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Let al < a2 < . . . be an infinite sequence, A, of positive integers . Denote
the number of a's not exceeding n by f(n) . Schnirelmann has defined the
density of A as G.L.B . f(n)/n .' Now let al < az < . . . ; b1 < b2 < . . . be two se-
quences . We define the sum A + B of these two sequences as the set of integers
of the form a i or bj or {a i + bj} . Schnirelmann proved that if the density of A
is a and that of B is ,l3 then the density of A + B is >= a + /3 - 0 .

Khintchine 2 proved that, provided that a = a < z, the density of A + B

is >_ 2a . He conjectured more generally that if a + 0 <= 1 the density of A + B
is >_ a + 0 . It is easy to see that if a + /3 >_ 1 then every integer is in A + B,
so the density of A + B is 1 . Khintchine's conjecture seems very deep .
Besicovitch3 defined 0' = G .L.B . cp(n)/(n + 1) where ~c(n) denotes the number
of the b's not exceeding n, and proved that the Schnirelmann density of the
sequence of numbers {ai, a i + bj} is >= a + /3' . An example of Rado showed
that this result is the best possible .

Define the asymptotic density of A as lim f(n) /n . Then if a <_ Z and al = 1
1 have proved that the asymptotic density of A + B is >_ za . 4 The following
simple example of Heilbronn shows that this result is the best possible : Let the
a's be the integers --- 0, 1 (mod 4) . Then A + A contains the integers --- 0, 1, 2
(mod 4) . In the present note we prove the following
THEOREM : Let the asymptotic density of A be a and that of B be /3, where

a + 0 <_ 1, 0 _< a, b1 = 1 . Then the asymptotic density of A + B is not less
than a + 2/3, and, in fact, one of the sequences {a i , a i + 1} or tai + b ;} has
asymptotic density >_ a + 2/3.

It is easy to see that if a + /3 > 1 then all large integers are in A + B . For
if not then, none of the integers n - a i belong to B, and the asymptotic density
of B would be not greater than 1 - a < 0 .

To prove our theorem we first need a slight sharpening of the theorem of
Besicovitch ; in fact, we prove the following
LEMMA : Define the modified density of B as follows :

1 Schnirelmann, Über additive Eigenschaften der Zahlen, Math. Annalen 107 (1933), pp .
649-690 .
2 Khintchine, Zur additives Zahlentheorie, Recueil math. de la soc . Moscow 39 (1932),
pp . 27-34 .
3 Besicovitch, On the density of the sum of two sequences of integers, Journ. of the London
math. soc . 10 (1935), pp . 246-248 .

4 Erdös, On the asymptotic density of the sum of two sequences one of which forms a basis
for the integers, ii., Travaux de l'institut math. de Tblissi 3 (1938), pp . 217-223 .
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1)

	

0, = G.L.B .	 `°(n)
n >, n + 1'

where the integers 1, 2, k belong to B, but k + 1 does not belong to B . Clearly
#1 >_ 0' . Then the Schnirelmann density of the sequence { ai, ai + b,1 is not less
than a+0, .

The proof of this lemma follows closely the proof of Besicovitch . Denote by
f(u, v), <p(u, v), > (u, v) respectively the number of a's, b's, and terms of the
sequence jai, a i + b i l in the interval (u, v)-that is, among the integers u + 1,
u + 2, • • • , W e first observe that if r + 1 is any integer which does not
belong to the sequence jai , a i + b i l then

2)

	

f (u, v) + 'p(r - v, r - u) <_ v - u .

For as t runs through (u, v), r + 1 - t runs through (r - v, r - u), and if
t belongs to A then r + 1 - t does not belong to B.
W e may assume that the Schnirelmann density of the sequence {a i , a i + b i l
is less than 1, and that a > 0, so that a, = 1 . Define mo = 0, define ro + 1
as the least positive integer not belonging to ja i , a i + b i l, define m, + 1 as the
least integer greater than ro belonging to A, define 7, + 1 as the least integer
greater than m, not belonging to jai , a i + b i l, and so on .

It suffices to prove that for each x in (ri -, , mi) we have

3)

	

~P(0, x)

	

(a + O1)x,
for if (3) holds, suppose that for some y in (m i , r i) we had

40, y) < (a + 01)y .

(We may suppose j > 0 ; else y < r o , so that ¢(0, y) = y) . Then since all the
integers m; + 1,

	

y belong to ja i , a i + b i) and a + 0 1 <= 1 we should have

'G(mi) < (a + 00mí,

which contradicts (3) .
It follows from the definition of k and the definition of mi and r i that

4)

	

ri - m i > k

	

(i=0,1,2 . . .) .

Let r i -, < x <_ m i ; we have
5)

	

, (ri-, , x) >- (p(ri-, - mi-, - 1, x - mi-,
since any number m i- 1 + 1 + u, where u belongs to B, is in {ai , ai + b i) . Also

6)

	

,,(nii-1 , ri-1) = ri_, - mi-1 > f(mi-1 , ri-,) + ~o(0, ri_, - mi-i)

by (2) . Clearly by the definition of the numbers r i , mi we have for ri-1 <
x < m i , f(m i -, , x) = f(m i-, , r i _,) . Hence by adding (5) and (6)

7) ~ (mi-1 , x)

	

f(mi-, , x) + áp(0, x - mi_, - 1) > f(mi-, , x) + ,3,(x - mi_1),

since by (4) x - mi- 1 - 1 > ri-, - mi_, > k . In particular
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8)

	

~P(m>, m,A

	

f(mi, m,+0 + 01(mj+1

	

m;)

	

(i = 0, 1, . . . ) .

Summing (8) for j = 0, 1, • • • i - 1 and adding (7) we have

~(0, x) >= f(0, x) + (3,x ? (a +,31)x,
which completes the proof of the Lemma .

Now we can prove our theorem . We may assume ,(3 > 0 . Suppose first that
there exists an x belonging to A, such that the modified density of (the positive
terms of) ati - x is >= a - ', ) 3 . Clearly x + I has to be in A since a - '0 > 0 .

It follows that there exists for every positive real e a y such that the Schnirel-
mann density of the positive terms of the sequence { b ; - y } is >_ (3 - e. To see
this choose y to be the greatest integer with

~, (y) < 0 - e .
y

(Since lim ~o(y)/y = (3 such a y exists, unless ~o(y)/y > (3 - e for all positive y ;
in this case we have y = 0) . Then by the definition of y it is clear that ~0(y, z)
i .e. the number of {b ; - y}'s in (0, z - y), is not less than (/3 - e) (z - y), which
proves our assertion .
Now consider the sequence { bj - y, bj - y + ai - x } . By our lemma its

Schnirelmann density is >= a + Z/3 - e ; hence by adding x + y to its members
we obtain the sequence { bj + x, ai + bj }whose asymptotic density is clearly
>_ a + z/3 - e for every e > 0 . But since x is in A, bj + x is in la, + bj} .
Hence the asymptotic density of the sequence {ati + b i } is > a + 20, which
proves our theorem in the first case .

Suppose next that Case I is not satisfied . We may suppose that there exist
arbitrarily large values of i such that ai and a i + 1 are both in A ; otherwise
{ ati , a i + 1 } has asymptotic density 2a > a + 2/3 . Let ak, be the first a i such
that ak, + I is also in A . Then since Case 1 is not satisfied and since a =

lim f (n)/n, there exists a largest integer ml such that f(ak, , m,) <
(a - z(3) (m, - ak, + 1) . Again let akt be the least ai greater than ml such
that akt + 1 is also in A ; there exists as before a largest m2 such thatf(akt , m2) <
(a - 120)(M2 - akt + 1) and so on. Take n large and let m, be the least m > n .
It is clear that the intervals (aki - 1, mi), i = 1, 2 . . . r do not overlap ; thus

f(aki , mi) < mr
Ca
-0) .

Now since the asymptotic density of A is a, we have f(O, mr) > (a - e)m,,
if n is large enough, and therefore the number of ai's in (0, n) outside the inter-
vals (aki , mi), i = 1, 2 . . . r is not less than

C2
- e/mr?C2 - e/n .

But for all these ai 's with the exception of ak, , ak2 ,

	

, ak, , a + 1 is not in A .
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Moreover, the intervals (ak ti , m i ) do not contain only a's ; else, whenever p > akti
is such that (ak, , p) does contain integers not in A, we have p > mi . There-
foref(ak; , p) >_ (a - 20) (p - ak, + 1) (by definition of mi) ; so that the modified
density of the positive terms of { a ; - ak ti } (j = 1, 2 . . . ) is >_ a - 20, and we
are in Case 1 . Thus each of the intervals (ak ti , m i ) has to contain an x which
is in A, such that x + 1 is not in A . Hence, finally, the number of integers <--_ n
of the form a i + 1 which are not in A is >_ (2(3 - e)(n - 1) . Hence the num-
ber of integers <= n of the form { a j , a i -{- 1 } is not less than (a + 2)3 - e)n - 1,
if n is large enough, which completes the proof of our theorem .
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