ON THE ASYMPTOTIC DENSITY OF THE SUM OF TWO SEQUENCES

By P. Erdös

(Received June 24, 1941)
Let $a_{1}<a_{2}<\cdots$ be an infinite sequence, A, of positive integers. Denote the number of a^{\prime} s not exceeding n by $f(n)$. Schnirelmann has defined the density of A as G.L.B. $f(n) / n$. ${ }^{1}$ Now let $a_{1}<a_{2}<\cdots ; b_{1}<b_{2}<\cdots$ be two sequences. We define the sum $A+B$ of these two sequences as the set of integers of the form a_{i} or b_{j} or $\left\{a_{i}+b_{j}\right\}$. Schnirelmann proved that if the density of A is α and that of B is β then the density of $A+B$ is $\geqq \alpha+\beta-\alpha \beta$.

Khintchine 2 proved that, provided that $\alpha=\beta \leqq \frac{1}{3}$, the density of $A+B$ is $\geqq 2 \alpha$. He conjectured more generally that if $\alpha+\beta \leqq 1$ the density of $A+B$ is $\geqq \alpha+\beta$. It is easy to see that if $\alpha+\beta \geqq 1$ then every integer is in $A+B$, so the density of $A+B$ is 1 . Khintchine's conjecture seems very deep.

Besicovitch ${ }^{3}$ defined $\beta^{\prime}=$ G.L.B. $\varphi(n) /(n+1)$ where $\varphi(n)$ denotes the number of the b 's not exceeding n, and proved that the Schnirelmann density of the sequence of numbers $\left\{a_{i}, a_{i}+b_{j}\right\}$ is $\geqq \alpha+\beta^{\prime}$. An example of Rado showed that this result is the best possible.

Define the asymptotic density of A as $\lim f(n) / n$. Then if $\alpha \leqq \frac{1}{2}$ and $a_{1}=1$ I have proved that the asymptotic density of $A+B$ is $\geqq \frac{3}{2} \alpha_{.}{ }^{\text {d }}$. The following simple example of Heilbronn shows that this result is the best possible: Let the a^{\prime} 's be the integers $=0,1(\bmod 4) . \quad$ Then $A+A$ contains the integers $\equiv 0,1,2$ $(\bmod 4)$. In the present note we prove the following

Theorem: Let the asymptotic density of A be α and that of B be β, where $\alpha+\beta \leqq 1, \beta \leqq \alpha, b_{1}=1$. Then the asymptotic density of $A+B$ is not less than $\alpha+\frac{1}{2} \beta$, and, in fact, one of the sequences $\left\{a_{i}, a_{i}+1\right\}$ or $\left\{a_{i}+b_{i}\right\}$ has asymptotic density $\geqq \alpha+\frac{1}{2} \beta$.

It is easy to see that if $\alpha+\beta>1$ then all large integers are in $A+B$. For If not then, none of the integers $n-a_{i}$ belong to B, and the asymptotic density of B would be not greater than $1-\alpha<\beta$.

To prove our theorem we first need a slight sharpening of the theorem of Besicovitch; in fact, we prove the following

Lemma: Define the modified density of B as follows:

[^0]$$
\beta_{1}=\text { G.L.B. } \cdot \frac{\varphi(n)}{n+1},
$$
where the integers $1,2, \cdots, k$ belong to B, but $k+1$ does not belong to B. Clearly $\beta_{1} \geqq \beta^{\prime}$. Then the Schnirelmann density of the sequence $\left\{a_{i}, a_{i}+b_{j}\right\}$ is not less than $\alpha+\beta_{1}$.

The proof of this lemma follows closely the proof of Besicovitch. Denote by $f(u, v), \varphi(u, v), \psi(u, v)$ respectively the number of $a^{\prime} s, b$'s, and terms of the sequence $\left\{a_{i}, a_{i}+b_{i}\right\}$ in the interval (u, v)-that is, among the integers $u+1$, $u+2, \cdots, v$. We first observe that if $r+1$ is any integer which does not belong to the sequence $\left\{a_{i}, a_{i}+b_{j}\right\}$ then

$$
f(u, v)+\varphi(r-v, r-u) \leqq v-u
$$

For as t runs through $(u, v), r+1-t$ runs through $(r-v, r-u)$, and if t belongs to A then $r+1-t$ does not belong to B.

We may assume that the Schnirelmann density of the sequence $\left\{a_{i}, a_{i}+b_{i}\right\}$ is less than 1 , and that $\alpha>0$, so that $a_{1}=1$. Define $m_{0}=0$, define $r_{0}+1$ as the least positive integer not belonging to $\left\{a_{i}, a_{i}+b_{i}\right\}$, define $m_{1}+1$ as the least integer greater than r_{0} belonging to A, define $f_{1}+1$ as the least integer greater than m_{1} not belonging to $\left\{a_{i}, a_{i}+b_{j}\right\}$, and so on.

It suffices to prove that for each x in $\left(r_{i-1}, m_{i}\right)$ we have

$$
\psi(0, x) \geqq\left(\alpha+\beta_{1}\right) x
$$

for if (3) holds, suppose that for some y in $\left(m_{i}, r_{j}\right)$ we had

$$
\psi(0, y)<\left(\alpha+\beta_{1}\right) y .
$$

(We may suppose $j>0$; else $y \leqq r_{0}$, so that $\psi(0, y)=y$). Then since all the integers $m_{j}+1, \cdots, y$ belong to $\left\{a_{i}, a_{i}+b_{j}\right\}$ and $\alpha+\beta_{1} \leqq 1$ we should have

$$
\psi\left(m_{i}\right)<\left(\alpha+\beta_{1}\right) m_{i},
$$

which contradicts (3).
It follows from the definition of k and the definition of m_{i} and r_{i} that

$$
r_{i}-m_{i}>k \quad(i=0,1,2 \cdots)
$$

Let $r_{i-1}<x \leqq m_{i}$; we have

$$
\psi\left(r_{i-1}, x\right) \geqq \varphi\left(r_{i-1}-m_{i-1}-1, x-m_{i-1}-1\right),
$$

since any number $m_{i-1}+1+u$, where u belongs to B, is in $\left\{a_{i}, a_{i}+b_{j}\right\}$. Also

$$
\psi\left(m_{i-1}, r_{i-1}\right)=r_{i-1}-m_{i-1} \geqq f\left(m_{i-1}, r_{i-1}\right)+\varphi\left(0, r_{i-1}-m_{i-1}\right)
$$

by (2). Clearly by the definition of the numbers r_{j}, m_{i} we have for $r_{i-1}<$ $x \leqq m_{i}, f\left(m_{i-1}, x\right)=f\left(m_{i-1}, r_{i-1}\right)$. Hence by adding (5) and (6)
7) $\psi\left(m_{i-1}, x\right) \geqq f\left(m_{i-1}, x\right)+\varphi\left(0, x-m_{i-1}-1\right) \geqq f\left(m_{i-1}, x\right)+\beta_{1}\left(x-m_{i-1}\right)$, since by (4) $x-m_{i-1}-1 \geqq r_{i-1}-m_{i-1}>k$. In particular
8)

$$
\psi\left(m_{j}, m_{j+1}\right) \geqq f\left(m_{j}, m_{j+1}\right)+\beta_{1}\left(m_{j+1}-m_{j}\right) \quad(j=0,1, \cdots) .
$$

Summing (8) for $j=0,1, \cdots i-1$ and adding (7) we have

$$
\psi(0, x) \geqq f(0, x)+\beta_{1} x \geqq\left(\alpha+\beta_{1}\right) x,
$$

which completes the proof of the Lemma.
Now we can prove our theorem. We may assume $\beta>0$. Suppose first that there exists an x belonging to A, such that the modified density of (the positive terms of) $a_{i}-x$ is $\geqq \alpha-\frac{1}{2} \beta$. Clearly $x+1$ has to be in A since $\alpha-\frac{1}{2} \beta>0$. It follows that there exists for every positive real ϵ a y such that the Schnirelmann density of the positive terms of the sequence $\left\{b_{i}-y\right\}$ is $\geqq \beta-\epsilon$. To see this choose y to be the greatest integer with

$$
\frac{\varphi(y)}{y} \leqq \beta-\epsilon .
$$

(Since $\lim \varphi(y) / y=\beta$ such a y exists, unless $\varphi(y) / y>\beta-\epsilon$ for all positive y; in this case we have $y=0$). Then by the definition of y it is clear that $\varphi(y, z)$ i.e. the number of $\left\{b_{i}-y\right\}$'s in $(0, z-y)$, is not less than $(\beta-\epsilon)(z-y)$, which proves our assertion.

Now consider the sequence $\left\{b_{j}-y_{j} b_{j}-y+a_{i}-x\right\}$. By our lemma its Schnirelmann density is $\geqq \alpha+\frac{1}{2} \beta-\epsilon$; hence by adding $x+y$ to its members we obtain the sequence $\left\{b_{j}+x, a_{i}+b_{j}\right\}$ whose asymptotic density is clearly $\geqq \alpha+\frac{1}{2} \beta-\epsilon$ for every $\epsilon>0$. But since x is in $A, b_{j}+x$ is in $\left\{a_{i}+b_{j}\right\}$. Hence the asymptotic density of the sequence $\left\{a_{i}+b_{j}\right\}$ is $\geqq \alpha+\frac{1}{2} \beta$, which proves our theorem in the first case.

Suppose next that Case 1 is not satisfied. We may suppose that there exist arbitrarily large values of i such that a_{i} and $a_{i}+1$ are both in A; otherwise $\left\{a_{i}, a_{i}+1\right\}$ has asymptotic density $2 \alpha>\alpha+\frac{1}{2} \beta$. Let $a_{k_{1}}$ be the first a_{i} such that $a_{k_{1}}+1$ is also in A. Then since Case 1 is not satisfied and since $\alpha=$ $\varliminf \mathrm{lim} f(n) / n$, there exists a largest integer m_{1} such that $f\left(a_{k_{1}}, m_{1}\right)<$ $\left(\alpha-\frac{1}{2} \beta\right)\left(m_{1}-a_{k_{1}}+1\right)$. Again let $a_{k_{1}}$ be the least a_{i} greater than m_{1} such that $a_{k_{1}}+1$ is also in A; there exists as before a largest m_{2} such that $f\left(a_{k_{2}}, m_{2}\right)<$ $\left(\alpha-\frac{1}{2} \beta\right)\left(m_{2}-a_{k_{2}}+1\right)$ and so on. Take n large and let m_{r}, be the least $m \geqq n$. It is clear that the intervals $\left(a_{k_{i}}-1, m_{i}\right), i=1,2 \cdots r$ do not overlap; thus

$$
\sum_{i=1}^{\bar{z}} f\left(a_{i_{i}}, m_{i}\right) \leqq m_{r}\left(\alpha-\frac{\beta}{2}\right)
$$

Now since the asymptotic density of A is α, we have $f\left(0, m_{r}\right)>(\alpha-\epsilon) m_{r}$, if n is large enough, and therefore the number of a_{i} 's in $(0, n)$ outside the intervals $\left(a_{k_{i}}, m_{i}\right), i=1,2 \ldots r$ is not less than

$$
\left(\frac{\beta}{2}-\epsilon\right) m_{r} \geqq\left(\frac{\beta}{2}-\epsilon\right) n .
$$

But for all these a_{i} 's with the exception of $a_{k_{1}}, a_{k_{2}}, \cdots, a_{k_{r}}, a+1$ is not in A.

Moreover, the intervals ($a_{k_{i}}, m_{i}$) do not contain only a^{\prime} 's; else, whenever $p>a_{k_{i}}$ is such that $\left(a_{k_{i}}, p\right)$ does contain integers not in A, we have $p>m_{i}$. Therefore $f\left(a_{k_{i}}, p\right) \geqq\left(\alpha-\frac{1}{2} \beta\right)\left(p-a_{k_{j}}+1\right)$ (by definition of $\left.m_{i}\right)$; so that the modified density of the positive terms of $\left\{a_{i}-a_{k_{j}}\right\}(j=1,2 \cdots)$ is $\geqq \alpha-\frac{1}{2} \beta$, and we are in Case 1. Thus each of the intervals ($a_{k_{i}}, m_{i}$) has to contain an x which is in A, such that $x+1$ is not in A. Hence, finally, the number of integers $\leqq n$ of the form $a_{i}+1$ which are not in A is $\geqq\left(\frac{1}{2} \beta-\epsilon\right)(n-1)$. Hence the number of integers $\leqq n$ of the form $\left\{a_{i}, a_{i}+1\right\}$ is not less than $\left(\alpha+\frac{1}{2} \beta-\epsilon\right) n-1$, if n is large enough, which completes the proof of our theorem.

University of Pennsylvania

[^0]: ${ }^{1}$ Schnirelmann, Uber additive Eigenschaften der Zahlen, Math. Annalen 107 (1933), pp. 649-690.
 ${ }^{2}$ Khintchine, Zur additiven Zahlentheorie, Recueil math. de la soc. Moseow 39 (1932), pp. 27-34.
 ${ }^{3}$ Besicovitch, On the density of the sum of two sequences of integers, Journ, of the London math. soc. 10 (1935), pp. 246-248.
 t Erdos, On the asymptotic density of the sum of two sequences one of which forms a basis for the integers. ï., Travaux de l'institut math. de Tblissi 3 (1938), pp. 217-223.

