ON AN ELEMENTARY PROOF OF SOME ASYMPTOTIC FORMULAS IN THE THEORY OF PARTITIONS

By P. Erdös

(Received January 7, 1942)
Denote by $p(n)$ the number of partitions of n. Hardy and Ramanujan ${ }^{1}$ proved in their classical paper that

$$
p(n) \sim \frac{1}{4 n 3^{\frac{1}{2}}} e^{c n^{\frac{1}{2}}}, \quad c=\pi\left(\frac{2}{3}\right)^{\frac{1}{2}},
$$

using complex function theory. The main purpose of the present paper is to give an elementary proof of this formula. But we can only prove with our elementary method that

$$
\begin{equation*}
p(n) \sim \frac{a}{n} e^{e n t} \tag{1}
\end{equation*}
$$

and are unable to prove that $a=1 / 4.3^{\frac{1}{2}}$.
Our method will be very similar to that used in a previous paper. ${ }^{2}$ The starting point will be the following identity:

$$
\begin{equation*}
n p(n)=\sum_{v=1} \sum_{k=1} v p(n-k v), \quad p(0)=p(-m)=0 . \tag{2}
\end{equation*}
$$

(We easily obtain (2) by adding up all the $p(n)$ partitions of n, and noting that v occurs in $p(n-v)$ partitions.) (2) is of course well known. In fact, Hardy and Ramanujan state in their paper ${ }^{3}$ that by using (2) they have obtained an elementary proof of

$$
\begin{equation*}
\log p(n) \sim c n^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

The proof of (3) is indeed easy. First we show that

$$
\begin{equation*}
p(n)<e^{c n!} \tag{4}
\end{equation*}
$$

We use induction. (4) clearly holds for $n=1$. By (2) and the induction hypothesis we have

$$
n p(n)<\sum_{\substack{v=1 \\ k v<n}} \sum_{k=1} v e^{e(n-k v)^{\ddagger}}<\sum_{v=1}^{\infty} \sum_{k=1}^{\infty} v e^{c n^{\xi}-c k v / 2 n^{k}}=e^{c n^{\xi} t} \sum_{k=1}^{\infty} \frac{e^{-k c / 2 n \frac{1}{k}}}{\left(1-e^{k c / 2 n t}\right)^{2}} .
$$

[^0]Now it is easy to see that for all real $x, \frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}<\frac{1}{x^{2}}$. Thus

$$
n p(n)<e^{e n!} \sum_{k=1}^{\infty} \frac{4 n}{c^{2} k^{2}}=n e^{e n^{4}}
$$

which proves (4).
Similarly but with slightly longer calculations, we can prove that for every $\epsilon>0$ there exists an $A>0$ such that

$$
\begin{equation*}
p(n)>\frac{1}{A} e^{(c-t) n^{\frac{1}{2}}} \tag{5}
\end{equation*}
$$

(4) and (5) clearly imply (3).

To prove (1) we need the following
Lemma 1:

$$
\begin{equation*}
\sum=\sum_{\substack{v=1 \\ k v<n}}^{\infty} \sum_{\substack{k=1}}^{\infty} \frac{v e^{e(n-k v)!}}{n-k v}=e^{e n t}\left[1+O\left(\frac{1}{n^{\frac{1}{+c t}}}\right)\right] \tag{6}
\end{equation*}
$$

for some fixed $\epsilon>0$.
Proof. We omit as many details as possible, since the proof is quite straight forward and uninteresting. We evidently have by expanding $1 /(n-k v)$ and omitting the terms with $k v>n^{i+e}$

$$
\begin{aligned}
& \sum_{\substack{v=1 \\
k v<n}}^{n} \sum_{k=1}^{n} \frac{v e^{e(n-k v)!}}{n-k v}=\frac{1}{n} \sum_{\substack{v=1 \\
k v<n}}^{\infty} \sum_{\substack{k=1}}^{\infty} v e^{e(n-k v) \ddagger}+\frac{1}{n^{2}} \sum_{\substack{v=1 \\
k v<n}}^{\infty} \sum_{k=1}^{\infty} k v^{2} e^{e(n-k v)^{3}} \\
& +O\left(\frac{e^{e n^{t}}}{n^{t+c}}\right)=\sum_{1}+\sum_{2}+O\left(\frac{e^{e n t}}{n^{\text {t+e }}}\right) .
\end{aligned}
$$

Now

$$
\sum_{2}=\frac{e^{c n^{\sharp} t}}{n^{2}} \sum_{v=1}^{\infty} \sum_{k=1}^{\infty} k v^{2} e^{-c k v / 2 n t}+O\left(\frac{e^{c n^{\hbar} t}}{n^{\frac{1}{+}+c}}\right)
$$

(It is easy to see that the other terms of $e^{e(n-k v)^{\frac{1}{c}}}$ can be neglected and that the summation for v and k can be extended to ∞.) Thus

$$
\begin{aligned}
& \sum_{2}=\frac{e^{e n^{\frac{1}{2}}}}{n^{2}} \sum_{k=1}^{\infty} \frac{2 k}{\left(1-e^{\left.-k c / 2 n^{2}\right)^{3}}\right.}+O\left(\frac{e^{c n^{3}}}{n^{\frac{1}{2}+\epsilon}}\right)=e^{c n^{4}} \sum_{k=1}^{\infty} \frac{2 k \cdot 8 n^{\frac{3}{4}}}{k^{3} c^{3}} \\
& +O\left(\frac{e^{e n t}}{n^{j+\epsilon}}\right)=\frac{4}{c} \frac{e^{e n t}}{n^{\frac{1}{4}}}+O\left(\frac{\left.e^{e n}\right]}{n^{\bar{j}+\epsilon}}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \sum_{1}=\frac{e^{c n^{\frac{1}{2}}}}{n} \sum_{v=1}^{\infty} \sum_{k=1}^{\infty} v e^{-c k v / 2 n^{\frac{3}{3}}-c k^{2} v^{2} / 8 n^{\frac{3}{2}}}+O\left(\frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right) \\
& =\frac{e^{c n^{\frac{1}{2}}}}{n}\left(\sum_{v=1}^{\infty} \sum_{k=1}^{\infty} v e^{-c k v / 2 n^{\frac{1}{4}}}-\frac{c k^{2} v^{3}}{8 n^{\frac{2}{2}}} e^{-c k v / 2 n^{\frac{1}{2}}}\right)=\sum_{1}^{\prime}-\sum_{1}^{\prime \prime}+O\left(\frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right) . \\
& \sum_{1}^{\prime \prime}=\frac{c e^{c n^{3}}}{8 n^{\frac{1}{2}}} \sum_{v=1}^{\infty} \sum_{k=1}^{\infty} k^{2} v^{3} e^{-c k v i 2 n^{\frac{3}{3}}}=\frac{c e^{c n^{\frac{3}{3}}}}{8 n^{\frac{1}{2}}} \sum_{k=1}^{\infty} \frac{6 k^{2}}{\left(1-e^{\left.-c k / 2 n^{3}\right)^{4}}\right.}+O\left(\frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right) \\
& =\frac{c e^{c n^{\frac{1}{2}}}}{8 n^{\frac{1}{2}}} \sum_{k=1}^{\infty} \frac{6 k^{2} \cdot 16 n^{2}}{k^{\frac{4}{4}} c^{4}}+O\left(\frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right)=\frac{3}{c} \frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}}}+O\left(\frac{e^{c n^{\frac{1}{4}}}}{n^{\frac{1}{2}+\epsilon}}\right) \text {. } \\
& \sum_{1}^{\prime}=\frac{e^{c n^{\frac{1}{2}}}}{n} \sum_{v=1}^{\infty} \sum_{k=1}^{\infty} v e^{-c k v / 2 n^{\frac{1}{3}}}=\frac{e^{c n^{\frac{1}{3}}}}{n} \sum_{k=1}^{\infty} \frac{e^{-c k / 2 n^{\frac{1}{2}}}}{\left(1-e^{\left.-c k / 2 n^{\frac{1}{2}}\right)^{2}} .\right.}
\end{aligned}
$$

A simple calculation shows that

$$
\frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}=\frac{1}{x^{2}}+O(1), \quad \text { i.e. } \frac{e^{-c k / 2 n^{\frac{1}{2}}}}{\left(1-e^{-c k / 2 n^{b}}\right)^{2}}=\frac{4 n}{c^{2} k^{2}}+O(1)
$$

Hence

$$
\sum_{1}^{\prime}=\frac{e^{e n^{\frac{1}{4}}}}{n} \sum_{k=1}^{u} \frac{4 n}{c^{2} k^{2}}+\sum_{k>u} \frac{e^{-c k / 2 n^{\frac{1}{2}}}}{\left(1-e^{-c k / 2 n^{3}}\right)^{2}}+O\left(\frac{e^{e n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right), \quad u=\left[n^{\frac{j}{j}}\right] .
$$

But

$$
\sum_{k=1}^{n} \frac{4 n}{c^{2} k^{2}}=\frac{4 n}{c^{2}} \frac{\pi^{2}}{6}-\frac{4 n}{c^{2}} \sum_{k>u} \frac{1}{k^{2}}=n-\frac{4 n}{c^{2} u}+O\left(\frac{n}{u^{2}}\right) .
$$

And

$$
\begin{aligned}
\sum_{k>u} \frac{e^{-c k / 2 n^{\frac{1}{2}}}}{\left(1-e^{-c k / 2 n^{t}}\right)^{2}} & =\int_{u}^{\infty} \frac{e^{-c x / 2 n^{\frac{1}{2}}}}{\left(1-e^{-c x / 2 n t}\right)^{2}} d x+O\left(\frac{1}{u^{2}}\right) \\
& =\frac{2 n^{\frac{1}{2}}}{c\left(1-e^{-c u / 2 n^{t}}\right)}-\frac{n^{\frac{1}{2}}}{c}+O\left(\frac{1}{u^{2}}\right)=\frac{4 n}{c^{2} u}-\frac{n^{\frac{1}{2}}}{c}+O\left(\frac{1}{n^{\frac{1}{2}+\epsilon}}\right) .
\end{aligned}
$$

Thus finally

$$
\sum_{1}^{\prime}=e^{c n^{\frac{1}{2}}}-\frac{e^{c n \frac{1}{2}}}{c n^{\frac{1}{2}}}+O\left(\frac{e^{c n^{\frac{1}{2}}}}{n^{\frac{1}{2}+\epsilon}}\right) .
$$

Hence

$$
\sum=\sum_{1}^{\prime}-\sum_{1}^{\prime \prime}+\sum_{2}=e^{e_{n}^{3} \frac{1}{3}}\left[1+O\left(\frac{1}{n^{\frac{1}{2}+\epsilon}}\right)\right]
$$

which proves the lemma.

Next we show that

$$
\begin{equation*}
0<\lim \inf \frac{n p(n)}{e^{e n^{4}}} \leqq \lim \sup \frac{n p(n)}{e^{e n^{\frac{1}{4}}}}<\infty \tag{7}
\end{equation*}
$$

To prove (7) write

$$
\begin{equation*}
c_{1}^{(n)}=\max _{m \leqq n} \frac{m p(m)}{e^{c m^{\mathrm{I}}}} . \tag{8}
\end{equation*}
$$

Clearly by (8) and (6) and (2)

$$
(n+1) p(n+1) \leqq c_{1}^{(n)} \sum_{\substack{v=1 \\ k v<n}} \sum_{\substack{k=1}} \frac{v e^{e(n+1-k e)^{\frac{1}{2}}}}{n+1-k v}<c_{1}^{(n)} e^{e(n+1)^{\frac{1}{2}}}\left(1+\frac{b_{1}}{n^{1+c}}\right)^{4}
$$

Write

$$
\frac{(n+j) p(n+j)}{e^{\iota(n+j)!}}=c_{1}^{(n)}\left(1+\frac{b_{i}}{n^{3+t}}\right), \quad j=1,2, \cdots
$$

Then

$$
\begin{aligned}
(n+r+1) p(n+r+1)< & c_{1}^{(n)} \sum_{\substack{v=1 \\
k v \leqq n+r}} \sum_{k=1} \frac{v e^{c(n+r+1-k v)!}}{n+r}+1-k v \\
& +c_{1}^{(n)} \frac{\max _{j \leq r} b_{j}}{n^{j+\epsilon}} \sum_{\substack{v=1 \\
k v \leq r}} \sum_{k=1} \frac{v e^{e(n+r+1-k v)!}}{n+r+1-k v} \\
& <c_{1}^{(n)} e^{c(n+r+1) \frac{1}{2}}\left(1+\frac{b_{1}}{n^{j+e}}+\frac{\max _{i \leq r} b_{j}}{n^{j+e}} \frac{r^{2} e^{e(n+r+1)!}}{n}\right)
\end{aligned}
$$

since

$$
\sum_{k v \leqq r} v \leqq
$$

Hence

$$
b_{r+1}<b_{1}+\frac{r^{2} \max _{i \leq r} b_{i}}{n}
$$

We show that, for $r^{2} \leqq n / 2, b_{r+1} \leqq 2 \mathrm{~b}_{1}$. We use induction. We have

$$
b_{r+1}<b_{1}+\frac{r^{2} \cdot 2 b_{1}}{n} \leqq 2 b_{1}
$$

${ }^{4} b_{1}$ is chosen such that for every $m>0$

$$
\sum_{\substack{v \\ m-k v>0}} \sum_{\substack{k}} \frac{v e^{e(m-k v)^{\frac{1}{j}}}}{m-k v}<e^{e\left(m^{2}\right)}\left(1+\frac{b_{1}}{m^{\frac{1}{2}+}}\right) .
$$

Thus

$$
c_{1}^{\left[n+(j n) \frac{i]}{}\right.} \leqq c_{1}^{(n)}\left(1+\frac{2 b_{1}}{n^{i+c}}\right) .
$$

Or

$$
c_{1}^{((m+1) 2)}<c_{1}^{\left(m^{2}\right)}\left(1+\frac{10 b_{1}}{n^{\frac{1}{4} \epsilon}}\right)
$$

and since $\sum m^{1 / 1+\epsilon}$ converges we see that $\lim \sup c_{1}^{(n)}<\infty$; i.e. $\lim \sup n p(n) / e^{\text {ent }}<$ ∞. Similarly we can show that $\lim \inf n p(n) / e^{e n^{t}}>0$, which completes the proof of (7).

Next we prove that

$$
\begin{equation*}
\lim \inf \frac{n p(n)}{e^{c n^{\natural}}}=\lim \sup \frac{n p(n)}{e^{c n^{\natural}}} \tag{9}
\end{equation*}
$$

and this will complete the proof of (1).
Suppose that (9) does not hold; write

$$
\begin{equation*}
\lim \inf \frac{n p(n)}{e^{e n^{4}}}=d, \quad \lim \sup \frac{n p(n)}{e^{e n^{4}}}=D . \tag{10}
\end{equation*}
$$

Now choose n large and such that

$$
\frac{n p(n)}{e^{c n^{3}}}>D-\epsilon
$$

Then since $p(n)$ is an increasing function of n there exists a c_{2} such that for every m in the range $n \leqq m \leqq n+c_{2} n^{3}$

$$
\frac{m p(m)}{e^{c m^{3}}}>\frac{d+D}{2}
$$

Now we claim that for every r_{1} there exists a $\delta_{r_{1}}=\delta\left(r_{1}\right)$ such that, for $n \leqq m \leqq$ $n+r_{1} n^{\frac{1}{2}}$,

$$
\begin{equation*}
\frac{m p(m)}{e^{c m^{\dagger}}}>d+\delta_{r_{1}} \tag{11}
\end{equation*}
$$

We prove (11) as follows: We evidently have by our lemma $m p(m) \geqq d \sum_{\substack{v=1 \\ k v<m}} \sum_{k=1} \frac{v e^{e(m-k v)^{\frac{1}{2}}}}{m-k v}+\frac{D-d}{2} \sum_{\substack{v=1 \\ n \leqq m-k v \leqq n+c_{2} n^{\frac{1}{2}}}} \frac{v e^{e(m-k v)^{\frac{1}{2}}}}{m-k v}-o\left(e^{c m \mathbf{j}}\right)^{s}$
${ }^{5}$ The term $o\left(e^{\left.c m^{\frac{1}{2}}\right)}\right.$ is present because d is the lower limit and not the lower bound of $\frac{m p(m)}{e^{c m^{\xi}}}$.

$$
\begin{aligned}
& >d e^{c m^{\frac{1}{3}}}+\frac{D-d}{2} \frac{e^{c n^{\frac{1}{2}}}}{m} \sum_{n \leqq m-v \leqq n+c_{2} n^{\frac{1}{2}}} v-o\left(e^{c m^{\frac{1}{2}}}\right)>d e^{c m^{\frac{1}{2}}}+c_{3} e^{c n^{\frac{1}{3}}}-o\left(e^{c m^{\frac{1}{2}}}\right) \\
& >\left(d+\delta_{r_{1}}\right) e^{c m^{\frac{1}{2}}}, \quad\left(\text { i.e. } \frac{e^{c n^{\frac{1}{2}}}}{\left.e^{c m^{\frac{1}{4}}}>c_{4}\right) .}\right.
\end{aligned}
$$

which proves（11）．
Suppose $2 n \geqq m \geqq n+s n^{\frac{3}{4}}$ ，s sufficiently large；we show that

$$
\begin{equation*}
\sum_{\substack{v=1 \\ m-k v<n}} \sum_{\substack{k=1}} \frac{v e^{c(m-k v)\}}}{m-k v}<\frac{e^{c m}{ }^{c \mid}}{s^{10}} \tag{12}
\end{equation*}
$$

Clearly

$$
\begin{aligned}
& \sum_{\substack{v \\
0<m-k v<n}} \sum_{\substack{k \\
0}} \frac{v e^{c(m-k v)}}{m-k v} \cdot \leqq \sum_{\substack{\left.v \\
k v>s n^{k}\right\}}} \sum_{\substack{k \\
m \\
m}} \frac{v e^{c(m-k v)\}}}{m v} \\
& <e^{c m^{\frac{1}{y}}} \sum_{\substack{v}} \sum_{\substack{k \\
1 m>k v>s n^{\frac{1}{2}}}} \frac{2 v e^{-c k v / 2 m^{\frac{1}{2}}}}{m}+\sum_{\substack{v \\
m>k v ⿺ 辶}} \sum_{\substack{k \\
\frac{1}{2} m}} \frac{v e^{c(m-k v)^{\frac{1}{2}}}}{m-k v} \\
& <e^{c m^{\frac{1}{y}}} \sum_{\substack{v \\
\frac{1}{2} m>k v>s n^{\frac{1}{2}}}} \sum_{\substack{\frac{1}{2}}} \frac{2 v e^{-c k v / 2 m^{\frac{1}{2}}}}{m}+m^{2} e^{e\left(\frac{1}{2} m\right)^{\frac{1}{2}}},
\end{aligned}
$$

since

$$
\sum_{\substack{v \\ k v<x}} \sum_{k} v \leqq x^{2}
$$

Further

$$
\begin{aligned}
& \sum_{\substack{v}} \sum_{\substack{k \\
\frac{1}{2} m>k v>s n^{\frac{1}{2}}}} v e^{-c k v / 2 m^{\frac{1}{2}}}<\sum_{\substack{u=1 \\
(u+1) s n^{\frac{1}{v}} \geq k v>u s n^{\frac{1}{1}}}} \sum_{\substack{k}} v e^{-c u s n^{\frac{3}{3} / 2 m \frac{1}{t}}} \\
&<\sum_{\substack{u=1 \\
k v \leqq(u+1) s n^{\frac{1}{2}}}}^{m} \sum_{\substack{k=1}} v e^{-c u s / 4}<\sum_{u=1}^{m}(u+1)^{2} s^{2} n e^{-c u s / 4} .
\end{aligned}
$$

Thus

$$
\sum_{\substack{v \\ \frac{4}{2} m>k v>s n^{\}}}} \sum_{\substack{k}} v e^{-c k v / 2 m^{\frac{1}{2}}}<m s^{2} \sum_{u=1}^{\infty}(u+1)^{2} e^{-c u s / 4}<\frac{m}{4 s^{10}}
$$

for sufficiently large s ．Hence finally

$$
\sum_{\substack{v=1 \\ m-k v<n}} \sum_{k=1} \frac{v e^{c(m-k v) \frac{1}{2}}}{m-k v}<\frac{e^{c m \frac{1}{1}}}{2 s^{10}}+m^{2} e^{e\left(\frac{1}{2} m\right) \ddagger}<\frac{e^{c m \frac{1}{3}}}{s^{10}}
$$

for sufficiently large m and s（since $s<n^{\frac{1}{2}}$ ）．

Consider now the intervals $n+t n^{\frac{1}{2}}, n+(t+1) n^{\frac{3}{2}}, t>r_{1}, t+1<n^{\frac{3}{2}}$. Split it into t^{2} equal parts. Write

$$
\min \frac{m p(m)}{e^{c m^{4}}}=d+\delta_{t}^{u}, \quad n \leqq m \leqq n+\left(t+\frac{u+1}{t^{2}}\right) n^{\frac{1}{4}}
$$

and put $\delta_{t}^{2^{2}-1}=\delta_{t}$. Now let $n+\left(t+u / t^{2}\right) n^{\frac{2}{2}} \leqq m \leqq n+\left(t+(u+1) / t^{2}\right) n^{\frac{1}{2}}$; then we have

$$
m p(m)>d \sum_{\substack{v=1 \\ k v<m}} \sum_{\substack{k=1 \\ k}} \frac{v e^{c(m-k v)^{3}}}{m-k v}+\delta_{t}^{(u-1)} \sum_{v}^{\prime} \sum_{k} \frac{v e^{c(m-k v)^{\frac{1}{2}}}}{m-k v}-o\left(e^{c m^{\frac{1}{b}}}\right),
$$

where the primes indicate that the summation is extended only over those v and k for which $n \leqq m-k v \leqq n+\left(t+u / t^{2}\right) n^{\frac{1}{2}}$. Further by Lemma 1

$$
\begin{aligned}
& m p(m) \geqq\left(d+\delta_{t}^{(u-1)}\right) e^{c m^{\frac{1}{2}}}-\delta_{t}^{(u-1)} \sum^{\prime \prime} \frac{v e^{c(m-k v)^{\frac{1}{2}}}}{m-k v} \\
&-\delta_{t}^{(u-1)} \sum^{\prime \prime \prime} \frac{v e^{e(m-k v)^{\frac{1}{2}}}}{m-k v}-o\left(e^{c m^{\frac{3}{2}}}\right),
\end{aligned}
$$

where in $\sum^{\prime \prime}$ the summation is extended only over those v and k for which $m-k v \leqq n$, and in $\sum^{\prime \prime \prime}$ the summation is extended only over those v and k for which $m-k v \geqq n+\left(t+u / t^{2}\right) n^{\frac{3}{2}}$. We have by (11)

$$
\sum^{\prime \prime}<\frac{e^{e m^{\frac{1}{2}}}}{t^{10}}
$$

Further we have

$$
\sum^{\prime \prime \prime}<\frac{n}{t^{4}} \frac{2 e^{c m^{\frac{3}{3}}}}{m}<\frac{2 e^{c m^{\frac{1}{2}}}}{t^{4}}
$$

Hence finally

$$
m p(m)>e^{c m^{\frac{1}{2}}}\left(d+\delta_{t}^{(u-1)}-\frac{3 \delta_{t}^{(u-1)}}{t^{4}}\right)-o\left(e^{c m^{\frac{1}{2}}}\right)
$$

Hence

$$
\delta_{t}^{(u)}>\delta_{l}^{(u-1)}\left(1-\frac{3}{b^{4}}\right)-o(1)
$$

Thus if t is fixed, independent of n, we have

$$
\delta_{t+1}>\delta_{t}\left(1-\frac{3}{t^{4}}\right)^{t^{2}}-o(1)
$$

therefore

$$
\delta_{t}>\delta_{r_{1}} \prod_{u>r_{1}}\left(1-\frac{3}{u^{4}}\right)^{u^{2}}-o(1) .
$$

But $\prod_{u}\left(1-3 / u^{4}\right)^{u^{2}}$ converges; thus, if r_{1} was sufficiently large, we have $\delta_{t}>$ $\delta_{r_{1}} / 2$. Now choose r_{2} sufficiently large; then we have $\delta_{r_{2}}>\delta_{r_{1}} / 2$, i.e. for $n \leqq m \leqq$ $n+r_{2} n^{\frac{1}{2}}$,

$$
\frac{m p(m)}{e^{c m m^{4}}}>d+\frac{\delta_{r_{1}}}{2} .
$$

Consider the interval $n+t n^{\frac{3}{2}}, n+(t+1) n^{\frac{3}{4}}, t>r_{2}$. Split it into t^{2} equal parts. $\delta_{t}^{(u)}$ and δ_{t} have the same meaning as before. Suppose $n+\left(t+u / t^{2}\right) n^{\frac{3}{b}} \leqq m \leqq$ $n+\left(t+(u+1) / t^{2}\right) n^{3}$; then evidently

$$
m p(m)>\left(d+\delta_{t}^{(u-1)}\right) \sum_{v}^{\prime} \sum_{k}^{\prime} \frac{v e^{e(m-k v)}}{m-k v},
$$

where the primes indicate that the summation is extended only over those v and k for which $n \leqq m-k v \leqq n+n^{2}\left(t+u / t^{2}\right)$.
Now

$$
\sum_{v}^{\prime} \sum_{k}^{\prime} \frac{v e^{\varepsilon(m-k v)^{\frac{3}{2}}}}{m-k v}=\sum_{\substack{v=1 \\ k v<m}} \sum_{k=1}^{v e^{\varepsilon(m-k v)^{\frac{1}{2}}}} m-\sum^{\prime \prime}-\sum^{\prime \prime \prime},
$$

where $\sum^{\prime \prime}$ and $\sum^{\prime \prime \prime}$ are defined as before. By (12) and the previous estimate of $\sum^{\prime \prime \prime}$ we have

$$
\sum^{\prime \prime}<\frac{e^{c m}{ }^{c m}}{t^{10}}, \quad \sum^{\prime \prime \prime}<\frac{2 e^{c m}{ }^{\frac{c}{4}}}{t^{4}}
$$

Hence by Lemma 1

$$
m p(m)>e^{c m^{\ddagger}}\left(d+\delta_{t}^{(u-1)}\right)\left(1-\frac{3}{t^{4}}\right)-\frac{b_{1}\left(d+\delta_{t}^{(u-1)}\right) e^{e m^{\ddagger}}}{n^{\ddagger+\epsilon}} ;
$$

i.e.

$$
d+\delta_{t}^{(u)}>\left(d+\delta_{t}^{(u-1)}\right)\left(1-\frac{3}{t^{4}}\right)-\frac{b_{1}\left(d+\delta_{t}^{(u-1)}\right)}{n^{\frac{1}{+e}}},
$$

and

$$
d+\delta_{t+1}>\left(d+\delta_{t}\right)\left(1-\frac{3}{t^{4}}\right)^{t^{2}}-\frac{b_{1} t^{2}\left(d+\delta_{t}^{(u-1)}\right)}{n^{\frac{1}{2}+\epsilon}},
$$

or

$$
d+\delta_{s}>\left(d+\frac{\delta_{r_{1}}}{2}\right) \prod_{t>r_{2}}\left(1-\frac{3}{t^{4}}\right)^{t^{2}}-\frac{b_{2} s^{3}}{n^{\frac{1+\epsilon}{}}} .
$$

For sufficiently large r_{2} we have,

$$
\left(d+\frac{\delta_{r_{1}}}{2}\right) \prod_{t>r_{2}}\left(1-\frac{3}{t^{4}}\right)^{t^{2}}>d+\frac{\delta_{r_{1}}}{4},
$$

and if $s \leqq(\log n)^{2}$ and n is sufficiently large,

$$
\delta_{s}>\frac{\delta_{r_{1}}}{8} ;
$$

that is, for $n \leqq m \leqq n+n^{\frac{1}{2}}(\log n)^{2}$

$$
\frac{m p(m)}{e^{c m^{\frac{1}{2}}}}>d+\frac{\delta_{r_{1}}}{8}
$$

Now suppose $m>n+n^{\frac{1}{2}}(\log n)^{2}$; we shall show that

$$
\sum=\sum_{\substack{v \\ 0<m-k v<n}} \sum_{k} \frac{v e^{c(m-k v) \frac{1}{2}}}{m-k v}<\frac{e^{c m \frac{1}{3}}}{m}
$$

We have

$$
\sum<m^{2} e^{c n \frac{1}{2}}<m^{2} e^{c m^{\frac{3}{2}-10 c \log m}}<\frac{e^{c m^{\frac{1}{2}}}}{m}
$$

for sufficiently large n. Hence by Lemma 1,

$$
\sum_{\substack{v \\ m-k v \geqq n}} \sum_{\substack{k\\}} \frac{v e^{c(m-k v) \frac{1}{2}}}{m-k v}>e^{c m}\left(1-\frac{b_{1}^{\prime}}{n^{\frac{1}{2}+\epsilon}}\right) \cdot{ }^{6}
$$

Now we continue as in the proof of (7). Suppose $t>n+n^{\frac{1}{2}}(\log n)^{2}$; write

$$
d+\delta_{t}=\min \frac{m p(m)}{e^{m^{\mathrm{m}}}}, \quad n \leqq m \leqq t
$$

Then

$$
(t+1) p(t+1) \geqq\left(d+\delta_{t}\right) \sum_{\substack{v \\ t-k v \geqq n}} \sum_{\substack{k}} \frac{v e^{e(t-k v\rangle} \frac{1}{t}-k v}{}>\left(d+\delta_{t}\right) e^{c t^{\sharp}}\left(1-\frac{b_{1}^{\prime}}{t^{\sharp+\epsilon}}\right)
$$

Write

$$
\frac{(t+r) p(t+r)}{e^{c(t+r)^{3}}}=\left(d+\delta_{t}\right)\left(1-\frac{b_{r}^{\prime}}{t^{\frac{1}{2}+\epsilon}}\right)
$$

Then as in the proof of (7) we have

$$
\begin{aligned}
&(t+j+1) p(t+j+1)>\left(d+\delta_{t}\right) \sum_{\substack{v \\
t+j+1-k v \geq n}} \sum_{k} \frac{v e^{c(t+j+1-k v) t}}{t+j+1-k v} \\
& \quad-\left(d+\delta_{t}\right) \frac{\max _{r \leq j} b_{r}^{\prime}}{t^{\frac{1}{2}+\epsilon}} \frac{j^{2}}{t} e^{c(t+j+1) t} \\
&>\left(d+\delta_{t}\right) e^{c(t+j+1) \frac{1}{2}}\left(1-\frac{b_{1}^{\prime}}{(t+j+1)^{\frac{1}{2}}}\right)-\left(d+\delta_{t}\right) \frac{\max _{r \leq i} b_{r}^{\prime}}{t^{\frac{1}{2}+\epsilon}} \frac{j^{2}}{t} e^{c(t+j+1)^{\frac{1}{t}}} \\
&=\left(d+\delta_{t}\right) e^{c(t+j+1)^{\frac{1}{2}}}\left(1-\frac{b_{j+1}^{\prime}}{t^{\frac{1}{2}+\epsilon}}\right)
\end{aligned}
$$

[^1]$$
\sum_{\substack{v \\ n<m-k v}} \sum_{k} \frac{v e^{c(m-k v)^{\frac{1}{2}}}}{m-k v}>e^{c m^{\frac{1}{2}}}\left(1-\frac{b_{1}^{\prime}}{m^{\frac{1}{2}+\epsilon}}\right)
$$
where
$$
b_{j+1}^{\prime}<b_{1}^{\prime}+\max _{r \leqq i} b_{r}^{\prime} \cdot \frac{j^{2}}{t}
$$

We show that for $j^{2}<t / 2$ we have, $b_{j+1}^{\prime}<2 b_{1}^{\prime}$. We use induction; we have

$$
b_{i+1}^{\prime}<b_{1}^{\prime}+\frac{2 b_{1}^{\prime}}{2}=2 b_{1}^{\prime}
$$

Thus

$$
d+\delta_{\left[l+\frac{1}{t} t^{1}\right]}>\left(d+\delta_{t}\right)\left(1-\frac{2 b_{1}^{\prime}}{t^{\frac{1}{+\epsilon}}}\right)
$$

That is,

$$
d+\delta_{(a+1)^{2}}>\left(d+\delta_{s 2}\right)\left(1-\frac{10 b_{1}^{\prime}}{s^{1+\epsilon}}\right)
$$

Therefore

$$
d+\delta_{u^{2}}>\left(d+\frac{\delta_{r_{1}}}{8}\right)_{v>\log n}\left(1-\frac{10 b_{1}^{\prime}}{v^{1+\epsilon}}\right)>d+\frac{\delta_{r_{1}}}{10}
$$

which contradicts (10); and this completes the proof of (1).
As can be seen, the main idea of our proof is rather simple; unfortunately the details are long and cumbersome. By the same method we can prove the following result: Let m be a fixed integer. Denote by $p_{a_{1}, a_{2}, \ldots, a_{r}}^{(m)}(n)$ the number of partitions of n into integers congruent to one of the numbers $a_{1}, a_{2}, \cdots a_{r}$ $(\bmod m)$. Then

$$
\begin{equation*}
p_{a_{1}, a_{2}, \cdots, a_{r}}^{(m)}(n) \sim \frac{a}{n^{\alpha}} e^{c n^{\frac{1}{3}}}, \quad\left(\left(a_{1}, a_{2}, \cdots, a_{r}^{m}\right)=1\right) \tag{13}
\end{equation*}
$$

where C depends on m and r, and α and a depend on $m, a_{1}, a_{2}, \cdots a_{r}$.
The same method will work if we consider partitions of n into r th powers. Denote the number of partitions of n into r th powers by $p_{r}(n)$, Hardy, Ramanujan and Wright ${ }^{7}$ proved that

$$
\begin{equation*}
p_{r}^{(n)} \sim c_{1} n^{1 /(r+1)-1} e^{c_{2} n^{1 /(r+1)}} \tag{14}
\end{equation*}
$$

Clearly as in the case of $p(n)$ we have

$$
n p_{r}(n)=\sum_{\substack{v \\ v k<n}} \sum_{\substack{k\\}} v^{r} p_{r}\left(n-k v^{r}\right)
$$

[^2]To prove (14) we should only have to prove the analogue of our lemma, namely

$$
\begin{align*}
& \sum_{\substack{v \\
v^{r} k<n}} \sum_{\substack{k \\
<n}}\left(n-v^{r} k\right)^{1 /(r+1)-\frac{1}{2}} e^{c_{2}\left(n-v r_{k}\right) 1 /(r+1)} \\
&=n^{1 /(r+1)-\frac{1}{2}} e^{c_{2} n^{1 /(r+1)}}\left[1+O\left(\frac{1}{n^{1-(1 /(r+1))+\epsilon}}\right)\right] . \tag{15}
\end{align*}
$$

If (15) is proved the proof of (14) proceeds as in the case of $p(n)$.
I have not worked out a proof of (15); it seems likely that a proof would be longer than that of Lemma 1, but would not present any particular difficulties.

Recently Ingham ${ }^{8}$ proved a Tauberian theorem from which (1) and (14) follow as corollaries. In fact his Theorem 2 gives a more general result, from which (13) also follows as a very special case.

Denote by $P_{r}(n)$ the number of partitions of n into powers of r. Clearly

$$
n P_{r}(n)=\sum_{\substack{v \\ r^{v} k<n}} \sum_{k} r^{v} P_{r}\left(n-r^{v} k\right)
$$

It might be possible to get an asymptotic formula for $P_{r}(n)$ by our method. I have not succeeded so far. But we can show without difficulty that

$$
\begin{equation*}
\log P_{r}(n) \sim \frac{(\log n)^{2}}{2 \log r} \tag{16}
\end{equation*}
$$

We have

$$
f(x)=\sum_{n=0}^{\infty} P_{r}(n) x^{n}=\prod_{v=1}^{\infty} \frac{1}{1-x^{r^{v}}}
$$

It is easy to see that for $0 \leqq x \leqq 1$,

$$
\begin{equation*}
c_{1}\left(\frac{1}{1-x}\right)^{(1 /(2 \log a)) \log 1 /(1-x)}<f(x)<c_{2}\left(\frac{1}{1-x}\right)^{(1 /(2 \log a)\rangle \log 1 /(1-x)} . \tag{17}
\end{equation*}
$$

Thus

$$
P_{r}(n)\left(1-\frac{1}{n}\right)^{n}<f\left(1-\frac{1}{n}\right)<c_{2} n^{(\log n) /(2 \log a)}
$$

that is

$$
P_{r}(n)<c_{3} n^{(\log n) /(2 \log a)}, \quad \log P_{r}(n)<(1-\epsilon) \frac{(\log n)^{2}}{2 \log a} \text { for } n>n_{0}
$$

Suppose now that for a certain large $n \log \left(P_{r}(n)\right)<(1-\epsilon)(\log n)^{2} / 2 \log a$; then, since for $m<n P_{r}(m) \leqq P_{r}(n)$ we have

$$
\begin{equation*}
f(x)<e^{(1-\epsilon) \cdot(\log n)^{2} /(2 \log a)} \sum_{k=0}^{n} x^{k}+\sum_{k>n} c_{3} k^{(\log k) /(2 \log a)} x^{k}, \tag{18}
\end{equation*}
$$

[^3]and a simple calculation shows that (18) contradicts (17). (Choose $x=(1-\delta) n$, $\delta=\delta(\epsilon))$. The same method would of course give
$$
\log (p(n)) \sim \pi\left(\frac{2 n}{3}\right)^{\frac{1}{2}}
$$

We can also prove the following results:
I. Let $a_{1}<a_{2}<\cdots$ be an infinite sequence of integers of density α, such that the a 's have no common factor. Denote by $p^{\prime}(n)$ the number of partitions of n into the a 's. Then

$$
\begin{equation*}
\log \left(p^{\prime}(n)\right) \sim c(\alpha n)^{\frac{1}{2}} . \quad\left(c=\pi\left(\frac{2}{3}\right)^{\frac{1}{2}}\right. \tag{19}
\end{equation*}
$$

II. Let $a_{1}<a_{2}<\cdots$ be an infinite sequence of integers of density α, such that every sufficiently large m can be expressed as the sum of different a 's. Then denote by $P^{\prime}(n)$ the number of partitions of n into different a 's. Then

$$
\begin{equation*}
\log P^{\prime}(n) \sim c\left(\frac{\alpha}{2} n\right)^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

We shall sketch the proof of II; the proof of I is similar but simpler. Denote by $P(n)$ the number of partitions of n into different summands: it is well known that ${ }^{9}$

$$
\begin{equation*}
\log P(n) \sim c\left(\frac{n}{2}\right)^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

First we show that

$$
\begin{equation*}
\lim \sup \frac{\log P^{\prime}(n)}{c\left(\frac{\alpha}{2} n\right)^{\frac{1}{2}}} \leqq 1 \tag{22}
\end{equation*}
$$

To the partition $n=a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{r}}$ we make correspond the partition $i_{1}+i_{2}+\cdots+i_{r}$. For $i>i_{0}$ we have $i<a_{i}(\alpha+\epsilon)$ therefore $i_{1}+i_{2}+$ $\cdots+i_{k}<n(\alpha+\epsilon)+i_{0}^{2}$. Thus each partition of n into the a 's is mapped into a partition of integers $\leqq n(\alpha+2 \epsilon)$ with all integers as summands; hence from (20) we obtain (22). Next we prove that

$$
\begin{equation*}
\lim \inf \frac{\log P^{\prime}(n)}{c\left(\frac{\alpha}{2} n\right)^{\frac{1}{2}}} \geqq 1 \tag{23}
\end{equation*}
$$

Split the sequence a_{i} into two disjoint sequences b_{1}, b_{2}, \cdots and c_{1}, c_{2}, \cdots where the b 's have density 0 and every sufficiently large integer is the sum of different b 's and the c 's are the remaining a 's. It is easy to see that we can find the b 's with the required property; also the density of the c 's is clearly α. Denote by $Q(n)$ the number of partitions of n into the c 's. Now associate

[^4]with the partition $n=i_{1}+i_{2}+\cdots+i_{k}, i_{1}<i_{2}<\cdots<i_{k}$ the partition $c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{k}}$; as before, we have
$$
\frac{n}{\alpha+\epsilon}<c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{k}}<\frac{n}{\alpha-\epsilon} .
$$

Hence for at least one $n /(\alpha+\epsilon)<m<n /(\alpha-\epsilon), Q(m)>p(n)(\alpha-\epsilon) / n$. Thus there exists a sequence of integers $x_{1}<x_{2}<\cdots$ with $\lim x_{i+1} / x_{i}=1$ and

$$
\lim \inf \frac{\log Q\left(x_{i}\right)}{c\left(\frac{\alpha}{2} x_{i}\right)^{\frac{2}{2}}}=1
$$

Now suppose $x_{j} \leqq m<x_{j+1}$. Choose x_{i} such that $\epsilon m>m-x_{i}>C$. Then $m-x_{i}$ is a sum of different b 's, hence $P(m) \geqq Q\left(x_{i}\right)$. Thus (23) follows from (24), and this completes the proof of II.

If might be worth while to mention the following problem: Let $a_{1}<a_{2}<\ldots$ be an infinite sequence of integers, such that $\log P(n) \sim c(\alpha n)^{\frac{1}{2}}$. Does it then follow that the density of the a 's is α. I cannot decide this problem. Perhaps the following result might be of some interest in this connection: Let $a_{1}<a_{2} \ldots$ be an infinite sequence of integers. $f(n)$ denotes the number of a 's $\leqq n$, and $\varphi(n)$ denotes the number of solutions of $a_{i}+a_{j} \leqq n$. It can be shown trivially that if $\lim f(n) / n^{\alpha}=c_{1}$ then $\lim \varphi(n) / n^{2 \alpha}=c_{2}$. But the converse is also true, and can be simply proved by using a Tauberian theorem of Hardy and Littlewood. ${ }^{10}$ We have

$$
(f(z))^{2}=\left(\sum_{i=1}^{\infty} z^{a_{i}}\right)^{2}=\sum_{k=1}^{\infty} d_{k} z^{k}
$$

and, since $\sum d_{k}=\varphi(n) \sim c_{2} n^{2 \alpha}$, we evidently have

$$
\underset{L \rightarrow 1}{f(z)} \sim \frac{c_{3}}{(1-z)^{\alpha}}
$$

and hence by the theorem of Hardy and Littlewood,

$$
f(n)=\sum_{a_{k} \leqq n} 1 \sim c_{1} n^{\alpha}
$$

By the same methods that were used in proving II, we can prove the following result: Denote by $R(n)$ the number of partitions of n into integers relatively prime to n. We have

$$
\log R(n) \sim c(\varphi(n))^{\frac{1}{2}}
$$

Similarly, if we denote by $R^{\prime}(n)$ the number of partitions of n into different integers relatively prime to n, we have

$$
\log R^{\prime}(n) \sim c\left(\frac{\varphi(n)}{2}\right)^{\frac{1}{2}}
$$

[^5]I have not succeeded in finding asymptotic formulas for $R(n)$ and $R^{\prime}(n)$. This problem seems rather difficult.
March 12, 1942.
In the meantime I have proved the above conjecture. Consider

$$
f(x)=\sum_{n=1}^{\infty} P(n) x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{a}{ }_{k}} .
$$

If we assume that $\log P(n) \sim a(n)^{\frac{1}{2}}$, we obtain by a simple calculation

$$
\log _{x \rightarrow 1} f(x) \sim \frac{\pi^{2}}{6} \frac{\alpha}{1-x}
$$

But

$$
\log f(x)=\sum x^{a_{i}}+\frac{1}{2} \sum_{i} x^{2 a_{i}}+\cdots=\sum_{k=1}^{\infty} b_{k} x^{k}
$$

Denote by $A(n)$ the number of a 's not exceeding n. We have

$$
B(n)=\sum_{k=1}^{n} b_{k}=\sum_{k=1}^{\infty} \frac{1}{k} A\left(\frac{n}{k}\right)
$$

Thus

$$
A(n)=\sum_{k=1}^{\infty} \frac{u(k)}{k} B\left(\frac{n}{k}\right) .
$$

But by the well known Tauberian theorem of Hardy-Littlewood, ${ }^{11}$ we have

$$
B(n) \sim \frac{\alpha \pi^{2} n}{6}
$$

Hence

$$
A(n) \sim \sum_{k=1}^{\infty} \frac{u(k)}{k^{2}} \frac{\alpha \pi^{2} n}{6} \sim \alpha n . \quad \text { q.e.d. }
$$

Similarly we can show that if $\log P^{\prime}(n)=c[(\alpha / 2) n]^{\frac{1}{2}}$, the density of the a 's is α. University of Pennsylvantia

[^6]
[^0]: ${ }^{1}$ Hardy, Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17, (1918), pp. 75-115.
 ${ }^{2}$ Erdös, On some asymptotic formulas in the theory of factorisatio numerorum, these Annals 42, (1941), pp. 989-993.
 ${ }^{3}$ Hardy, Ramanujan, ibid, p. 79.

[^1]: ${ }^{5}$ As in footnote $4 b_{1}^{\prime}$ is chosen such that for every $m>n+n^{\frac{1}{2}}(\log n)^{2}$

[^2]: ${ }^{7}$ Hardy, Ramanujan, ibid. p. 111. Maitland Wright, Acta Math. 63, (1934), pp. 143-191. Wright proves a very much sharper result than (13).

[^3]: ${ }^{8}$ A. E. Ingham, A Tauberian Theorem for Partitions, these Annals, 42 (1941), p. 1083.

[^4]: ${ }^{9}$ A well known result of Euler states that the number of partitions of n into odd integers equals the number of partitions of n into different summands. Thus (20) follows from i.

[^5]: ${ }^{10}$ Hardy-Littlewood, Tauberian Theorems, Proc. London Math. Soc. 13, (1914), pp. 174-191.

[^6]: ${ }^{11}$ Hardy-Littlewood, ibid.

