ON SOME ASYMPTOTIC FORMULAS IN THE THEORY OF THE "FACTORISATIO NUMERORUM"

By P. Endös

(Received December 2, 1940)

Let $1 < a_1 \le a_2 \le \cdots$ be a sequence of integers. Denote by f(n) the number of representations of n as the product of the a's, where two representations are considered equal only if they contain the same factors in the same order. As far as I know the first papers written on the subject are those of L. Kalmár, who proved by using the methods of analytic number theory that if $a_k = k + 1$ then

(i)
$$F(n) = \sum_{r=1}^{n} f(r) = -\frac{n^{\rho}}{\rho \xi'(\rho)} [1 + o(1)],$$

 ρ is defined as the unique positive root of $\zeta(\rho) = 2$. He also gives estimates for the error term.

Another paper on this subject is that of E. Hille.² He obtains among others the following results: Let $p_1 < p_2 < \cdots$ be a sequence of primes and $a_1 < a_2 < \cdots$ the sequence of integers composed of these primes, then

(2)
$$F(n) = cn'[1 + o(1)],$$

where $\sum_{i} \frac{1}{a_{i}^{\rho}} = 1$, $\rho > 0$. Hille uses the theorem of Wiener and Ikehara.

In the present paper we assume that $\sum \frac{1}{a_i^{1+\epsilon}}$ converges for every ϵ and that the a's are not all powers of a_1 , then we prove that

(3)
$$F(n) = cn^{\delta}[1 + o(1)],$$

where $\sum_{i} \frac{1}{a_{i}^{p}} = 1$, $\rho > 0$. The proof will be elementary.

First we need 2 Lemmas.

LEMMA 1

(4)
$$F(n) = \sum_{k} F\left[\frac{n}{a_{k}}\right] + 1.^{3}$$

PROOF. Follows immediately by considering those products in which a_k is the first factor, and summing for a_k .

E. Hille, Acta Arithmetica Vol. 2 (1937) p. 134-146.

¹L. Kalmár, Acta Litt ac Scient. Szeged, Tom. 5 (1930) p. 95-107.

The use of this identity was suggested to me by L. Kalmár.

LEMMA 2.

$$(5) 0 < \lim_{n^{\rho}} \frac{F(n)}{n^{\rho}} \leq \lim_{n \to \infty} \frac{F(n)}{n^{\rho}} < \infty.$$

PROOF. Put $F(n) = c_n n^n$. We have from (4)

$$c_n n^{\rho} < \max_{i \leq \frac{n}{2}} c_i \sum_{a_k} \frac{n^{\rho}}{a_k^{\rho}} + 1,$$

hence

$$c_n < \max_{i \leq \frac{n}{2}} c_i + \frac{1}{n^{\rho}}.$$

Thus by induction

$$c_n < 1 + \sum_{2^{m-1} < n} \frac{1}{2^{m_p}} < \infty,$$

which proves the first half of (5).

The proof of the second half of (5) will be slightly more complicated. Put $F(n) = c'_n(n+1)^p$. It suffices to prove that $\lim_{n \to \infty} c'_n > 0$. From $\left[\frac{n}{a_k}\right] \ge \frac{n+1}{a_k} - 1$ we obtain by (4)

$$c'_n(n+1)^{\rho} > \min_{i \leq \frac{n}{2}} c'_i \sum_{a_k \leq n} \frac{(n+1)^{\rho}}{a''_k} = \min_{i \leq \frac{n}{2}} c'_i (n+1)^{\rho} \left(1 - \sum_{a_k > n} \frac{1}{a''_k}\right).$$

Thus

$$c'_n > \min_{i \leq \frac{n}{2}} c_i \left(1 - \sum_{a_k > n} \frac{1}{a_k^i}\right).$$

Hence by induction

$$a'_n > \prod_{2^{m-1} \le n} \left(1 - \sum_{a_k > 2^m} \frac{1}{a_k^a}\right).$$

The product on the right side (if extended to infinity) converges since

$$\sum_{m=1}^{\infty} \sum_{a_k > 2^m} \frac{1}{a_k^{\rho}} \leq \sum_{a_k} \frac{\log a_k}{a_k^{\rho}} < c \sum \frac{1}{a_k^{1+\epsilon}}$$

converges. This proves $\underline{\lim} c'_a > 0$, and completes the proof of Lemma 2 Now we can prove our theorem. Suppose that (3) does not hold, denote

(6)
$$0 < c = \lim_{n \to \infty} \frac{F(n)}{n^n} = \lim_{n \to \infty} \frac{F(n)}{(n+1)^p} < \lim_{n \to \infty} \frac{F(n)}{n^p} = \lim_{n \to \infty} \frac{F(n)}{(n+1)^p} = C < \infty.$$

Let m be sufficiently large and such that $F(m) > (C - \delta)(m + 1)^{s}$. Clearly a fixed k exists (depending only on c and C) such that for every x satisfying $m \le x \le m(1 + k)$

$$\frac{F(x)}{(x+1)^p} > \frac{C+c}{2}.$$

Now let a_i be the least a which is not a power of a_1 . Consider any x satisfying $ma_1 \le x \le ma_1(1+k)$. We have by (4), (6), (7) and $\left\lceil \frac{x}{a_i} \right\rceil + 1 \ge \frac{x+1}{a_i}$

(8)
$$F(x) > \sum_{a_i \le x} F\left[\frac{x}{a_i}\right] > \frac{c+C}{2} \frac{(x+1)^s}{a_i^s} + c \sum_{a_i > a_1} \frac{(x+1)^s}{a_i^s} - o(x^s).$$

Thus

(9)
$$\frac{F(x)}{(x+1)^{\rho}} > c + \frac{C-c}{2a_1^{\rho}} - o(1),$$

Similarly we obtain that for the x satisfying $a_i^{\alpha} a_i^{\beta} m \leq x \leq a_i^{\alpha} a_i^{\beta} m (1+k)$

$$\frac{F(x)}{(x+1)^{\mu}} > c + \delta_{\alpha,\beta},$$

where $\delta_{\alpha,\beta}$ depends only upon α and β . It is well known that the quotient of two consecutive integers of the form $a_1^{\alpha}a_i^{\beta}$ tends to 1. Thus there exists a sequence of integers $A_1 < A_2 < \cdots < A_r$ all of the form $a_1^{\alpha}a_i^{\beta}$ and satisfying

$$\frac{A_{i+1}}{A_i} < 1 + k$$
, $i = 1, 2, \dots r - 1$ and $A_r > a_1 A_1$.

Thus by (10) and since the intervals $[A_{im}, A_{im}(1+k)]$ and $[A_{i+1}m, A_{i+1}m(1+k)]$ overlap we have for $A_{im} \leq x \leq a_{i}A_{im}$

(11)
$$\frac{F(x)}{(x+1)^{\sigma}} > c + \min \delta_{\alpha,\beta} = c + \delta,$$

for sufficiently large m, where δ is fixed and depends only on c and C. Consider now the integers x satisfying $a_1A_1m \le x \le a_1^2A_1m_1$ by (4), (6) and (11) we obtain as in (8) and (9)

$$\frac{F(x)}{(x+1)^{\rho}} > (c+\delta) \frac{1}{a_1^{\rho}} + c \sum_{a_1 > a_1} \frac{1}{a_1^{\rho}} - o(1) = c + \delta \left(1 - \sum_{a_1 > a_1} \frac{1}{a_1^{\rho}}\right) - o(1).$$

(i.e. $\frac{x}{a_1}$ lies in $[A_1m, A_1m(1+k)]$). Similarly for the integers satisfying $a_1^2A_1m \le x \le a_1^2A_1m$ we have

$$\frac{F(x)}{(x+1)^n} > \left[c + \delta\left(1 - \sum_{a \ge a_1} \frac{1}{a_i^s}\right)\right] \sum_{a_i \le a_2^s} \frac{1}{a_i^s} + c \sum_{a_i > a_2^s} \frac{1}{a_i^s} \\ - o(1) > c + \delta\left(1 - \sum_{a_i > a_1} \frac{1}{a_i^s}\right) \left(1 - \sum_{a_i > a_2^s} \frac{1}{a_i^s}\right) - o(1).$$

Finally we obtain for $a_1^{k-1}A_1m \leq x \leq a_1^kA_1m$ (k fixed, m sufficiently large)

(12)
$$\frac{F(x)}{(x+1)^{\rho}} > c + \delta \prod_{r=1}^{h} \left(1 - \sum_{a_i > a_r^r} \frac{1}{a_i^{\rho}}\right) - o(1).$$

Denote

$$\prod_{r=1}^{\infty} \left(1 - \sum_{\alpha_i > \alpha_1^r} \frac{1}{\alpha_i^{\theta}}\right) = \eta.$$

The product converges since $\sum \frac{\log a_i}{a_i^s}$ converges. From (12) we have for $A_1m \leq x \leq a_1^k A_1m$

(13)
$$\frac{F(x)}{(x+1)^{\rho}} > c + \frac{\delta\eta}{2}.$$

Now choose k so great that

(14)
$$\prod_{r>k} \sum_{a_i \leq a_i^r} \frac{1}{a_i^o} > \frac{c + \frac{1}{4}\delta\eta}{c + \frac{1}{2}\delta\eta}.$$

Then from (13) and (4) we have for $A_1a_1^km \leq x \leq A_1a_1^{k+1}m$

$$F(x) > \sum_{a_i \le a_1^{k+1}} F\left[\frac{x}{a_i}\right] > \left(c + \frac{\delta\eta}{2}\right) \sum_{a_i \le a_1^{k+1}} \frac{(x+1)^s}{a_i^s}.$$

Similarly for any r, in the interval $A_1a_1^rm \leq x \leq A_1a_1^{r+1}m$ we have by (14)

$$\frac{F(x)}{(x+1)^\rho} > \left(c + \frac{\delta\eta}{2}\right) \prod_{i>k} \sum_{a_i < a_i^g} \frac{(x+1)}{\rho} > \frac{c + \delta\eta}{4}.$$

Thus $\lim \frac{F(x)}{(x+1)^{\rho}} > c$. This contradicts (6) and completes the proof of our theorem.

It is easy to see that in our theorem, we can replace the assumption that $\sum \frac{1}{a_i^{1+\epsilon}}$ converges by the following slightly more general one: There exists

a k > 0 such that $\sum \frac{1}{a_i^k}$ converges, and $\sum \frac{\log a_i}{a_i^k}$ converges too.

Let $a_k = k + 1$. By using Lemma 2 we can prove that constants c_1 and c_2 exist, $0 < c_2 < c_1 < 1$, such that for infinitely many n

$$f(n) > \frac{n^{\rho}}{e^{(\log n)^{c_1}}}$$

and that for all $n > n_0$

$$f(n) < \frac{n^{\rho}}{e^{(\log n)^{\alpha_0}}}.4$$

As I shall show in another paper the methods used here yield some asymptotic formulas in the theory of partitions.

THE UNIVERSITY OF PENNSYLVANIA

^{*}E. Hille proved that $f(n) > n^{p-\epsilon}$ for infinitely many n (ibid).