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Denote by p(n) the number of partitions of n. Hardy and Ramanujan^1
proved in their classical paper that

ρ(n)
1

4n3+
C, c=π(\frac{2}{3})^\frac{1}{2},

using complex function theory . The main purpose of the present paper is to
give an elementary proof of this formula . But we can only prove with our
elementary method that

(1)	p(n)
α
n

e
^{cn^\frac{1}{2}}

and are unable to prove that a = 1/4 .3 + .
Our method wí11 be very similar to that used in a previous paper.'' The

starting point wí11 be the following identity :

(2)

	

np(n) Σ Σ vp(n - kv),

	

p(0) = p(-m) = 0 .

(We easily obtain (2) by adding up all the p(n) partitions of n, and noting
that v occurs in p(n - v) partitions .) (2) is of course we11 known . In fact,
Hardy and Ramanujan state in their paper^3 that by using (2) they have obtained
an elementary proof of

(3)

	

log p(n) \sim cn^\frac{1}{2}.

The proof of (3) is indeed easy. First we show that

(4)

	

p(n) < e^{cn^\frac{1}{2}} .

use induction . (4) clearly holds for n = 1 . By (2) and the induction

hypothesis we have

np(n) < veε( -k,) < ΣΣve
^{cn^\frac{1}{2}-ckν/2n^\frav{1}{2}}

=e Σ
ε/2

{(1 - e^{kc/2n^\frac{1}{2}})^2} .

I Hardy, Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math .
Soc. 17, (1918), pp. 75-115 .

2 Erdös, on some asymptotic formulas in the theory offactorisatio numerorum, these Annals
42, (1 94 1), pp . 989-993 .

a Hardy, Ramanujan, ibíd, p . 79 .
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Now it is easy to see that for all real x,
e-x

(1 - e-')'
1

x^2 Thus

np(n) < e

which proves (4) .
Similarly but with slightly longer calculations, we can prove that for every
\epsilon > 0 there exists an A > 0 such that

(5)

	

p(n) >

(4) and (5) clearly imply* (3) .
To prove (1) we need the following

LEMMA 1

(6)

	

\Sum =

for some fixed \epsilon > 0 .
PROOF . We omit as many details as possible, since the proof is quite straight

forward and uninteresting . We evidently have by expanding 1/(n - kv) and
omitting the terms with kv > n^{\frac{1}{2}+\epsilon}

Now

(It is easy to see that the other terms of e^{c(n-kv)^\frac{1}{2}} can be neglected and that
the summation for v and k can be extended to a o .) Thus
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On the other hand

A simple calculation shows that

Hence

But

And

Thus finally

Hence

which proves the lemma .
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Next we show that

(7)

	

0 < \lim \inf\frac{np(n)}{e^{cn^\frac{1}{2}}} \leq \lim \sup\frac{np(n)}{e^{cn^\frac{1}{2}}}<\infty.

To prove (7) -write

(8)

	

c_1^{(n)} = \max_{m\leq n}\frac{mp(m)}{e^{cm^\frac{1}{2}}} .

Clearly by (8) and (6) and (2)

(n + 1)p(n + 1) \leqc_1^{(n)}{\Sum_{v=1}\Sum_{k=1}}_{kv<n}\frac{ve^{c(n+1-kv)^\frac{1}{2}}}{n+1-kv}<c_1^{(n)}e^{c(n+1)^\frac{1}{2}}\left(1+\frac{b_1}{n^{\frac{1}{2}+\epsilon}}\right)^4 .

Write

\frac{(n +j)p(n +j)}{e^{c(n+j)^\frac{1}{2}}}=c_1^{(n)}\left( 1 +\frac{b_j}{n^{\frac{1}{2}+\epsilon}}\right), j=1 , 2 , . . .,

Then

(n + r + 1)p(n + r + 1) < c_1^{(n)}{\Sum_{v=1}\Sum_{k=1}}_{kv\leq n+r}

\frac{ve^{c(n+r+1-kv)^\frac{1}{2}}}{n+r+1-kv}+c_1^{(n)}\max_{\frac{j\leq r}{n^{\frac{1}{2}+\epsilon}}b_j{\Sum_{v=1}\Sum_{k=1}}_{kv\leq r}\frac{ve^{c(n+r+1-kv)^\frac{1}{2}}}{n+r+1-kv}<c_1^{(n)}e^{c(n+r+1)^\frac{1}{2}}\left(1+\frac{b_1}{n^{\frac{1}{2}+\epsilon}}+\max_{\frac{i\leq r}{n^{\frac{1}{2}+\epsilon}}b_j\frac{r^2e^{c(n+r+1)^\frac{1}{2}}}{n}\right),

since

Hence

We show that, for r^2 \leq n/2, b_{r+1} \leq 2b_1 . We use induction. We have

b_{r+1}<b_1+\frac{r^2\cdot2b_1}{n}\leq 2b_1.

{}^4 b_1 is chosen such that for every m > 0
{\Sum_{v}\Sum_{k}}_{m-kv>0}\frac{ve^{c(m-kv)^\frac{1}{2}}}{m-kv}<e^{c(m^\frac{1}{2})}\left(1+\frac{b_1}{m^{\frac{1}{2}+\epsilon}}\right) .
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Thus

c_1^{[n+(\frac{1}{2}n)^\frac{1}{2}}]} \leqc_1^{(n)}\left(1 +\frac
{2b_1}
{n^{\frac{1}{2} +\epsilon}}\right) .

Or

c_1^{((m +1)^2)} <c_1^{(m^2)}\left( 1 +
\frac{10b_1}
{n {̂\frac{1}{2}+\epsilon}}\right) ;

and since \Sum m^{1/1+\epsilon} converges we see that \lim \sup c_1^{(n)} < \infty ; i.e. \lim \sup np(n)/e^{cn^\frac{1}{2}} <
\infty . Similarly we can show that \lim \inf np(n)/e^{cn^\frac{1}{2}} > 0, which completes the proof

of (7) .
Next we prove that

(9)	\ lim \inf\frac{np(n)}{e^{cn^\frac{1}{2}}} = \lim \sup \frac{np(n)}{e^{cn^\frac{1}{2}}} .

and this will complete the proof of (1) .
Suppose that (9) does not hold; write

(10)	\ lim \inf\frac{np(n)}{e^{cn^\frac{1}{2}}} = d,	\ lim \sup\frac{np(n)}{e^{cn^\frac{1}{2} }}=D.

Now choose n large and such that

\frac{np(n)}{e^{cn^\frac{1}{2}}}>D-\epsilon.

Then since p(n) is an increasing function of n there exists a c_2 such that for
every m in the range n \leq m \leq n + c_2n^\frac{1}{2}

\frac{mp(m)}{e^{cm^\frac{1}{2}}} >\frac{d + D}
{2}.

Now we claim that for every r_1 there exists a \delta_{r_1} = \delta(r_1) such that, for n \leq m \leq
n + r_1n^\frac{1}{2} ,

(11) \frac{mp(m)}{e^{cm^\frac{1}{2}}}>d+\delta_{r_1} .

We prove (11) as follows : We evidently have by our lemma

mp(m) \geq d{\Sum_{v=1}\Sum_{k=1}}_{kv<m} \frac{ve^{c(m-kv)^\frac{1}{2}}}{m-kv}+
\frac{D-d}

{2}{\Sum_{v=1}\Sum_{k=1}}_{n\leq m-kv\leq n+c_2n^\frac{1}{2}}
\frac{ve^{c(m-kv)^\frac{1}{2}}}{m-kv}-o(e^{cm^\frac{1}{2}})^5

{}^5 The term o(e^{cm^\frac{1}{2}}) is present because d is the lower limit and not the lower bound of
\frac{mp (m)}{e^{cm^\frac{1}{2}}}
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}
cm}

	

D - de"

	

cm}

	

cm}

	

cn}

	

cm},> de +

	

\Sum

	

v - o (e ) > de' + Cge - o (e ,
2

	

m {n\leq m-v\leq n+c_2n^\frac{1}{2}}

ecn}
> (d + \delta_{r_1})e^{cm^\frac{1}{2}}, 	\left(i.e.\frac{e^{cn^\frac{1}{2}}}{e^{cm^\frac{1}{2}}} 	> c_4) .

which proves (11) .
Suppose 2n \geq m \geq n + sn^\frac{1}{2}, s sufficiently large; we show that

(12)

	

\Sum \Sum \fac{ ve^{c(m.-kv)}}^\frac{1}{2}} 	\frac{ecm^\frac{1}{2}}}
v=1 k=1

	

< _{m-kv<n} {m-kv}	{s^{10}}.

Clearly
\frac{ve^{c(m-kv)^\frac{1}{2}}} -	\frac{ vê {c(m-kv)^\frac{1}{2}}}

v k {m-kv}	 v k {m-kv}
_{0<m-kv<n}	{ kv>sn^\frac{1}{2}}

\frac{2ve^{-ck2m^\frac{1}{2}}}	^{c(m-kv)^\frac{1}{2}}}
<

e^{cm^\frac{1}{2}}		ve
v k

	

m

	

v k {m - kv}
_{^\frac{1}{2}m>kv>sn^\frac{1}{2}}	_{m>kv\geq^\frac{1}{2}m}

-'k'
/2m}

< e^{cm}
1: 1: \frac{2ve	+ m^2e^{c^\frac{1}{2}m)^\frac{1 }{2}},

V
k

	

m
_{^\frac{1}{2}m>kv>an^\frac{1}{2}}

since

\Sum\Sumv<x2•
V

	

k
_{kv<x}

Further
m

ve^{-ckv/2m} <	ve^{-cusn^\frac{1}{2}/2m
v k

	

-1 v k
_{^\frac{1}{2}m>kv>sn^\frac{1}{2}}	_{(u+1)sn^\frac{1}{2}\geq kv>usn

na

	

m
< \Sum \Sum

ve^{- cus/4} < (2L + 1)n " S2 ne"/4.
_{u1} _{v=1} _{k=1}	_{u=1}

_{kv\leq(u+1)sn

Thus
m

ve^{-ckv/2m}<ms^2	(u	2e-",14	7n
\Sum~- 1)

v

	

k

	

u=1

	

,4s'0
_{^\frac{1}{2}m>kv>sn^\frac{1}{2}}

for sufficiently large s . Hence finally
^{c(m-kv)^\frac{1}{2}}}	cm}	^{cm^\frac{1}{2}}}

\Sum T, 2e

	

< e + m2< e
_{v=1} _{k=1} { m -kv}	{2s^{10}}	{s^{10}}

_{m-kv<n}

for sufficiently large m and s (since s < n) .
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Consider now the intervals n + tn^\frac{1}{2}, n + (t + 1)n^\frac{1}{2}, t > r_1, t + 1 < n^\frac{1}{2}. Split
it into t' equal parts .

	

Trite

and put \delta_t^{t2-1} = \delta_t. Now let n + (t + u/t^2)n \leq m \leq n	+(t + (u + 1)/t^2)n;
then we have

where the primes indicate that the summation is extended only over those v
and k for which n \leq m - kv \leq n (t + u/t^2)n^\frac{1}{2}. Further by Lemma 1

where in J:" the summation is extended only over those v and k for which
m - kv \leq n, and in \Sum"' the summation is extended only over those v and k•
for which m - kv \geq n + (t + u/t^2)n^\frac{1}{2} .We have by (11)

Further we have

Hence finally

Hence

Thus if t is fixed, independent of n, we have

therefore
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But \prod_u (1 - 3/ u^4)^{u2} converges; thus, if r_1 was sufficiently large, we have \delta_t >
\delta_{r_1}/2. Now choose r_2 sufficiently large; then we have \delta_{r_2} > \delta_{r_1}/2, i.e. for n \leq m\leq
n + r_2n^\frac{1}{2},

Consider the interval n + tn^\frac{1}{2}, n + (t + 1)n^\frac{1}{2}, t > r_2. Split it into t2 equal parts.
\delta_t^{(u)} and \delta_t have the same meaning as before . Suppose n + (t + u/t^2)n^\frac{1}{2} \leq m
\leq n + (t + (u + 1)/t^2)n^\frac{1}{2}; then evidently

where the primes indicate that the summation is extended only over those v
and k for which n \leq m - kv \leq n + n^\frac{1}{2}(t + u/t^2).
Now

where \Sum" and \Sum"' are defined as before . By (12) and the previous estimate
of \Sum"' we have

Hence by Lemma 1

i .e .

and

or

For sufficiently large r_2 we have,

and if s \leq (log n)^2 and n is sufficiently large,
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that is, for n \leq m \leq n+ n ^\frac{1}{2}(log n)^2

Now suppose m > n + n^\frac{1}{2}(log n)^2; we shall show that

We have

for sufficiently large n . Hence by Lemma 1,

Now we continue as in the proof of (7) . Suppose t > n + n^\frac{1}{2}(log n)^2; write

Then

W rite

Then as in the proof of (7) we have

{}^6 As in footnote 4 b_1' is chosen such that for every m > n + n^\frac{1}{2}(log n)^2
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N heie

We show that for j^2 < t/2 we have, b_{j+1}' < 2b_1' . We use induction; we have

Thus

That is,

Therefore

which contradicts (10) ; and this completes the proof of (1) .
As can be seen, the main idea of our proof is rather simple ; unfortunately the

details are long and cumbersome . By the same method we can prove the
following result : Let m be a fixed integer . Denote by p_{a_1, a_2,\dots,a_r}^{(m)}(n)the number
of partitions of n into integers congruent to one of the numbers a_1 , a_2 , \dots a_r
(mod m) . Then

(13)

where C depends on m and r, and \alpha and a depend on m, a_1 , a_2 , \dots a_r.
The same method will work if we consider partitions of n into r-th powers .

Denote the number of partitions of n into r-th powers by p_r(n), Hardy, Ramanu-
jan and Wright^7 proved that

(14)

Clearly as in the case of p(n) we have

{}^7 Hardy, Ramanujan, ibid . p . 111. Maitland Wright, Acta Math. 63, (1934), pp . 143-191 .
Wright proves a very much sharper result than (13) .
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To prove (14) we should only have to prove the analogue of our lemma, namely

(15)

If (15) is proved the proof of (14) proceeds as in the case of p(n) .
I have not worked out a proof of (15) ; it seems likely that a proof would be

longer than that of Lemma 1, but would not present any particular difficulties .

Recently Ingham^8 proved a Tauberian theorem from which (1) and (14)
follow as corollaries . In fact his Theorem 2 gives a more general result, from
which (13) also follows as a very special case .

Denote by P_r(n) the number of partitions of n into powers of r . Clearly

It might be possible to get an asymptotic formula for P_r(n) by our method .

I have not succeeded so far . But we can show without difficulty that

(16)

We have

It is easy to see that for 0 \leq x \leq 1,

(17)

Thus

that is

Suppose now that for a certain large n log (P_r (n)) < (1 - e) (log n)^2/2 log a;
then, since for m < n P_r(m) \leq P_r(n) we have

{}^8 A. E. Ingham, A Tauberian Theorem for Partitions, these Annals, 42 (1941), p. 1083.
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and a simple calculation shows that (18) contradicts (17) . (Choose x = (1 - \delta)n,
\delta = \delta(\epsilon)) . The same method would of course give

We can also prove the following results :
I. Let a l < a2 < . . . be an infinite sequence of integers of density \alpha, such

that the a's have no common factor . Denote by p'(n) the number of partitions
of n into the a's . Then

(19)

II. Let al < a2 < • • • be an infinite sequence of integers of density \alpha, such
that every sufficiently large m can be expressed as the sum of different a's .
Then denote by P'(n) the number of partitions of ninto different a's.Then

(20)

We shall sketch the proof of II ; the proof of I is similar but simpler . Denote
by P(n) the number of partitions of n into different summands : it is well known
that^9

(21)

First we show that

(22)

To the partition n = a_{i_1} + a_{i_2} + \dots + a_{i_r} we make correspond the partition
i_1 + i_2 + \dots +i_r. For i > i_0 we have i < a_i(\alpha + \epsilon) therefore i_1 + i_2 +

+ i_k < n(\alpha+ \epsilon) +i_0^2.Thus each partition of n into the a's is mapped
into a partition of integers \leq n(\alpha + 2\epsilon) with all integers as summands ; hence
from (20) we obtain (22) . Next we prove that

(23)

Split the sequence a_ iinto two disjoint sequencesb_1, b_2, \dotsandc_1,c_2, \dots
where the b's have density 0 and every sufficiently large integer is the sum of
different b's and the c's are the remaining a's . It is easy to see that we can
find the b's with the required property ; also the density of the c's is clearly \alpha .
Denote by Q(n) the number of partitions of n into the c's . Now associate

{}^9 A well known result of Euler states that the number of partitions of n into odd integers
equals the number of partitions of n into different summands . Thus (20) follows from i .
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with the partition n = i_1 + i_2 + \dots + i_k , i_1 < i_2 <\dots< i_k the partition
c_{i_1} + c_{i_2} + \dots + c_{i_k} ; as before, we have

Hence for at least one n/(\alpha + \epsilon) < m < n/(\alpha - \epsilon), Q(m) > p(n)(\alpha - \epsilon)/n .
Thus there exists a sequence of integers x, < x 2 < • • • with lim x_{i+1}/x_i = 1 and

24)

Now suppose x_j \leq m < x_{j+1}.Choosex_isuch that\epsilon m > m-x_i > C.Then
m - x_i is a sum of different Vs, hence P(m) \geq Q(x_i).Thus (23) follows from
(24), and this completes .the proof of II .

If might be worth while to mention the following problem : Let a, < a 2 <
be an infinite sequence of integers, such that log P(n) \sim c(\alpha n)^\frac{1}{2} .Does it then
follow that the density of the a's is \alpha . I cannot decide this problem . Perhaps
the following result might be of some interest in this connection : Let a_1<a_2 \dos
be an infinite sequence of integers . f(n) denotes the number of a's

\leq
n, and

\phi(n) denotes the number of solutions of a_i + a_j \leq n.It can be shown trivially
that if lim f(n)/n^{\alpha} = c_1then lim \phi(n)/n^{2\alpha}= c_2.But the converse is also true,
and can be simply proved by using a Tauberian theorem of Hardy and Little- wood^{10}. We have	̀

and, since \Sum d_k = \phi(n) \sim c_2n^{2\alpha}, we evidently have

and hence by the theorem of Hardy and Littlewood,

By the same methods that were used in proving II, we can prove the following
result : Denote by R(n) the number of partitions of n into integers relatively
prime ton . We have

Similarly, if we denote by R'(n) the number of partitions of n into different
integers relatively prime to n, we have

{}^{10} Hardy-Littlewood, Tauberian Theorems, Proc. London Math. Soc. 13, (1914), pp.
174-191 .
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I have not succeeded in finding asymptotic formulas for R(n) and R'(n) .
This problem seems rather difficult .

March 12, 1942 .
In the meantime I have proved the above conjecture . Consider

If we assume that log P(n) \sim a(n)^\frac{1}{2}, we obtain by a simple calculation

But

Denote by A(n) the number of a's not exceeding n . We have

Thus

But by the well known Tauberian theorem of Hardy-Littlewood,^{11} we have

Hence

Similarly we can show that if log P'(n) = c[(\alpha/2)n]^\frac{1}{2}, the density of the a's is \alpha,

UNIVERSITY OF PENNSYLVANIA

{}^{11} Hardy-Littlewood, ibid.
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