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THE DISTRIBUTION OF THE NUMBER OF SUMMANDS IN THE
PARTITIONS OF A POSITIVE INTEGER

By PAUL ERDÖS AND JOSEPH LEHNER

1 . It is well known that p(n), the number of unrestricted partitions of a posi-
tive integer n, is given by the asymptotic formula [21 1

(1 .1)

	

p(n)

	

4n3i exp Cni,

	

C = 9r(~) # .

In §2 we prove that the "normal" number of summands in the partitions of n
is

C-1n1
log n. More precisely, we prove the following

THEOREM 1 .1 . Denote by pk(n) the number of partitions of n which have at
most k summands. Then, for

(1.2)

	

k =
C_1n1

log n + xnl ,

we have

(1 .3)

	

lim
p(n)

= exp -Ce-' .

The right member of (1 .3) is strictly monotone and continuous ; it tends to 0
as x - - oo and to 1 as x ---> + oo . Hence, it is a distribution function . Also
from (1 .3) we clearly obtain the weaker result that if f(n) is any function tending
with n to infinity, then the number of summands in "almost all" partitions of n
lies between

(1.4)

	

n4

Cg	 n f f(n) - ni .

It is easily seen that the number of partitions of n having k or less summands
is equal to the number of partitions of n in which no summand exceeds k . Thus
the preceding results can be applied to this case also .

In §3 we consider P(n), the number of partitions of n into unequal parts.
(By a theorem of Euler, P(n) is also equal to the number of partitions of n
into odd summands with repetitions allowed .) We obtain results similar to the
above for pk(n), but we shall not give all details of the proof .

In §4 we derive an asymptotic formula for pk(n),

n-1

(1 .5)

	

pk(n) ti k - 1
k!

	

'
valid uniformly in k in the range k = o(n1) .

Received January 9, 1941 . The first-mentioned author is a Harrison Research Fellow .
1 Numbers in brackets refer to the bibliography at the end of this paper .
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These matters, to our knowledge, have not been discussed previously . Some-
what similar questions have been suggested by Castelnuovo [1] and treated by
Tricomi [5] . The collected works of Sylvester are full of papers dealing with
pk(n), for particular values of k . However, Sylvester did not consider the effect
of making k a function of n, i .e ., he did not discuss the asymptotic behavior
of pk(n) . His attack was entirely algebraic. In their famous paper on parti-
tions Hardy and Ramanujan [2] give an inequality for pk(n) for finite k . If we
use the generating function for pk(n) and the calculus of residues, it is easy to
derive an asymptotic formula (see §5) .

In one of his numerous papers on partitions Sylvester ([4], pp. 90-99, esp .
p. 93, footnote) remarked that in attempting to work out problems of this sort
one meets with another class of partitions in the midst of the problem, so that
it is difficult to avoid circularity . It has been possible to do this in our case by
using elementary inequalities for the occurring partition function .

2. We start from the following identity

pk(n) = p(n) - E p(n - (k + r))
15r :r~ n-k

+

	

E

	

p(n - (k + r1) - (k + r2))
O<ri<r2

1 <r i+r2 S_ n-2k

p(n - (k + ri) - (k + r2) - (k + r3)) + - . . .
0<ri<r2<r31 <r i+r2+r3 5_ n-3k

= p(n) {1 -S1+S2 -S3+ - . . .} .

(2 .1) is a simple application of the Sieve of Eratosthenes ; we use also the remark
in the paragraph of §1 following (1 .4), and the obvious fact 2 that the number of
partitions of n into summands which include k is equal to p(n - k) . Also, by
a well-known principle of Bruns' method ([3], p. 75, (59)),

(2.2) 1 -
S1 + S2 - +

	

S2Y_1 <
p~

	 < 1 - Sl + S2 - + . . . + S2r
n

(v = 1, 2, 3, . . .) .

Now we estimate S1 , S2, . . . . Using (1 .1), we have, with k = C-'nl log n

+ xn},

S"

	

n	exp [C(n - k - r)' - Cn1 ] _ E1 + E2 .
15_r~n-k-1 n - k - r

	

ran*

	

r>nt

In E1, n(n - k - r)-1 r ., 1 and (n - k - 1)' - nl - in-i(k + r) ; thus

2 This principle will be used several times in this paper .
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~1 v E exp [-C •2n-4(k + r)] = n-°̀ exp [-2Cx] E exp [-2Crn 41
r5nI

	

15r5ni

= n-' exp [-2Cx] exp [-2Cn-']
1 - exp [-2Cn'°]
1 - exp [ - 2Cn 4 ]

2n}n exp [-2Cx] •C
< n E exp [-2Cn-4(k + r)] < n

	

exp [-2Crn-']
r>nI

	

r>nI

< n exp [-2Cn-n] E 1 < n2 exp [-2Cn'°] = o(1) .
r>nt

Therefore,

(2.3)

Next

S2= 1

	

E

	

p(n-2k-r1-r2)- 1

	

E p(n-2k-2r)
2! P(n) 15r1,r25_n-2k

	

p(n) 1<r5_n-2k

= 2~ (E1 + `2) - E3 - E4,
r5_n}

	

r>nI
where E1 runs over all pairs (r1, r 2 ) in which neither r1 nor r2 exceeds n1 ; E2
over all pairs in which at least one member exceeds nt . As before, we find

Sl ^ C exp [-2Cx] .

~1 n exp [-Cx] E exp [-2Cn}(rl + r2 )]
r1,r2 :S n#

= exp [-Cx]( E exp [-2Crin-'])2
- \C

exp [-2Cx] )2 ,n

	

r15_n}
~2 = 0(1),

~3 =
1
exp [-Cx] E exp [-Crn~] ~ C-1n--4 exp [-Cx]

rsnI
= 0(1),

E4 = 0(1) .

Therefore,

(2.4)

Similarly we get for Sv

(2.5)

z
S2

	

(
exp [-2Cx]) .

Sr -
1(2

exp [-2Cx] /' .
vC
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Hence from (2.2) and the fact that S • - 0 with v ', we have

p (n

	

1 + • (-1)'S• = exp C-C e - c'),

which is (1 .3) .

3. We now consider P(n), the number of partitions of n into unequal sum-
mands. Such a partition will be called an "unequal partition" ; a partition into
odd summands we shall call an "odd partition" . We outline the proof of the
following
THEOREM 3.1 . For almost all unequal partitions of n, the number of summands

in a given partition not exceeding xn' lies between

(3 .1)

	

n log 1 + e_D=
± en ,

	

D = 1r(s) } •

To the odd partition

(3.21)

	

n = 1 •x1 + 3 .xs + . . . + (2r + 1)x2,+1
corresponds in a one-to-one way the unequal partition

r

	

821+1
(3.22)

	

n = E (21 + 1) ~# 2821+1,t _ E (21 + 1)2a21+ 1,
t-o

	

e-

	

to
where

x; = 2a+ •1 + 2a` , 2 + . . . + 2a` , ' ; .

Denote by A (x) the number of summands not exceeding xn~ in a given partition
of n, and by E a sum which runs over all unequal partitions of n. Then

P(n)

(3 .3)

	

E A(x) _ E P.(n),
P(n)

	

ISu<xn#

where Pn(n) is the number of unequal partitions of n which contain the sum-
mand u. Let u = 2k(2v + 1) .

In order to calculate Pn(n), we consider all odd partitions of n (3 .21) which
contain (2v + 1),

(3.41)

	

n = 1 .x, + . . . + ( 2v + 1)x 2 ,+1 + . . .

and in which, moreover, 2k occurs in the dyadic expansion of x2,+1 ,

(3.42)

	

x2,+1 = . . . + 2k + . . .

By the correspondence (3.21), (3 .22), Pn (n) is equal to the number of such
partitions .

In order to count these partitions we let k = 0, 1, 2, . . • in turn . k = 0

3 This correspondence, of course, furnishes a proof of Euler's theorem .



implies u is odd . Then in (3.41), x2„+1 runs through all odd integers, since in
(3.42) a 2° = 1 must occur. Hence, we are interested in those odd partitions
which contain 2v + 1 exactly once, exactly three times, etc . Their number is
clearly

(3.51)
P(n - (2v + 1)) - P(n - 2(2v + 1))

+ P(n - 3(2v + 1)) - P(n - 4(2v + 1)) +

and this must be summed on v = 0, 1, 2, • . . , such that u = 2v + 1 < xnl .
In the same way we count, for a general k, those odd partitions which con-

tain 2v + 1 exactly 2k , 2k + 1, • . . , 2k+1 - 1 times; 2k+1 + 2k, 2k+1 + 2k + 1, , . ,
2k+2 times ; etc . The number of such partitions is seen to be

P(n - 2k (2v + 1)) - P(n - 2.2 k(2v + 1))
(3.52)

+ P(n - 3 .2k(2v + 1)) - P(n - 4 .2k(2v + 1)) +

this to be summed on v = 0, 1, - • • , such that u = 2 k(2v + 1) < xn}.
To these sums we can apply the method of §2, using the asymptotic expression

for P(n) given by Hardy-Ramanujan ([2], p. 113),'

P(n) ti exp [Dn' } ]
4.3i•n t

(3 .61)
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In this way we obtain the asymptotic value of E A (x) as

(3.62)

Next we consider

(3.71)

Now

(3.72)

P(n)

P(n)
A (x) ^'

D
P(n) log	2

0(x) = E [A(x) - n} F(x)] 2
P(n)

ti E A'(x) - nP(n)F2(x),
P(n)

where we have written for abbreviation

F(x) =
b

log 1+e°x .

A2(x) _

	

F Pn1.n9(n),
P(n)

	

15s1'U2<xn }

where P,,, ,' 2 (n) denotes the number of unequal partitions of n containing both

' See also L . K . Hua, On the number of partitions of a number into unequal parts, Bulletin
of the American Mathematical Society, vol . 46(1940), p. 419, abstract no . 279.
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u l and u2 ; P,,, , u, (n) = P,,, (n) . We calculate Pu,, u, ( n) by the same methods
used to find P u (n) . It turns out that5

(3.73)

	

Pu ,,u, (n) ' ' E1 . E2 .P(n),

	

E1 -
Pu, (n)

,

	

Pu, (n)
.

P(n)

	

E2 = P(n) '

thus

(3.74) E A2(x) N nF2(x)P(n)
P(n)

and

(3.75)

	

A(x) = o(nF2(x)P(n)) .

For a fixed e > 0, let N(x, e) be the number of unequal partitions of n for
which

This is equivalent to Theorem 3 .1 .
This leads to the following (x -> oo)

THEOREM 3.2 . For almost all unequal partitions of n the number of summands
in a given partition lies between

Di log 2 f en} .

By sharper arguments we can obtain

THEOREM 3.3 . The number of unequal partitions of n in which the number of
summands in a given partition is less than

n3 log 2 + yn}

is given by a Gaussian integral .

We add the following two theorems, which may be of some interest . They
can be proved very easily by using the methods of this section .

THEOREM 3.4 . Let

(3.81)

	

n=al+a2+ • . .+ak

s (3 .73) expresses the independence, in the sense of probability, of the function
P„ (n)/(P(n))' . This holds, however, only for the values considered, i .e ., u, , us < Xnl .

A (x) - nF(x) I > en'.

Then

and by (3.75),

A(x) > N(x, e) • e--n,

N(x, e) = o(P(n)) .
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be any partition of n . Define

f(n ; a1, a2 , . . . , ak) = f(n) _ E A;,

where A, runs over the different summands in the given partition . Then for almost
all partitions f(n) lies between

(3.82)

	

6n (1 f E) .

THEOREM 3.5. Let cp(n ; a,, a2, . . . , ak) = p(n) denote the number of different
summands in the partition (3.81) . Then for almost all partitions rP(n) lies between

(3.9)

	

Ci
(1 f e),

	

C

4 . We now discuss the asymptotic behavior of pk(n) for k = o(n}) and prove
the following

THEOREM 4.1 .

n - 1
(4.1)

	

pk(n) N k - 1
k!

	

'

this formula being valid uniformly in k for k = o(n } ) . e

LEMMA 4.2 . Let k = o(n }) . Then'

(4.2)

	

pk(n) > 2•k2•pk-1(n) .

In the proof of this lemma, we shall consider partitions into exactly k sum-
mands some of which may be zero. This is equivalent to the case of partitions
into k or fewer summands .

First we show that

(4.31)

	

pk(n) > n pk_i(n) .

Let

(4.32)

	

n = a1 + a2 + . . . + ak-1 ,

	

0 < a1 _< a2 < . . . <_ ak-1 ,

be any partition of n into k - 1 parts . Clearly ak_1 > n/k . Now if we write
ak-1 = x + y, 0 < x _< y, we obtain from each partition (4.32) at least

e I.e., for every e > 0, and 0 < kan -1 < e, the ratio of pk(n) to (k _ i)/k! remains between

1 t eas n--> ~ .
7 This result no doubt holds for k = 0(n}) .
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ak_1/2 > n/2k partitions of n into k parts. Hence, from all partitions (4.32)

we get at least pk-1(n) . n/2k partitions of n into k parts,

(4.33)

	

n = b 1 + b2 + . . . + bk ,

	

0 <_ bl =< b2 <_ . . . <_ bk .

In the set (4.33) no partition is duplicated more than
\2

times ; therefore

pk-1(n) 2k - pk(n) (2)'

and (4.31) follows.
Next, in (4.32), let A,, A2, . . . , A r be the distinct positive summands,

0 < A 1 < . . . < A, . If we break up each Ai into two parts as in the preceding
paragraph, we obtain at least

(4.41)

	

z(A1+A2+ . . . +Ar)

partitions in (4.33) .
In the following we denote by E a sum which runs over all partitions of n

Pk(n) r
into k parts some of which may be zero . We shall estimate E E A i .

Pk-l(n) i..1
We have

r

	

n

(4.42)

	

E E Ai = E spk-2(n - s),
Pk-1(n) i-1

	

a-1

since a given integer s appears in the left member as many times as there are
partitions of n into k - 1 parts one of which is s, i .e ., just pk_2(n - s) times .
By an extension of the same reasoning we get

k-1

E

	

aF, ai = npk-1(n)
Pk-1(n) i-1

(4.43) n

_ F, s{pk-2(n - s) + pk-s(n
es1

- 2s) + Pk-4(n - 3s) + . . . },

the series in the braces terminating of its own accord . Now

(4.44)

	

pk-3(n - 2s) + Pk-4(n - 3s) + . . . < 3pk_2(n - s) .

For, clearly,

Pk-4(n - 2s) 5 pk_2(n - s)'

Pk-4(n - 3s) <_ pk_(n - s)'
. . . . . . . . . . . . . . . . . . . . . . . . .

pk-.(n - (u - 1)s) <_ pk-,,+1(n - s)

(see footnote 2) ; hence

pk-3(n - 2s) + Pk-4(n - 3s) + . . . _< pk_2(n - s) + pk-3(n - s) + . . .



Applying (4.31) to the last inequality, we see that the left member does not
exceed

pk-2(n - s)S 1 + (n	2)a +
(k-3)a(k - 2) a + . . .~,

l

	

(n - s)2

We remark that we need only consider s < in, for otherwise the right member
of (4.43) reduces to the first term . For s < 'in, the above expression in braces
is less than

1+ 2na
+(2na

)z + . . . <1+a+4+ . . . =2,

since k = o(n+ ) . This proves (4 .44) .
Finally, (4.42), (4.43), (4.44) give

r

	

n

E E Ai = E spk-2(n - s)
Pk-l(n) i-1

	

sm1

(4.45)

	

> 1 E s{pk-2(n - s) + pk-a(n - 2s) + . . . }
4 8-1

4npk-1(n) .

(4.41) and (4.45) mean that by the process of breaking up each A i into two parts
we obtain from the set (4.32) at least 8npk-1(n) partitions in (4 .33) . Moreover,

no partition is duplicated more than (2 times . Hence

k
4npk-1(n) < pk(n) . 2 ,

and this proves Lemma 4.2 .

COROLLARY 4 .3 . If k = o(n), then the number of partitions of n into exactly
k positive summands is asymptotically equal to the number of partitions of n into k
or fewer positive summands .

For by a t-fold application of Lemma 4.2, we have

pk-a(n) <
(2k2n) pk(n) ;

hence
k-1

	

k-1

	

2 F. pk-1(n) < pk(n) E (2kt) = o(pk(n)),

since k = o(n} ) .

LEMMA 4.4 . The number of partitions of n into exactly k positive summands
not all of which are different is o(p k(n))
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Let any such partition be given by

(4.56)

x
(4.51)

	

n = t1b 1 + t2b2 + • • + txbx ,

	

E ti = k,
i-1

and ti > 1 for some i, i .e ., x < k . To this we make correspond

(4.52)

	

n = c 1 + c2 + . . . + cx ,

	

ci = t ibi .

This furnishes a single-valued mapping of (4.51) into a subset of the set of
partitions of n with fewer than k summands . This inverse mapping is far from
being single-valued, however . In fact, given a fixed partition of (4.52),

(4.53)

	

n = di + d2 + . . . + dk-t ,

	

t > 0,

we inquire in how many ways it can be mapped into (4.51) . The inverse map-
ping exhausts the set (4.51) .

For this purpose we select v of the d's, say di, , die , di, , and split d i,
into w 1 equal parts, d ie into w2 equal parts, • • • , di, into w, equal parts
(w1 2t 2,

	

w" >_ 2) . 8 We must evidently have

(4.54)

	

w1 + w2 + . . . + w .n = v + t .

Since in a given decomposition v _-_5 t, we get

(4.55)

	

w1 + w2 + • • • + w,, < 2t .

Hence, the total number of decompositions obtainable from all possible choices
of v and w 1 , w2 , . . . , w„ is less than'

p(l) + p(2) + . . . + p(2t) < 4 t .

From a given decomposition (4 .54) we obtain at most (k - t)" _5 (k - t) t < k t
partitions in (4 .51), so that, all in all, we get at most 4 tk t partitions in (4 .51)
from our fixed partition (4.53) . But for each t there are pk- t(n) partitions of
the form (4.53) ; hence the total number of partitions of n into k positive sum-
mands not all of which are different is less than

k-1
E 4 t k t pk-t(n),t-1

and by Lemma 4 .2 this is less than
k-1

	

2k2 t

	

k-1 8k 8
pk(n) E 4 tTt (n) = pk(n) ~ ()' n = o(pk(n)),

by virtue of the condition k = o(n1) . Thus Lemma 4.4 is proved .

8 We assume here w, I di 1

	

w" I di, . This assumption only strengthens the inequali-
ties which follow .

9 This estimate follows from an elementary inequality for p(n), p(n) < 2°-1 . For the
proof of the latter, see footnote 11 .
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LEMMA 4.5 .1° The number, pk(n), of partitions of n into k positive summands
whose order is considered (i.e ., two partitions are counted as different if they differ

only in the order of their summands) is Ck - 1) .

Let

(4.61)

	

n = a1 + a2 + . . . + ak,

	

a; > 0.

To this partition we make correspond the combination

(4.62)

	

a1, a1 + a2 , a1 -}- a2 -1- as, . . . , aI + a2 + . . . + ak_I,

and this correspondence is clearly one to one . But each of the k - 1 integers
in (4.62) is not greater than n - 1, since ak k l ."
Now we can prove Theorem 4.1. From Corollary 4.3, it is clear that we

need consider only partitions having exactly k positive summands. Moreover,
from Lemma 4.4, we see that we may assume all summands in a given partition
to be different. But from a partition in which all k summands are different we
obtain k ! partitions of the type considered in Lemma 4.5 . Thus the theorem
follows .

5. By the application of the Hardy-Littlewood method we can obtain a
second proof of Theorem 4.1 . But it hardly seems worth while to use this
elaborate method unless something more results . It is easily seen that the
essential contribution is furnished by the neighborhood of x = 1 . Hence what
we need is information about the asymptotic character of the generating function

	 1	- -{-

	

pk(n)x"(1 -x)(l-x2) . . .(l-xk)

	

1
-

	

I

around x = 1 . The possibility of obtaining a suitably sharp asymptotic repre-
sentation remains to be investigated .
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