# ON DIVERGENCE PROPERTIES OF THE LAGRANGE INTERPOLATION PARABOLAS 

By P. Erdös

(Received November 13, 1939)
Throughout the present paper, $-1<x_{1}^{(n)}<x_{2}^{(n)}<\cdots<x_{n}^{(n)}<1$ denote the roots of the $n$-th Tchebicheff polynomial $T_{n}(x)$, and unless otherwise stated it is understood that the fundamental points of the Lagrange interpolation are the $x_{i}^{(n)}{ }^{1}$. It is well known that ${ }^{2}$ there exists a continuous function whose interpolation parabolas diverge everywhere in $(-1,+1)$. In the present paper we prove that for $x_{0}=\cos \frac{p}{q} \pi_{1}, p \equiv q \equiv 1(\bmod 2),\left(p_{1}, q\right)=1$ there exists a continuous function $f(x)$ such that $L_{n} f\left(x_{0}\right) \rightarrow \infty^{3}$. Turán and $\mathrm{I}^{4}$ proved that this does not hold for any other point. In this direction Marcinkieviez ${ }^{5}$ proved that if the fundamental points are the roots of $U_{n}(x)=T_{n+1}^{\prime}(x)$ then for every continuous function $f(x)$ and every point $x_{0}$ there exists a sequence of integers $n_{1}<$ $n_{2}<\cdots$ such that $L_{n_{i}}\left(f\left(x_{0}\right)\right) \rightarrow f\left(x_{0}\right)$. We remark that in the case of the Fourier series it is well known that there always exists a subsequence of the partial sums converging to $f\left(x_{0}\right)$. This fact may be of interest because there is often an analogous behaviour of the Lagrange interpolation parabola and the Fourier series.

First we prove some lemmas.
Lemma 1.

$$
x_{i}^{(m)}-x_{i}^{(n)}>\frac{1}{m^{3}}, \quad \text { for } m \geqq n .
$$

Proof. Write

$$
x_{i}^{(m)}=\cos \vartheta_{i}^{(m)}, \quad \vartheta_{i}=\frac{2 i-1}{2 m} \pi .
$$

Then we have

$$
\left|x_{i}^{(m)}-x_{i}^{(n)}\right|>\left|\vartheta_{i}^{(m)}-\vartheta_{j}^{(n)}\right| \sin \frac{\pi}{2 n}>\frac{\pi}{4 n} \frac{\pi}{2 m n}>\frac{1}{m^{3}} \text { q.e.d. }
$$

[^0]Lemma 2. Put $x_{0}=\cos \frac{p}{q} \pi, p \equiv q \equiv 1(\bmod 2) ;$ then constants $c_{1}$ and $c_{2}$ exist such that

$$
\min _{i=1,2, \cdots n}\left|x_{0}-x_{i}^{(n)}\right|>\frac{c_{1}}{n}, \quad\left|T_{n}\left(x_{0}\right)\right|>c_{2}
$$

Proof.

$$
\left|T_{n}\left(x_{0}\right)\right|=\cos \left(\frac{n p}{q} \pi\right) \geqq \cos \left(\frac{\pi}{2}-\frac{\pi}{2 q}\right)>c_{2} .
$$

Put $x_{i}^{(n)}<x_{0}<x_{i+1}^{(n)}$; then

$$
\min _{i=1,2, \cdots n}\left|x_{0}-x_{i}^{(n)}\right|>\frac{\pi}{2 n q} \min \left(\sin \frac{2 j-1}{2 n} \pi, \sin \frac{2 j+1}{2 n} \pi\right)>\frac{c_{1}}{n}
$$

Lemma 3.

$$
\sum^{\prime}\left|l_{k}^{(n)}\left(x_{0}\right)\right|<(\log n)^{\frac{1}{3}}
$$

where $\sum^{\prime}$ indicates that the summation is extended only over the $x_{k}^{(n)}$ satisfying $\left|x_{k}^{(n)}-x_{0}\right|>\frac{1}{(\log n)^{\frac{1}{2}}}$.

Proof.

$$
\left|l_{k}^{(n)}\left(x_{0}\right)\right|=\left|\frac{T_{n}\left(x_{0}\right)}{T_{n}^{\prime}\left(x_{k}\right)\left(x_{0}-x_{k}\right)}\right|<\frac{(\log n)^{\ddagger}}{n}
$$

since $\left|T_{n}\left(x_{0}\right)\right| \leqq 1$ and $T_{n}^{\prime}\left(x_{k}\right)=\frac{n}{\sqrt{ }\left(1-x_{k}^{2}\right)} \geqq n$, which proves the Lemma. Without loss of generality we may assume that $x_{0}>0$. Let $x_{j}^{(n)}<x_{0}<x_{j+1}^{(n)}$. Now we prove
Lemma 4. Suppose $0<x_{k}^{(n)}<x_{j}^{(n)}\left(\right.$ i.e., $\left.\frac{n}{2}<k<j\right)$; then

$$
\left|l_{k}^{(n)}\left(x_{0}\right)\right|>\frac{c_{3}}{j-k} .
$$

Proof. We have

$$
\left|l_{k}^{(n)}\left(x_{0}\right)\right|=\left|\frac{T_{n}\left(x_{0}\right)}{T_{n}^{\prime}\left(x_{k}\right)\left(x_{0}-x_{k}\right)}\right| \geqq \frac{c_{2} \sqrt{ }\left(1-x_{k}^{2}\right)}{n\left(x_{0}^{2}-x_{k}\right)}>\frac{c_{4}}{n\left(x_{j+1}-x_{k}\right)},
$$

by Lemma 2. Now $x_{i+1}-x_{k}<(j+1-k) \frac{\pi}{n}<\frac{c_{5}(j-k)}{n}$, which proves the Lemma.

Lemma 5.

$$
\sum_{(2 k-1, n)=1}\left|l_{k}^{(n)}\left(x_{0}\right)\right|>c_{6} \frac{\log n}{\log \log n} .
$$

Proof. By Lemma 4 we have

$$
\sum_{(2 k-1, n)=1}\left|l_{k}^{(n)}\left(x_{0}\right)\right|>\sum^{\prime \prime}\left|l_{k}^{(n)}\left(x_{0}\right)\right|>c_{3} \sum^{\prime \prime} \frac{1}{j-k}
$$

where the two dashes indicate that the summation is extended only over those $k$ for which $(2 k-1, n)=1$ and $\frac{n}{2}<k<j$. It is clear ${ }^{6}$ that there are at least $c_{i} n$ of the $x_{k}^{(n)}$ between 0 and $x_{i}^{(n)}$, thus

$$
\sum^{\prime \prime} \frac{1}{j-k}>\sum^{\prime \prime \prime} \frac{1}{j-k}
$$

where the three dashes indicate that the summation is extended only over those $k$ which satisfy $(2 k-1, n)=1$ and $j-k<c_{7} n$.

Denote by $\nu(n)$ the number of different odd prime factors of $n$. It is well known that $\nu(n)<c_{8} \frac{\log n}{\log \log n}$. (This result is an immediate consequence of the prime number theorem, but can also be obtained in an elementary way.) The number of integers $k$ satisfying $j-x<k<j,(2 k-1, n)=1$ equals by the sieve of Eratosthenes

$$
\begin{aligned}
& x-\sum_{p \mid n}\left[\frac{x}{p}\right]^{\prime}+\sum_{p q \mid n}\left[\frac{x}{p q}\right]^{\prime}-.^{7} \geqq x \prod_{p \mid n}\left(1-\frac{1}{p}\right)-2^{\nu(n)} \\
&>c_{9} \frac{x}{\log \log n}-2^{c_{8} \log n / \log \log n}>c_{10} \frac{x}{\log \log n} \text { for } x>\sqrt{n}, \quad(p \text { odd })
\end{aligned}
$$

since it is well known that $\prod_{p \mid n}\left(1-\frac{1}{p}\right)>\frac{c_{11}}{\log \log n}{ }^{8}$ Thus

$$
\sum^{\prime \prime \prime} \frac{1}{j-k}>\frac{c_{10}}{\log \log n} \sum_{c_{7} n>r>\sqrt{ } \bar{n}} \frac{1}{r}>c_{6} \frac{\log n}{\log \log n} \text { q.e.d. }
$$

Theorem 1. There exists a continuous function $f(x)$ such that $L_{n}\left(f\left(x_{0}\right)\right) \rightarrow \infty$. Proof. Write

$$
f(x)=\sum_{n=n_{0}}^{\infty} \frac{f_{n}(x)}{\sqrt{ } \log n}
$$

${ }^{6}$ i.e. $\left|x_{r+1}^{(n)}-x_{r}^{(n)}\right| \leqq \frac{\pi}{n}, r=1,2, \cdots$.
' $\left[\frac{x}{p}\right]^{\prime}$ denotes the number of the $k$ 's in the interval $j-x<k<j$ for which $2 k-1$ is divisible by $p$. It is clear that $\left[\frac{x}{p}\right]^{\prime}$ differs from $\frac{x}{p}$ by less than 1.

[^1]$f_{n}(x)$ is defined as follows:
\[

$$
\begin{gathered}
f_{n}\left(x_{k}^{(n)}\right)=\operatorname{signum} l_{k}^{(n)}\left(x_{0}\right) \text { for }(2 k-1, n)=1, \\
f_{n}\left(x_{k}^{(n)} \pm \frac{1}{2^{2 n}}\right)=0
\end{gathered}
$$
\]

in the intervals $\left(x_{k}^{(n)}, x_{k}^{(n)}+\frac{1}{2^{2 n}}\right)$ and $\left(x_{k}^{(n)}, x_{k}^{(n)}-\frac{1}{2^{2 n}}\right), f_{n}(x)$ is linear and elsewhere $f_{n}(x)=0$.

First we show that $f(x)$ is continuous. It suffices to show that

$$
\sum_{n=n_{0}}^{\infty} \frac{f_{n}(x)}{\sqrt{\log n}}
$$

is uniformly convergent, i.e. that

$$
\sum_{n>n(\epsilon)} \frac{f_{n}(x)}{\sqrt{\log n}}<\epsilon .
$$

If for a certain $y, f_{n}(y)$ and $f_{m}(y), m>n$ are both different from 0 , we have for a certain $k_{1}$ and $k_{2}$

$$
\left|x_{k_{1}}^{(n)}-y\right|<\frac{1}{2^{2^{n}}}, \quad\left|x_{k_{2}}^{(m)}-y\right|<\frac{1}{2^{2 m}}
$$

i.e.

$$
\left|x_{k_{1}}^{(n)}-x_{k_{2}}^{(m)}\right|<\frac{2}{2^{2 n}}
$$

But by Lemma 1

$$
\left|x_{k_{1}}^{(n)}-x_{k_{2}}^{(m)}\right|>\frac{1}{m^{3}}
$$

hence $2 m^{3}>2^{2 n}$, i.e. $m>n^{2}$ for $n>3$. Thus

$$
\sum_{n>n(\epsilon)} \frac{f_{n}(x)}{\sqrt{\log n}}<\sum_{r>r(\epsilon)} \frac{1}{\sqrt{\log 2^{2+}}}<\epsilon .
$$

Put

$$
\varphi_{1}(x)=\sum_{r=n_{0}}^{n-1} \frac{f_{r}(x)}{\sqrt{ } \log r}, \quad \varphi_{2}(x)=\sum_{r>n} \frac{f_{r}(x)}{\sqrt{ } \log r} .
$$

Then

$$
L_{n}\left(f\left(x_{0}\right)\right)=L_{n}\left(\varphi_{1}(x)\right)+L_{n}\left(\frac{f_{n}(x)}{\sqrt{\log n}}\right)+L_{n}\left(\varphi_{2}(x)\right) .
$$

First we show that $L_{n}\left(\varphi_{2}(x)\right)=0$. It will evidently suffice to show that for every $k, \varphi_{2}\left(x_{k}^{(n)}\right)=0$ or that for $r>n, f_{r}\left(x_{k}^{(n)}\right)=0$. If for a certain $r>n, f_{r}\left(x_{k}^{(n)}\right) \neq 0$ we have for a certain $l$

$$
\left|x_{k}^{(n)}-x_{l}^{(r)}\right|<\frac{1}{2^{2 r}}
$$

which does not hold for by Lemma 1 for $2^{2 r}>r^{3}$.
Next we estimate $L_{n}\left(\varphi_{1}(x)\right)$. If for a certain $x_{k}^{(n)}, f_{r}\left(x_{k}^{(n)}\right) \neq 0$ then for a certain $l$

$$
\left|x_{k}^{(n)}-x_{l}^{(r)}\right|<\frac{1}{2^{2 r}}
$$

which by Lemma 1 means that

$$
2^{2^{\tau}}<n^{3} \quad \text { or } \quad r<2 \log \log n \text { for } n>n_{0} .
$$

Thus if for a certain $x_{k}^{(n)}, \varphi_{1}\left(x_{k}^{(n)}\right) \neq 0$ then by Lemma 2

$$
\left|x_{k}^{(n)}-x_{0}\right|>\min _{i=1,2, \cdots \cdot r}\left|x_{i}^{(r)}-x_{0}\right|-\frac{1}{2^{2^{r}}}>\frac{c_{1}}{r}-\frac{1}{2^{2^{r}}}>\frac{1}{(\log n)^{\frac{1}{2}}} \text { for } \quad r>n_{0}
$$

Thus by Lemma 3

$$
L_{n}\left(\varphi_{1}\left(x_{0}\right)\right)<c_{12} \sum_{\left|x_{k}-x_{0}\right|>(\log n)^{-\frac{1}{3}}}\left|l_{k}^{(n)}\left(x_{0}\right)\right|<c_{12}(\log n)^{\frac{1}{3}}
$$

Now by Lemma 5

$$
L_{n}\left(f_{n}\left(x_{0}\right)\right)=\sum_{(2 k-1, n)=1}\left|l_{k}^{(n)}\left(x_{0}\right)\right|>c_{6} \frac{\log n}{\log \log n}
$$

since for $(2 k-1, n) \neq 1 f_{n}\left(x_{0}\right)=0$. Thus finally

$$
L_{n}\left(f\left(x_{0}\right)\right)>c_{6} \frac{(\log n)^{\frac{1}{2}}}{\log \log n}-c_{12}(\log n)^{\frac{1}{4}} \rightarrow \infty .
$$

Similarly we could prove that a continuous $f(x)$ exists such that $L_{n}\left(f\left(x_{0}\right)\right)$ converges to any given value.

Theorem 2. If $x_{0} \neq \cos \frac{p}{q} \pi, p \equiv q \equiv 1(\bmod 2)$ then there exists for every continuous $f(x)$ a sequence of integers $n_{1}<n_{2}<\ldots$ such that $L_{n_{i}}\left(f\left(x_{0}\right)\right) \rightarrow f\left(x_{0}\right)$.

Proof. First we prove that there exists a sequence if integers $n_{1}<n_{2}<\cdots$ such that $\left|T_{n_{k}}\left(x_{0}\right)\right|<\frac{c_{13}}{n}$. We need the following

Lemma 6. If $x_{0} \neq \frac{p}{q}, p \equiv q \equiv 1(\bmod 2)$, then the inequality

$$
\left|x_{0}-\frac{2 r-1}{2 n_{k}}\right|<\frac{c_{14}}{n_{k}^{2}}
$$

has an infinite number of solutions.

Proof. If $x_{0}$ is rational it is of the form $\frac{2 r-1}{2 n_{k}}$, thus the Lemma is trivial. Hence we may suppose that $x_{0}$ is irrational. It is well known that the equation $\left|x_{0}-\frac{a}{b}\right|<\frac{1}{b^{2}}$ has an infinite number of solutions. If infinitely many of the $b$ 's are even the Lemma is proved, if not consider the least positive solution of

$$
2 a d-b f=1
$$

Obviously $f \equiv 1(\bmod 2)$ and $d<b$ thus

$$
\left|x_{0}-\frac{f}{2 d}\right| \leqq \frac{1}{b^{2}}+\frac{1}{2 b d}<\frac{c_{14}}{d^{2}}
$$

which proves the Lemma.

$$
\begin{aligned}
& \text { If }\left|x_{0}-\frac{2 r-1}{2 n_{k}}\right|<\frac{c_{14}}{n_{k}^{2}} \text { we have } \\
& \qquad T_{n_{k}}\left(x_{0}\right)<\cos \left(\frac{\pi}{2}-\frac{c_{14}}{n_{k}}\right)<\frac{c_{13}}{n} .
\end{aligned}
$$

Consider now a sequence of integers $n_{1}<n_{2}<\ldots$ with $\left|x_{0}-\frac{2 r-1}{n_{k}}\right|<$ $\frac{c_{14}}{n_{k}^{2}}$. We are going to prove that $L_{n_{k}}\left(f\left(x_{0}\right)\right) \rightarrow f\left(x_{0}\right)$.

For $k \neq r$ we have

$$
\left|l_{k}\left(x_{0}\right)\right|=\left|\frac{T_{n_{k}}\left(x_{0}\right)}{T_{n_{k}}^{\prime}\left(x_{k}\right)\left(x_{k}-x_{0}\right)}\right|<\left|\frac{c_{13}}{n^{2}\left(x_{k}-x_{0}\right)}\right| .
$$

Thus

$$
\sum_{k \neq \tau}\left|l_{k}\left(x_{0}\right)\right|<\frac{c_{13}}{n^{2}} \sum_{n \nless r} \frac{1}{\left|x_{k}-x_{0}\right|}=o(1),{ }^{9}
$$

hence from

$$
\sum_{k=1}^{n} l_{k}(x) \equiv 1
$$

${ }^{9}$ We have

$$
\begin{aligned}
& \sum_{k \neq r} \frac{1}{x_{k}-x_{0}}=\sum_{\left|x_{k}-x_{0}\right| \leqq(\log n)^{-1}}^{\prime} \frac{1}{\left|x_{k}-x_{0}\right|} \\
& \quad+\sum_{\left|x_{k}-x_{0}\right|>(\log n)^{-1} \mid}^{\prime} \frac{1}{\left|x_{k}-x_{0}\right|}<n \log n+c n \log n=o\left(n^{2}\right) .
\end{aligned}
$$

(The dash indicates that $k=r$ is omitted.)
it follows that

$$
l_{r}\left(x_{0}\right)=1-o(1) .
$$

Thus
$L_{n_{k}}\left(f\left(x_{0}\right)\right)=f\left(x_{r}\right) l_{r}\left(x_{0}\right)+\sum_{k \neq r} f\left(x_{k}\right) l_{k}\left(x_{0}\right)=\left(f\left(x_{0}\right)+\epsilon\right)[1-o(1)]+o(1) \rightarrow f\left(x_{0}\right)$,
which proves Theorem 2.
On the other hand we can prove that for every $x$ in $(-1,+1)$ there exists a continuous $f(x)$ such that

$$
\lim _{n=\infty} \frac{\sum_{m \leq n} L_{m}\left(f\left(x_{0}\right)\right)}{n}=\infty .
$$

The proof is very similar to that of Theorem 1.
Princeron, N. J.


[^0]:    ${ }^{1}$ For the employed notations see P. Erdös and P. Turán, Annals of Math., Vol. 38 (1937), p. 142-155. If there is no danger of confusion we will omit the upper index $n$.
    ${ }^{2}$ G. Grünwald, Annals of Math., Vol. 37 (1936), p. 908-918.
    ${ }^{3} L_{n}(f(x))$ denotes the Lagrange interpolation parabola of $f(x)$.
    ${ }^{4}$ This result was stated in the Annals of Math., Vol. 38 (1937), p. 155 but there was a misprint.
    ${ }^{5}$ Acta Litt ac Scient. Szeged, Tom. 8, p. 127-130.

[^1]:    ${ }^{8}$ E. Landau, Über den Verlauf der zahlentheoretischen Function. Archiv der Math. und Phys., Ser. 3, Vol. 5, (1903), p. 86-91.

