x_{i}^{2}-2 \sum_{i=1}^{n} r_{i} x_{i}-2 \sum_{i=n+1}^{\infty} r_{i} x_{i} .
$$

Since ρ and ξ are in S and ξ is in V_{s} therefore

$$
\sum_{i=1}^{\infty}\left(r_{i}-x_{i}\right)^{2}<1+1-2(1-\delta)-2 \sum_{i=n+1}^{\infty} r_{i} x_{i} .
$$

Using Schwarz's inequality and (5) we have

$$
\sum_{i=n+1}^{\infty} r_{i} x_{i} \leqq\left(\sum_{i=1}^{\infty} r_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{\infty} x_{i}^{2}\right)^{\frac{1}{2}}<\delta^{\ddagger} .
$$

Therefore

$$
\sum_{i=1}^{\infty}\left(r_{i}-x_{i}\right)^{2}<2 \delta+2 \delta^{\ddagger}
$$

which completes the proof.
Institute for Advanced Studx.

[^0]: ${ }^{1}$ The problem of computing the dimension of R was proposed to me by Professor W. Hurewicz.
 ${ }^{2}$ See L. Pontrjagin, C.R. Paris 190 (1930), p. 1105 and W. Hurewiez, Ann. of Math. 36 (1935), p. 194.

