ON SOME ASYMPTOTIC FORMULAS IN THE THEORY OF THE "FACTORISATIO NUMERORUM"

By P. Endols
(Received December 2, 1940)

Let $1<a_{1} \leqq a_{2} \leqq \cdots$ be a sequence of integers. Denote by $f(n)$ the number of representations of n as the product of the a^{\prime} 's, where two representations are considered equal only if they contain the same factors in the same order. As far as I know the first papers written on the subject are those of L. Kalmár, ${ }^{1}$ who proved by using the methods of analytic number theory that if $a_{k}=k+1$ then

$$
\begin{equation*}
F(n)=\sum_{r=1}^{n} f(r)=-\frac{n^{e}}{p s^{\prime}(\rho)}[1+o(1)], \tag{1}
\end{equation*}
$$

ρ is defined as the unique positive root of $\zeta(\rho)=2$. He also gives estimates for the error term.
Another paper on this subject is that of E. Hille. ${ }^{2}$ He obtains arnong others the following results: Let $p_{1}<p_{2}<\cdots$ be a sequence of primes and $a_{1}<a_{2}<\cdots$ the sequence of integers composed of these primes, then

$$
\begin{equation*}
F(n)=c n^{p}[1+o(1)], \tag{2}
\end{equation*}
$$

where $\sum_{i} \frac{1}{a_{i}^{p}}=\overline{1}, \rho>0$. Hille uses the theorem of Wiener and Ikehara.
In the present paper we assume that $\sum \frac{1}{a_{i}^{1+,}}$ converges for every ϵ and that the a 's are not all powers of a_{1}, then we prove that

$$
\begin{equation*}
F(n)=c n^{n}[1+o(1)], \tag{3}
\end{equation*}
$$

where $\sum_{i} \frac{1}{a_{i}^{p}}=1, \rho>0$. The proof will be elementary.
First we need 2 Lemmas.
Lemma 1

$$
\begin{equation*}
F(n)=\sum_{k} F\left[\frac{n}{a_{k}}\right]+1 .^{3} \tag{4}
\end{equation*}
$$

Proof. Follows immediately by considering those products in which a_{k} is the first factor, and summing for a_{k}.

[^0]Lemma 2.

$$
\begin{equation*}
0<\lim \frac{F(n)}{n^{*}} \leqq \lim \frac{F(n)}{n^{p}}<\infty . \tag{5}
\end{equation*}
$$

Proof. Put $F(n)=c_{n} n^{n}$. We have from (4)

$$
c_{n} n^{n}<\min _{i \leq \frac{n}{2}} c_{i} \sum_{o k}, \frac{n^{n}}{a_{k}^{b}}+1
$$

hence

$$
c_{n}<\max _{i \leq \frac{n}{2}} c_{\mathrm{a}}+\frac{1}{n^{\circ}} .
$$

Thus by induction

$$
c_{n}<1+\sum_{2 m-1<n} \frac{1}{2^{m^{m}}}<\infty,
$$

which proves the first half of (5).
The proof of the second half of (5) will be slightly more complicated. Put $F(n)=c_{n}^{\prime}(n+1)^{e}$. It suffices to prove that $\lim c_{n}^{\prime}>0$. From $\left[\frac{n}{a_{n}}\right] \geqq$ $\frac{n+1}{a_{k}}-1$ we obtain by (4)

$$
c_{n}^{\prime}(n+1)^{\prime}>\min _{i \leq \frac{n}{2}} c_{i}^{\prime} \sum_{\alpha \leqslant n} \frac{(n+1)^{n}}{a_{k}^{\prime}}=\min _{i \leq \frac{n}{2}} c_{i}^{\prime}(n+1)^{p}\left(1-\sum_{a_{k}>n} \frac{1}{a_{k}^{\prime}}\right) .
$$

Thus

$$
c_{n}^{\prime}>\min _{1 \leq \frac{\pi}{2}} c_{i}^{\prime}\left(1-\sum_{a_{n}>n} \frac{1}{a_{k}^{n}}\right) .
$$

Hence by induction

$$
c_{n}^{\prime}>\prod_{1 m=1<n}\left(1-\sum_{a_{k}>D^{n}} \frac{1}{a_{k}^{h}}\right) .
$$

The product on the right side (if extended to infmity) converges since

$$
\sum_{n=1}^{\infty} \sum_{a_{n}>2^{m}} \frac{1}{a_{k}^{p}} \leqq \sum_{a_{k}} \frac{\log a_{k}}{a_{k}^{\prime}}<c \sum \frac{1}{a_{k}^{1+k^{\prime}}}
$$

converges. This proves $\lim c_{a}^{\prime}>0$, and completes the proof of Lemma 2
Now we can prove our theorem. Suppose that (3) does not hold, denote

$$
\begin{equation*}
0<c=\lim \frac{F(n)}{n^{\nu}}=\lim \frac{F(n)}{(n+1)^{\rho}}<\lim \frac{F(n)}{n^{\rho}}=\lim \frac{\dot{F}(n)}{(n+1)^{\prime}}=C<\infty . \tag{6}
\end{equation*}
$$

Let m be sufficiently large and such that $F(m)>(C-\delta)(m+1)^{n}$. Clearly a fixed k exists (depending only on σ and C) such that for every x satisfying $m \leqq x \leqq m(1+k)$

$$
\begin{equation*}
\frac{F(x)}{(x+1)^{\prime}}>\frac{C+c}{2} . \tag{7}
\end{equation*}
$$

Now let $a_{\text {}}$ be the least a which is not a power of a_{1}. Consider any x satisfying $m o_{1} \leqq x \leqq m a_{1}(1+k)$. We have by (4), (6). (7) and $\left[\frac{x}{a_{i}}\right]+1 \geqq \frac{x+1}{a_{i}}$

$$
F(x)>\sum_{a ; \leq 2} F\left[\begin{array}{l}
x \tag{8}\\
a_{i}
\end{array}\right]>\frac{c+C}{2} \frac{(x+1)^{p}}{a_{i}^{*}}+c \sum_{d i>a_{1}} \frac{(x+1)^{p}}{a_{i}^{p}}-o\left(x^{\circ}\right) .
$$

Thus
(9)

$$
\frac{F(x)}{(x+1)^{\prime}}>c+\frac{c-c}{2 a_{i}^{\prime}}-o(1) .
$$

Similarly we obtain that for the x satisfying $a_{1}^{\alpha} a_{i}^{g} m \leqq x \leqq a_{1}^{\alpha} a_{i}^{g} m(1+k)$

$$
\begin{equation*}
\frac{F(x)}{(x+1)^{\prime}}>c+\delta_{\alpha, a} \tag{10}
\end{equation*}
$$

where $\delta_{u, a}$ depends only upon α and β. It is well known that the quotient of two consecutive integers of the form $a_{1}^{\sigma} a_{i}^{3}$ tends to 1 . Thus there exists a sequence of integers $A_{1}<A_{2}<\cdots<A_{+}$all of the form $a_{1}^{a} a_{8}^{b}$ and satisfying

$$
\frac{A_{i+1}}{A_{i}}<1+k, \quad i=1,2, \ldots r-1 \text { and } A_{r}>a_{1} A_{1}
$$

Thus by (10) and since the intervals $\left[A_{i} m, A_{i} m(1+k)\right]$ and $\left[A_{i+1} m, A_{i+1} m(1+k)\right]$ overlap we have for $A_{y} m \leqq x \leqq a_{2} A_{1} m$

$$
\begin{equation*}
\frac{F(x)}{(x+1)^{n}}>c+\min \delta_{o, l}=c+\delta_{1} \tag{11}
\end{equation*}
$$

lor sufficiently large m, where $\bar{\partial}$ is fixed and depends only on c and C. Consider now the integers x satisfying $a_{1} A_{1} m \leqq x \leqq a_{1}^{2} A_{1} m_{1}$ by (4), (6) and (11) we obtain 18 in (8) and (9)

$$
\frac{F(x)}{(x+\cdot)^{\prime}}>(c+\delta) \frac{1}{a_{1}^{n}}+c \sum_{i_{i}>a_{i},} \frac{1}{a_{i}^{i}}-o(1)=c+\delta\left(1-\sum_{a_{i}>a_{i}} \frac{1}{a_{i}^{n}}\right)-o(1) .
$$

(i.e $\frac{x}{a_{1}}$ lies in $\left[A_{1} m, A_{1} m(1+k)\right]$). Similarly for the integers satisfying $a_{1}^{2} A_{1} m \leqq$ $z \leqq a_{2}^{1} A_{1} m$ we have

$$
\begin{aligned}
& -o(1)>c+\delta\left(1-\sum_{\alpha_{i} \gg_{1}} \frac{1}{a_{i}^{\sigma}}\right)\left(1-\sum_{\omega \gg_{1}^{2}} \frac{1}{a_{i}^{n}}\right)-o(1) .
\end{aligned}
$$

Finally we obtain for $a_{1}^{k-1} A_{1} m \leqq x \leqq a_{1}^{k} A_{1} m$ (k fixed, m sufficiently large)

$$
\begin{equation*}
\frac{F(x)}{(x+1)^{p}}>c+\delta \prod_{r=1}^{k}\left(1-\sum_{a_{i}>a_{1}^{r}} \frac{1}{a_{i}^{f}}\right)-o(1) \tag{12}
\end{equation*}
$$

Denote

$$
\prod_{r=1}^{\infty}\left(1-\sum_{a_{i}>o_{1}^{r}} \frac{1}{a_{i}^{n}}\right)=\eta
$$

The product converges since $\sum \frac{\log a_{i}}{a_{i}^{\text {i }}}$ converges. From (12) we have for $A_{1} m \leqq x \leqq a_{1}^{k} A_{2} m$

$$
\begin{equation*}
\frac{F(x)}{(x+1)^{\beta}}>c+\frac{\delta \eta}{2} \tag{13}
\end{equation*}
$$

Now choose k so great that

$$
\begin{equation*}
\prod_{r>k} \sum_{a_{i} \leq a_{i}^{p}} \frac{1}{a_{i}^{p}}>\frac{c+\frac{1}{i} \delta \eta}{c+\frac{1}{2} \delta \eta} \tag{14}
\end{equation*}
$$

Then from (13) and (4) we have for $A_{1} a_{1}^{k} m \leqq x \leqq A_{1} a_{1}^{k+1} m$

$$
F(x)>\sum_{a_{i \leq \alpha_{1}^{k}+1}} F\left[\frac{x}{a_{i}}\right]>\left(c+\frac{\delta \eta}{2}\right) \sum_{a_{i} \leq \sigma_{1}^{h+1}} \frac{(x+1)^{p}}{a_{i}^{p}} .
$$

Similarly for any r, in the interval $A_{1} a_{1}^{r} m \leqq x \leqq A_{1} a_{1}^{r+1} m$ we have by (14)

$$
\frac{F(x)}{(x+1)^{p}}>\left(c+\frac{\delta \eta}{2}\right) \prod_{i>k} \sum_{\alpha_{i}<\frac{\alpha}{1}} \frac{(x+1)}{\rho}>\frac{c+\delta \eta}{4}
$$

Thus $\lim \frac{F(x)}{(x+1)^{p}}>c$. This contradicts (6) and completes the proof of our theorem.

It is easy to see that in our theorem, we can replace the assumption that $\sum \frac{1}{a_{i}^{1+\pi}}$ converges by the following slightly more general one: There exists a $k>0$ such that $\sum \frac{1}{a_{i}^{k}}$ converges, and $\sum \frac{\log a_{i}}{a_{i}^{k}}$ eonverges too.

Let $a_{k}=k+1$. By using Lemma 2 we can prove that constants c_{1} and a_{a} exist, $0<c_{2}<c_{1}<1$, such that for infinitely many n

$$
f(n)>\frac{n^{p}}{e^{(\log n) c_{1}}}
$$

and that for all $n>n_{0}$

$$
f(n)<\frac{n^{b}}{e^{\left.\cos ^{n} n\right)^{2}}} .4
$$

As I shall show in another paper the methods used here yield some asymptotic formulas in the theory of partitions.

The Univensity of Pennsylvania

'E. Hille proved that $f(n)>n^{n-1}$ for infinitely many n (ibid).

[^0]: ${ }^{1}$ L, Kalmér, Acta Litt ac Scient. Szeged, Tom. 5 (1930) p. 95-107.
 ${ }^{1}$ E. Hille, Acta Arithmetica Vol, 2 (1937) p. 134-146.
 ${ }^{\text {i }}$ The use of this identity was suggested to me by L. Kalmár.

