ON THE LAW OF THE ITERATED LOGARITHM

By Paul Erdös
(Received December 26, 1941)

Introduction

Let t be a real number $(0 \leqq t \leqq 1)$, and let $t=0 . \epsilon_{1}(t) \epsilon_{2}(t) \cdots$ be its dyadic expansion, or equivalently,

$$
\begin{equation*}
t=\frac{\epsilon_{1}(t)}{2}+\frac{\epsilon_{\mathrm{v}}(t)}{2^{2}}+\cdots+\frac{\epsilon_{n}(t)}{2^{n}}+\cdots \tag{0.1}
\end{equation*}
$$

where $\epsilon_{n}(t)=0$ or 1 according as the integral part of $2^{n} t$ is even or odd. It is well known that $\left\{\epsilon_{n}(t)\right\}(n=1,2, \ldots)$ is an independent system in the sense of probability, ${ }^{1}$ and that

$$
\begin{equation*}
\int_{0}^{1} \epsilon_{n}(t) d t=\frac{1}{2}, \quad \int_{0}^{1}\left(\epsilon_{n}(t)-\frac{1}{2}\right)^{2} d t=\frac{1}{4} . \tag{0.2}
\end{equation*}
$$

Let us further put

$$
\begin{equation*}
f_{n}(t)=\sum_{k=1}^{n} \epsilon_{k}(t)-\frac{n}{2} . \tag{0.3}
\end{equation*}
$$

It was proved by A. Khintchine ${ }^{2}$ and A . Kolmogoroff ${ }^{3}$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{f_{n}(t)}{\left(\frac{n}{2} \log \log n\right)^{t}}=1 \tag{0.4}
\end{equation*}
$$

for almost all t.
Let $\varphi(n)$ be a monotone increasing non-negative function defined for all sufficiently large integers. Following P. Lévy we say that $\varphi(n)$ belongs to the upper class if, for almost all t, there exist only finitely many n such that

$$
\begin{equation*}
f_{n}(t)>\varphi(n) ; \tag{0.5}
\end{equation*}
$$

and $\varphi(n)$ belongs to the lover class if, for almost all t, there exist infinitely many n such that (0.5) is true. According to the well-known law of 0 or 1 , each $\varphi(n)$ must belong to one of these classes. Then the result of A. Khintchine and A. Kolmogoroff stated above means that $\varphi(n)=(1+\epsilon)\left(\frac{1}{2} n \log \log n\right)^{\frac{1}{2}}$ belongs to the upper class if $\epsilon>0$, and to the lower class if $\epsilon<0$.
The purpose of the present paper is to give a sharpening of this result. The

[^0]main results are stated in Theorems 1, 2, 3, 4, and 5 below. Among other results, it follows from Theorem 3 that, for $k>3$,
\[

$$
\begin{align*}
\varphi(n)=\left(\frac{n}{2 \log \log n}\right)^{t}(\log \log n & +\frac{3}{4} \log _{4} n+\frac{1}{2} \log _{6} n \tag{0.6}\\
& \left.+\cdots+\frac{1}{2} \log _{k-1} n+\left(\frac{1}{2}+e\right) \log _{k} n\right)
\end{align*}
$$
\]

belongs to the upper class if e >0 and to the lower class if $\epsilon \leqq 0$.
Our proof is direct and elementary. We do not assume the result of A. Khintchine and A. Kolmogoroff, and the paper can be read without knowledge of any particular results concerning the law of the iterated logarithm. The only facts we need are the notion of independence, and the well known inequality

$$
\begin{equation*}
c_{1} \frac{n}{x} e^{-2 e^{1} / n}<\operatorname{Pr}\left(A_{n}(x)\right)<c_{2} \frac{n}{x} e^{-2 x \varepsilon^{2} / n}, \tag{0.7}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(x)=E\left[t: f_{n}(t)>x\right] \tag{0.8}
\end{equation*}
$$

means the set of all real numbers $t(0 \leqq t \leqq 1)$ satisfying $f_{s}(t)>x$, and $\operatorname{Pr}(A)$ means the ordinary Lebesque measure of a measurable set A in the interval $0 \leqq t \leqq 1 . c_{i}(i=1,2, \cdots)$ will depote positive constants.

Throughout the present paper, the sequence $\left\{m_{n} \mid(n=1,2, \cdots)\right.$ defined by $m_{1}=1$ and

$$
\begin{equation*}
m_{n}=\left[e^{n / l o g n}\right], \quad n=2,3, \cdots, \tag{0.9}
\end{equation*}
$$

will play a fundamental role. The fact that we adopt the sequence $\left\{m_{\mathrm{s}}\right\}$ ($n=1,2, \cdots$) instead of $\left\{a^{*}\right\}(n=1,2, \cdots)$, which was used by A. Khintchine and A. Kolmogoroff, is essential in our proof, and will enable us to obtain our sharper results. The following inequalities, which are easy to prove, will be used very often:

$$
\begin{gather*}
m_{n}<m_{n+1}<c_{9} m_{n} \tag{0.10}\\
c_{4} \frac{m_{n}}{\log \log m_{n}}<m_{n+1}-m_{n}<c_{8} \frac{m_{n}}{\log \log m_{n}} \tag{0.11}\\
c_{9}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{i}<\left(m_{n+1} \log \log m_{n+1}\right)^{i} \\
-\left(m_{n} \log \log m_{n}\right)^{t}<c_{7}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{t} \tag{0.12}
\end{gather*}
$$

It is not difficult to extend our results to the case in which the parameter n is continuous, i.e. the case of Brownian motion. 'We can define the upper and

[^1]the lower classes in this case, and can obtain the corresponding results. It was stated by P. Lévy ${ }^{3}$ that A. Kolmogoroff has proved the following result: Let $\psi(\lambda)=\varphi(\lambda) / \lambda^{\dagger}$ be monotone increasing. Then a necessary and sufficient condition that $\varphi(\lambda)$ belong to the lower class is given by the divergence of the integral
\[

$$
\begin{equation*}
\int_{0}^{\infty} \psi(\lambda) e^{-2(\psi(\lambda))} \frac{d \lambda}{\lambda} . \tag{0.13}
\end{equation*}
$$

\]

It is easy to see that this is equivalent to Theorem 4. As far as I know, the proof of A. Kolmogoroff has not been published. Recently, J. Ville ${ }^{6}$ proved that the divergence of (0.13) is necessary. This corresponds to a special case of Theorem 1, but his proof is entirely different from ours.

Theorem 1. $\varphi(n)$ belongs to the upper class if it is monotone increasing and if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)<\infty . \tag{1.1}
\end{equation*}
$$

Proof. First we remark that we may assume that

$$
\begin{equation*}
\varphi(n) \leqq(n \log \log n)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

for sufficiently large n. Indeed, otherwise we may consider $\varphi_{1}(n)=$ $\min \left(\varphi(n),(n \log \log n)^{\frac{1}{2}}\right)$ instead of $\varphi(n)$. It is clear that $\varphi_{1}(n)$ is monotone increasing, that $\varphi_{1}(n)$ satisfies (1.1) if $\varphi(n)$ does (because, by (0.7), $\varphi_{0}(n)=$ $(n \log \log n)^{\frac{1}{s}}$ satisfies (1.1)); and that if $\varphi_{1}(n)$ belongs to the upper class so does $\varphi(n)$ too.
Next we notice that, under the assumption (1.2), we have

$$
\begin{equation*}
\operatorname{Pr}\left(A_{m_{n+1}}\left(\varphi\left(m_{n}\right)\right)\right)<c_{8} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) . \tag{1.3}
\end{equation*}
$$

This is an easy consequence of the relations (0.7), (0.10) and (0.11). We omit the proof.
Now assume that Theorem 1 is not true. Then there exists a constant $c_{0}>0$ such that, for any $M_{0}=m_{n_{0}}$, there exists an $N_{0}=m_{n_{0}^{\prime}}\left(n_{0}^{\prime}>n_{0}\right)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{N_{0}<u \leq N_{0}} A_{u}(\varphi(u))\right)>c_{Q}>0 . \tag{1.4}
\end{equation*}
$$

Let us put

$$
\begin{align*}
B(u) & =A_{v}(\varphi(u))-A_{v}(\varphi(u)) \sum_{v_{0}<v<v} A_{v}(\varphi(v)) \tag{1.5}\\
& =E\left[t: f_{v}(t)>\varphi(u) ; f_{v}(t) \leqq \varphi(v), M_{0}<v<u\right] .
\end{align*}
$$

[^2]Then $\{B(u)\}\left(M_{0}<u \leqq N_{0}\right)$ are mutually disjoint, and

$$
\begin{equation*}
\sum_{u_{0}<=\delta N_{0}} B(u)=\sum_{N_{0}<v s N_{0}} A_{v}(\varphi(u)) . \tag{1.6}
\end{equation*}
$$

For each $u\left(M_{0}<u \leqq N_{0}\right)$ take an $n\left(n_{0} \leqq n<n_{0}^{\prime}\right)$ such that $m_{n}<u \leqq m_{n+1}$, and put

$$
\begin{equation*}
\Delta_{*, m_{n+1}}^{+}=E\left[t: f_{m_{n+1}}(t)-f_{x}(t) \geqq 0\right] . \tag{1.7}
\end{equation*}
$$

Then it is clear that $B(u)$ and $\Delta_{*-n_{n+1}}^{+}$are independent, and hence

$$
\begin{equation*}
\operatorname{Pr}\left(B(u) \cdot \Delta_{w, m_{n+1}}^{+}\right)=\operatorname{Pr}(B(u)) \operatorname{Pr}\left(\Delta_{w, m_{n+1}}^{+}\right) \geqq \frac{1}{\frac{1}{2} \cdot \operatorname{Pr}(B(u)) ~} \tag{1.8}
\end{equation*}
$$

On the other hand, since $t \in B(u) \cdot \Delta_{u, m_{n+1}}^{+}$implies $f_{m_{n+1}}(t) \geqq f_{u}(t)>\varphi(u) \geqq$ $\varphi\left(m_{\mathrm{n}}\right)$, we have

$$
\begin{equation*}
B(u) \cdot \Delta_{-, m_{\alpha+1}}^{+} \subset A_{m_{++1}}\left(\varphi\left(m_{\Omega}\right)\right) \tag{1,9}
\end{equation*}
$$

for $m_{n}<u \leqq m_{n+1}$. Hence, since $\left\{B(u) \cdot \Delta_{u_{1}, m_{n+1}}^{+} \mid\left(M_{0}<u \leqq N_{0}\right)\right.$ are mutually disjoint, we have, by (1.3), (1.8), (1.6) and (1.4),

$$
\begin{aligned}
& c_{u} \sum_{u_{0}<u \leq N_{0}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) \geqq \\
& \geqq \sum_{x_{0}<u \leq N_{0}} \operatorname{Pr}\left(A_{m_{n}+1}\left(\varphi\left(m_{n}\right)\right)\right) \\
&\left.\geqq \frac{1}{2} \operatorname{Pr}\left(\sum_{u_{0}<N_{0}} \sum_{i u \leq N_{0}} B(u)\right)=\Delta_{*, m_{2+1}}\right) \geqq \frac{1}{2} \operatorname{Pr}\left(\sum_{N_{0}<v<N_{0}<u \leq N_{0}} \operatorname{Pr}(B(u))\right. \\
&\left.A_{u}(\varphi(u))\right)>\frac{c_{0}}{2}>0 .
\end{aligned}
$$

Since c_{8} and c_{0} are positive constants, and since $M_{0}=m_{n_{0}}$ can be arbitrarily large, this contradicts to the assumption (1.1). This proves Theorem 1.

Coroluary 1. $\varphi(n)=\left(1 /(2)^{\dagger}+\epsilon\right)(n \log \log n)^{i}$ belongs to the upper class for $\epsilon>0$.

Corollasy 2. The expression (0.6) belongs to the upper class for $\in>0$.
Proof. Follows immediately from Theorem 1 and (0.7).

2

Theores 2. If $\varphi(n)$ is monotone increasing, then a necessary and sufficient condition that $\varphi(n)$ belong to the lower class is that, for almost all t, there exist infinitely many n such that

$$
\begin{equation*}
f_{m_{n}}(t)>\varphi\left(m_{n}\right) . \tag{2.1}
\end{equation*}
$$

Proor. The sufficiency is obvious. In order to prove the necessity, let us assume that $\varphi(n)$ belongs to the lower class. First we remark that we may assume

$$
\begin{equation*}
\varphi(n) \leqq(n \log \log n)^{4} \tag{2.2}
\end{equation*}
$$

for sufficiently large n. Indeed, by Corollary 1 to Theorem $1, \varphi(n)=(n \log \log n)^{\text {t }}$ belongs to the upper class. Hence, if we put $\varphi_{1}(n)=\min \left(\varphi(n), \varphi_{0}(n)\right)$, then
$\varphi_{1}(n)$ belongs to the lower class if $\varphi(n)$ does; and if the necessity of the condition is proved for $\varphi_{1}(n)$, then it is obviously true for $\varphi(n)$ too.

By assumption, there exists a constant $c_{10}>0$ such that for any $M_{0}=m_{n_{0}}$ there exists an $N_{0}=m_{n_{i}^{\prime}}\left(n_{0}^{\prime}>n_{0}\right)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{u_{0}<\omega \leq N_{0}} A_{u}(\varphi(u))\right)>c_{30} \tag{2.3}
\end{equation*}
$$

Let us put

$$
\begin{align*}
C(u) & =A_{v}(\varphi(u))-A_{v}(\varphi(u)) \cdot \sum_{v<s \leqq v_{v}} A_{v}(\varphi(v)) \tag{2.4}\\
& =E\left[t: f_{v}(t)>\varphi(u) ; f_{v}(t) \leqq \varphi(v), u<v \leqq N_{\mathrm{v}}\right] .
\end{align*}
$$

Then $\{C(u)\}\left(M_{0}<n \leqq N_{0}\right)$ are mutually disjoint, and

$$
\begin{equation*}
\sum_{M_{0}<u \leq N_{0}} C(u)=\sum_{M_{0}<\infty \leq N_{0}} A_{u}(\varphi(u)) \tag{2.5}
\end{equation*}
$$

For each $u\left(M_{0}<u \leqq N_{0}\right)$ take an $n\left(n_{0} \leqq n<n_{0}^{\prime}\right)$ such that $m_{n}<u \leqq m_{n+}$ and put

$$
\begin{equation*}
\Delta_{m_{s}, *}^{-}=E\left[t: f_{w}(t)-f_{m_{s}}(t) \leqq 0\right] \tag{2.6}
\end{equation*}
$$

It is to be noticed that $C(u)$ and $\Delta_{m_{n},}^{-}$are not independent, but it can be shown by computations ${ }^{7}$ that there exists a constant $c_{\mathrm{n}}>0$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(C(u) \cdot \Delta_{m_{u}, u}^{-}\right)>c_{41} \operatorname{Pr}(C(u)) . \tag{2.7}
\end{equation*}
$$

We aketch the proof of (2.7): Let us put

$$
C(u, k)=E\left[t: f_{v}(t)=k ; \quad f_{v}(t) \leqq \varphi(p), \quad u<v \leqq N_{0}\right],
$$

where $k>\rho(u)$ is an integer or integer $+\ddagger$ according as w is even or odd. Then a simple ealeulation with binomial coeffietents shows that

$$
\operatorname{Pr}\left(\sum_{v(v)<t \leq(v)+v / v(w)} C(u, k)\right)>\operatorname{cus} \operatorname{Pr}(C(u)) .
$$

Thus it suffices to show that, for $\varphi(u)<k \leqq \varphi(u)+u / \varphi(u)$,

$$
\operatorname{Pr}\left(C(u, k) \cdot \Delta_{m_{n}, u}^{-}\right)>c_{a} \operatorname{Pr}(C(u, k))
$$

Now, it in easy to see that

$$
\frac{\operatorname{Pr}(C(u, k))}{\operatorname{Pr}\left(C(u, k) \cdot \Delta \tilde{m}_{n} v\right)}<\operatorname{cu}\binom{u}{\frac{u}{2}+k} /\binom{m_{n}}{\frac{u}{2}+k}
$$

and a simple calculation shows that

$$
\binom{u}{\frac{u}{2}+k}>c a\binom{m_{n}}{\frac{u}{2}+k}
$$

which completes the proof of (2.7).

On the other hand, since $t e C(u) \cdot \Delta_{m_{\alpha}, *}^{-}$implies $f_{m_{v}}(t) \geqq f_{u}(t)>\varphi(u) \geqq \varphi\left(m_{n}\right)$, we have

$$
\begin{equation*}
C(u) \cdot \Delta_{m_{n}, w} \subset A_{m_{n}}\left(\varphi\left(m_{\mathrm{n}}\right)\right) \tag{2.8}
\end{equation*}
$$

for $m_{n}<u \leqq m_{n+1}$. Hence, since $\left\{C(u) \cdot \Delta_{m_{n}, u}\right\}\left(M_{0}<u \leqq N_{0}\right)$ are mutually disjoint, we have, by (2.7) and (2.5),

$$
\begin{align*}
& \sum_{M_{0}<m_{n} \leq N_{\theta}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) \geqq \sum_{M_{0}<u \leq N_{0}} \operatorname{Pr}\left(C(u) \cdot \Delta_{m_{n}}^{\Sigma}\right) \\
& \geqq c_{U 1} \sum_{v_{0}<=\leq N_{0}} \operatorname{Pr}(C(u))=c_{1 H} \operatorname{Pr}\left(\sum_{u_{0}<=\leq N_{0}} C(u)\right) \tag{2.9}\\
& =c_{\mathrm{H}} \operatorname{Pr}\left(\sum_{\mu_{0}<\mu \equiv N_{0}} A_{u}(\varphi(u))\right)>\epsilon_{10} \cdot c_{\mathrm{H}}>0 .
\end{align*}
$$

Since c_{10} and c_{21} are absolute positive constants, and since $M_{0}=m_{\mathrm{rg}}$ can be taken arbitrarily large, this means that the set of all t for which the inequality (2.1) holds for infinitely many n, has positive measure. By the law of 0 or 1 , this set must have measure 1, and thus Theorem 2 is proved.

3

Theonem 3. Let $\varphi(n)$ be monotone increasing and let us assume that

$$
\begin{equation*}
\varphi\left(m_{n+1}\right)-\varphi\left(m_{n}\right)>c_{12}\left(m_{n} / \log \log m_{n}\right)^{t} . \tag{3.1}
\end{equation*}
$$

Then a necessary and sufficient condition that $\varphi(n)$ belong to the lover class is that

$$
\begin{equation*}
\sum_{x=1}^{\infty} \operatorname{Pr}\left(A_{n_{0}}\left(\varphi\left(m_{n}\right)\right)\right)=\infty . \tag{3.2}
\end{equation*}
$$

Proof. The necessity follows from Theorem 1, without assuming (3.1). In order to prove that the condition (3.1) is sufficient, let us assume that $\varphi(n)$ is monotone increasing and satisfies (3.1) and (3.2). We first notice that (3.1) and (0.12) imply

$$
\begin{equation*}
\varphi\left(m_{n+1}\right)-\varphi\left(m_{n}\right)>c_{13}\left(\left(m_{n+1} \log \log m_{n+1}\right)^{t}-\left(m_{n} \log \log m_{n}\right)^{\dagger}\right), \tag{3.3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\varphi\left(m_{n}\right)>c_{d}\left(m_{n} \log \log m_{n}\right)^{4} . \tag{3.4}
\end{equation*}
$$

From (3.4) and (0.7) it follows easily that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A_{\mu_{n}}^{j}\left(\varphi\left(m_{n}\right)\right)\right)=0 . \tag{3.5}
\end{equation*}
$$

Next we notice that we may assume

$$
\begin{equation*}
\varphi(n) \leqq(n \log \log n)^{t} \tag{3.6}
\end{equation*}
$$

for sufficiently large n. Indeed, otherwse we may consider $\varphi_{1}(n)=$ $\min \left(\varphi(n),(n \log \log n)^{h}\right)$ instead of $\varphi(n)$. Since $\varphi(n)=(n \log \log n)^{t}$ clearly satisfies (3.1), $\varphi_{2}(n)$ satisfies it too. Further, it is obvious that (3.2) is satisfied by $\varphi_{1}(n)$ whenever it is satisfied by $\varphi(n)$. Moreover, since $\varphi_{0}(n)$ belongs to the
upper class, by the corollary to Theorem $1, \varphi_{1}(n)$ belongs to the lower class at the same time as $\varphi(n)$.
Because of the law of 0 or 1, and because of Theorem 2, it is sufficient to prove that there exists a constant $c_{15}>0$ such that there exists, for any $M_{0}=m_{n_{0}}$, an $N_{0}=m_{n_{0}^{\prime}}\left(n_{0}^{\prime}>n_{0}\right)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{\mu_{0}<m_{n} \leqslant N_{0}} A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)>c_{16} . \tag{3.7}
\end{equation*}
$$

Let $\delta>0$ be a small positive number, which we shall determine later. Then, by (3.2) and (3.4), there exists an N such that, for any $M_{0}=m_{n_{0}}>N$, an $N_{0}=m_{n_{0}^{\prime}}\left(n_{0}^{\prime}>n_{0}\right)^{2}$ exists such that

$$
\begin{equation*}
\delta<\sum_{M_{0}<m_{-\infty} \leq N_{0}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)<2 \delta . \tag{3.8}
\end{equation*}
$$

We shall prove that if δ is chosen sufficiently small (but fixed), then (3.7) is satisfied, with the same integers M_{0} and N_{0} as in (3.8), by a suitable positive constant $c_{18}>0$.
In order to prove this, let us first put

$$
\begin{align*}
D\left(m_{n}\right) & =A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)-A_{m_{n}}\left(\varphi\left(m_{n}\right)\right) \cdot \sum_{m_{n}<m_{n+r} \leq N_{0}} A_{m_{n+r}+r}\left(\varphi\left(m_{n+r}\right)\right) \tag{3.9}\\
& =E\left[t: f_{m_{n}}(t)>\varphi\left(m_{n}\right) ; f_{m_{n+r}}(t) \leqq \varphi\left(m_{n+r}\right), m_{n}<m_{n+r} \leqq N_{0}\right] .
\end{align*}
$$

Then $\left\{D\left(m_{n}\right)\right\}\left(M_{0}<m_{n} \leqq N_{0}\right)$ are mutually disjoint, and

$$
\begin{equation*}
\sum_{M_{0}<m_{n} \leq N_{0}} D\left(m_{n}\right)=\sum_{N_{0}<m_{n} \leq N_{0}} A_{m_{n}}\left(\varphi\left(m_{n}\right)\right) . \tag{3.10}
\end{equation*}
$$

Let us further put

$$
\begin{align*}
D_{1}\left(m_{n}\right) & =A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)-A_{m_{n}}\left(\varphi\left(m_{n}\right)+\frac{c_{12}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{t}\right) \\
& =E\left[t: \varphi\left(m_{n}\right)<f_{m_{n}}(t) \leqq \varphi\left(m_{n}\right)+\frac{c_{12}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{t}\right] . \tag{3.11}
\end{align*}
$$

Then a simple computation will show that ${ }^{4}$

$$
\begin{aligned}
& \text { 『W Wave clearly } \\
& \qquad \frac{\operatorname{Pr}\left(D_{1}\left(m_{n}\right)\right)}{\operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)}=\frac{\sum^{\prime}\binom{m_{n}}{u}}{\sum_{u>\psi\left(m_{n}\right)}\binom{m_{n}}{u}}
\end{aligned}
$$

where the dash indicates that u runs only over the interval

$$
\varphi\left(m_{n}\right), \quad \varphi\left(m_{n}\right)+\frac{c_{n}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{\ddagger} .
$$

A simple calculation shows that

$$
\sum^{\prime}\binom{m_{n}}{u} / \sum_{i>\varphi\left(m_{n}\right)}\binom{m_{n}}{u}>c_{t 6}
$$

which proves (3.12).

$$
\begin{equation*}
\operatorname{Pr}\left(D_{1}\left(m_{n}\right)\right)>c_{10} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) \tag{3.12}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
D_{2}\left(m_{n}\right)=D_{1}\left(m_{n}\right)+E\left[t: f_{m_{a++-1}}(t)-f_{m_{n}+r}(t) \leqq 0, r=1,2, \cdots, h\right]_{r} \tag{3.13}
\end{equation*}
$$

where h is a positive integer which we shall determine later. Then it is casy to see that

$$
\begin{equation*}
\operatorname{Pr}\left(D_{1}\left(m_{n}\right)\right) \geqq 2^{-\star} \operatorname{Pr}\left(D_{1}\left(m_{N}\right)\right) \tag{3.14}
\end{equation*}
$$

and that $t \in D_{2}\left(m_{n}\right)$ implies

$$
\begin{equation*}
f_{m_{n+}}(t) \leqq f_{m,}(t)<\varphi\left(m_{n+r}\right) \tag{3.15}
\end{equation*}
$$

for $r=1,2, \cdots, h$. Let us further put

$$
\begin{equation*}
D_{s}\left(m_{n}\right)=D_{0}\left(m_{n}\right) \cdot E\left[t: f_{m_{n+r}}(t) \leqq \varphi\left(m_{n+r}\right), m_{n+s}<m_{n+r} \leqq N_{0}\right] . \tag{3.16}
\end{equation*}
$$

Then it is clear that $D_{1}\left(m_{n}\right) \subset D\left(m_{n}\right) \subset A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)$. In order to complete the proof of Theorem 3, it is sufficient to prove that, if δ is chosen sufficiently small and if h is chosen sufficiently large (but both fixed), then there exists a constant $c_{17}>0$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right)>c_{17} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) \tag{3.17}
\end{equation*}
$$

Indeed, (3.17) will imply

$$
\begin{aligned}
& \operatorname{Pr}\left(\sum_{M_{0}<m_{n} S N_{0}} A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)=\operatorname{Pr}\left(\sum_{\mu_{0}<m_{n} \leq N_{0}} D\left(m_{n}\right)\right) \\
& =\sum_{N_{\mathrm{a}}<=_{n} \leq N_{n}} \operatorname{Pr}\left(D\left(m_{n}\right)\right) \geqq \sum_{M_{\mathrm{s}}<m_{\mathrm{N}} \leq N_{\mathrm{N}}} \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \\
& >c_{n t} \sum_{N_{0}<m_{n} \leq x_{\mathrm{i}}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)>c_{n} \cdot \delta,
\end{aligned}
$$

which means that (3.7) is satisfied by $c_{13}=c_{17} \cdot \delta>0$, thus completing the proof of Theorem 3.

The rest of the proof of Theorem 3 is devoted to establishing the relation (3.17). For this purpose, put

$$
\begin{equation*}
D_{3, r}\left(m_{n}\right)=D_{2}\left(m_{n}\right) \cdot A_{m_{n+r}}\left(\varphi\left(m_{n+r}\right)\right) \tag{3.19}
\end{equation*}
$$

for all integers r such that $m_{\mathrm{s}+\star}<m_{\mathrm{n}+r} \leqq N_{\mathrm{f}}$. It is easy to see that

$$
\begin{equation*}
D_{3}\left(m_{n}\right) \subset D_{3}\left(m_{n}\right)+\sum_{m_{n}+1<m_{n}+1 \leq N_{9}} D_{2, r}\left(m_{n}\right) \tag{3.20}
\end{equation*}
$$

We shall evaluate $\operatorname{Pr}\left(\sum_{m_{n+\lambda}<m_{n+r} \leqq N_{4}} D_{3, r}\left(m_{n}\right)\right)$ by decomposing the sum into

In the first place, $t \in D_{\mathrm{A}, r}\left(m_{n}\right)$ implies

$$
\begin{aligned}
& f_{m_{n+t}}(t)-f_{m_{n+1}}(t) \geqq f_{m_{n+t}}(t)-f_{m_{n}}(t) \\
&>\varphi\left(m_{n+r}\right)-\varphi\left(m_{n}\right)-\frac{c_{12}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{t} \\
&>\sum_{k=0}^{+-1} c_{12}\left(\frac{m_{n+k}}{\log \log m_{n+k}}\right)^{t}-\frac{c_{12}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{t} \\
&>\frac{c_{12} r}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \operatorname{Pr}\left(D_{3, r}\left(m_{n}\right)\right) \leqq \alpha_{r} \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right), \tag{3.22}\\
& \alpha_{r}=\operatorname{Pr}\left(E\left[t: f_{m_{n+1}}(t)-f_{m_{n+\Lambda}}(t)>\frac{c_{\mathrm{n}} r}{2}\left(\frac{m_{\mathrm{n}}}{\log \log m_{n}}\right)^{t}\right]\right) \\
& =\operatorname{Pr}\left(A_{m_{n+1} m_{n+n}}\left(\frac{c_{12} r}{2}\left(\frac{m_{\mathrm{n}}}{\log \log m_{\mathrm{n}}}\right)^{t}\right)\right) \tag{3.23}\\
& <c_{2} \frac{\left(m_{n+r}-m_{n+h}\right)^{\frac{1}{2}}}{\frac{c_{12} r}{2}\left(\frac{m_{n}}{\log \cdot \log m_{n}}\right)^{3}} \exp \left[-\frac{2\left(\frac{c_{12} r}{2}\right)^{2} \frac{m_{n}}{\log \log m_{n}}}{m_{n+r}-m_{n+A}}\right] .
\end{align*}
$$

where

Since, on the other hand, $m_{n+\AA}<m_{n+r} \leqq 2 m_{n}$ implies

$$
m_{n+r}-m_{n+k} \leqq \sum_{k=0}^{r-1}\left(m_{n+k+1}-m_{n+k}\right)
$$

$$
\begin{equation*}
<c_{\Delta} r \frac{m_{n+r}}{\log \log m_{n+r}} \leqq 2 c_{5} r \frac{m_{n}}{\log \log m_{n}}, \tag{3.24}
\end{equation*}
$$

we have, by (0.7),

$$
\begin{equation*}
\alpha_{r}<c_{18} e^{-e_{10} r} \tag{3.25}
\end{equation*}
$$

for $m_{n+\hbar}<m_{n+r} \leqq 2 m_{n}$. Consequently,

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{m_{n}+1<m_{n++} \leq 2 m_{n}} D_{3, r}\left(m_{n}\right)\right)<c_{18} \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \cdot \sum_{r=h+1}^{\infty} e^{-\varepsilon_{19},} . \tag{3.26}
\end{equation*}
$$

Secondly, $t \in D_{3, r}\left(m_{n}\right)$ and $2 m_{n}<m_{n+r} \leqq m_{n} \log m_{n}$ imply

$$
f_{m_{n+}}(t)-f_{m_{n+1}}(t)>\frac{c_{12}}{2} \sum_{k=0}^{r-1}\left(\frac{m_{n+k}}{\log \log m_{n+k}}\right)^{t}
$$

$$
\begin{align*}
& >\frac{c_{12}}{2 c_{7}} \sum_{k=0}^{r-1}\left(\left(m_{n+k+1} \log \log m_{n+k+1}\right)^{\frac{1}{2}}-\left(m_{n+k} \log \log m_{n+k}\right)^{\frac{1}{4}}\right) \tag{3.27}\\
& >c_{20}\left(m_{n+r} \log \log m_{n+r}\right)^{\frac{1}{2}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\operatorname{Pr}\left(D_{\mathrm{a}, r}\left(m_{n}\right)\right)<\beta_{r} \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \tag{3.28}
\end{equation*}
$$

for $2 m_{n}<m_{n+r} \leqq m_{n} \log m_{n}$, where

$$
\begin{align*}
\beta_{r} & =\operatorname{Pr}\left(E\left[t: f_{m_{n+r}}(t)-f_{m_{k+1}}(t)>c_{20}\left(m_{n+r} \log \log m_{n+r}\right)^{\frac{1}{1}}\right]\right) \\
& =\operatorname{Pr}\left(A_{m_{n+r}-m_{n+1}}\left(c_{n}\left(m_{s+r} \log \log m_{n+r}\right)^{\frac{1}{2}}\right)\right) \\
& <c_{2} \frac{\left(m_{n+r}-m_{n+h}\right)^{1}}{c_{20}\left(m_{n+r} \log \log m_{n+r}\right)} \exp \left[-\frac{2 c_{20}^{2} m_{n+r} \log \log m_{n+r}}{m_{n+r}-m_{n+k}}\right] \tag{3.29}\\
& <c_{21} e^{-s_{n+1} \log \log m_{n+r}}<\frac{c_{21}}{\left(\log m_{n}\right)^{e+1}} .
\end{align*}
$$

On the other hand, the number of $m_{n+\prime}$'s satisfying $2 m_{n}<m_{n+r} \leqq m_{n} \log m_{n}$ does not exceed $c_{a}\left(\log \log m_{n}\right)^{2 ?}$. Hence we have

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{2 m_{n}<m_{n}+r \leq m_{n} \log m_{n}} D_{n, r}\left(m_{n}\right)\right)<\operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \cdot c_{26} \frac{\left(\log \log m_{n}\right)^{2}}{\left(\log m_{n}\right)^{c 21}} . \tag{3.30}
\end{equation*}
$$

Lastly, $t \in D_{3, r}\left(m_{n}\right)$ and $m_{n} \log m_{n}<m_{n+\tau} \leqq N_{0}$ imply

$$
\begin{align*}
f_{m_{n++}}(t)-f_{m_{n+s}}(t) & >\varphi\left(m_{n+r}\right)-\varphi\left(m_{n}\right)-\frac{c_{12}}{2}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{\prime} \tag{3.31}\\
& >\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{\frac{t}{2}}
\end{align*}
$$

Hence

$$
\begin{equation*}
\operatorname{Pr}\left(D_{2, r}\left(m_{n}\right)\right)<\gamma_{r} \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \tag{3.32}
\end{equation*}
$$

for $m_{n} \log m_{n}<m_{n+r} \leqq N_{0}$, where

$$
\begin{aligned}
\gamma_{r} & =\operatorname{Pr}\left(E\left[t: f_{m_{n+r}}(t)-f_{m_{n+1}}(t)>\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{\dagger}\right]\right) \\
& =\operatorname{Pr}\left(A_{m_{n+r}-m_{n+1}}\left(\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{\frac{t}{j}}\right)\right) \\
& <c_{2} \frac{\left(m_{n+r}-m_{n+n}\right)^{t}}{\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{t}}
\end{aligned}
$$

$$
<c_{2} \frac{\left(m_{n+r}\right)^{4}}{\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{4}}
$$

$$
\begin{align*}
& \cdot \exp \left[-\frac{2\left(\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{n}\right)^{\frac{1}{2}}\right)^{2}}{m_{n+r}-m_{n+1}}\right] \tag{3.33}\\
& \frac{\left.m_{n+r}\right)^{\frac{1}{2}}}{\left(m_{n} \log \log m_{n}\right)^{\frac{1}{2}}} \\
& \cdot \exp \left[-\frac{2\left(\varphi\left(m_{m+r}\right)\right)^{2}}{m_{n+r}}+\frac{8 \varphi\left(m_{n+r}\right)\left(m_{n} \log \log m_{n} t^{\dagger}\right.}{m_{n+r}}\right] .
\end{align*}
$$

[^3]$$
c_{50} \log \log x \frac{\log \log x}{\log 2}<c_{i a}(\log \log x)^{2}
$$

On the other hand, for sufficiently large $n, m_{n+r}>m_{n} \log m_{n}$ implies

$$
\begin{gather*}
\varphi\left(m_{n+r}\right)-2\left(m_{n} \log \log m_{r}\right)^{\frac{1}{2}}>\frac{1}{2} \varphi\left(m_{n+r}\right), \tag{3.34}\\
\varphi\left(m_{n+r}\right)\left(m_{n} \log \log m_{n}\right)^{\dagger}<m_{n+r} . \tag{3.35}
\end{gather*}
$$

Hence

$$
\begin{align*}
\gamma_{r} & <c_{25} \cdot \frac{\left(m_{n+r}\right)^{\frac{1}{2}}}{\varphi\left(m_{n+r}\right)} \exp \left[-\frac{2\left(\varphi\left(m_{n+r}\right)\right)^{2}}{m_{n+r}}\right] \tag{3.36}\\
& <c_{26} \operatorname{Pr}\left(A_{m_{n+r}}\left(\varphi\left(m_{n+r}\right)\right)\right) .
\end{align*}
$$

Consequently,

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{m_{n} 10 \mathrm{~m}}^{m_{n}<m_{n++} \leq N_{0}}\right. & \left.D_{a_{1, r}}\left(m_{n}\right)\right) \\
& <\operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \cdot c_{25} \sum_{N_{0}<m_{n}+r \leqq N_{0}} \operatorname{Pr}\left(A_{m_{n+r}}\left(\varphi\left(m_{n+r}\right)\right)\right) \\
& <c_{26} \cdot 2 \delta \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) .
\end{aligned}
$$

Combining (3.26), (3.30) and (3.37), we have finally

$$
\begin{align*}
& \operatorname{Pr}\left(\sum_{m_{n+\Lambda}<m_{n}+r \leq N_{0}} D_{3, r}\left(m_{n}\right)\right) \\
& \quad<\operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right)\left\{c_{18} \cdot \sum_{r=k+1}^{\infty} e^{-c_{1} \theta^{\pi}}+c_{26} \frac{\left(\log \log m_{n}\right)^{2}}{\left(\log m_{n}\right)^{c / 2}}+c_{26} \cdot 2 \delta\right\} . \tag{3,38}
\end{align*}
$$

Hence, if we take h sufficiently large and δ sufficiently small, then we have

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{m_{n}+\alpha<m_{n+r} \leqq N_{0}} D_{3, r}\left(m_{n}\right)\right)<\theta \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right), \tag{3.39}
\end{equation*}
$$

where θ is a constant with $0<\theta<1$. Consequently, by (3.20),

$$
\begin{align*}
& \operatorname{Pr}\left(D_{3}\left(m_{n}\right)\right)>(1-\theta) \cdot \operatorname{Pr}\left(D_{2}\left(m_{n}\right)\right) \\
& \quad>2^{-1}(1-\theta) \cdot \operatorname{Pr}\left(D_{1}\left(m_{n}\right)\right)>(1-\theta) \cdot c_{27} \operatorname{Pr}\left(A _ { m _ { n } } \left(\varphi\left(m_{n}\right)\right.\right. \text { (by 3.12) } \tag{3.40}\\
& \quad>c_{17} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right),
\end{align*}
$$

which proves (3.17). The proof of Theorem 3 is completed.
Corollary 1. $\varphi(n)=(1 / \sqrt{ } 2+\epsilon)(n \log \log n)^{\frac{1}{2}}$ belongs to the lower class for $\epsilon \leqq 0$.

Corollary 2. The expression (0.6) belongs to the lower class for $¢ \leqq 0$.
Proof. Follows immediately from Theorem 3 and (0.7).

4

Theorem 4. Let $\varphi(n) / n^{i}$ be monotone inereasing. Then a necessary and suffcient condition that $\varphi(n)$ belong to the lower class is that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)=\infty . \tag{4.1}
\end{equation*}
$$

We need the following

Lemma 1. Let $M_{1}<N_{1}<M_{2}<N_{2}<\cdots<M_{i}<N_{i}<\cdots$ be a sequence of positive integers tending to infinity, and let $\varphi(n)$ be such that

$$
\begin{gather*}
\varphi\left(m_{n+1}\right)-\varphi\left(m_{n}\right)>c_{28}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{\frac{1}{2} \quad M_{i}<m_{n} \quad m_{n+1} \leqq N_{i}} \begin{array}{c}
\varphi\left(m_{n}\right)>c_{29}\left(m_{n} \log \log m_{n}\right)^{1}, \quad M_{i}<m_{n}<m_{n+1} \leqq N_{i} \\
\sum_{M_{i}<m_{N} \leqq N_{i}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)>c_{30}
\end{array} . . \tag{4.2}
\end{gather*}
$$

Then $\varphi(n)$ belongs to the lower class.
We do not give the proof of Lemma, 1, since it can be carried out in the same way as in Theorem 3.

Proof of Theorem 4. The necessity of the condition is clear by Theorem 1 . In order to prove that it is sufficient, let us assume that $\varphi(n) / n^{7}$ is monotone increasing and that (4.1) is satisfied. We shall prove that there exists a sequence of integers $M_{1}<N_{1}<M_{2}<N_{2} \quad \cdots<M_{i}<N_{i}<\cdots$ tending to infinity, which satisfies the conditions of Lemma 1.

If we have

$$
\begin{equation*}
\varphi\left(m_{n}\right)<\frac{1}{10}\left(m_{n} \log \log m_{n}\right)^{\dagger} \tag{4.5}
\end{equation*}
$$

for all sufficiently large n, then the fact that $\varphi_{0}(n)=\frac{1}{10}(n \log \log n)^{\frac{1}{2}}$ belongs to the lower class (see Corollary 1 to Theorem 3), together with-Theorem 2, will imply that $\varphi(n)$ belongs to the lower class. On the other hand, if

$$
\begin{equation*}
\left.\varphi\left(m_{n}\right)>\frac{a_{0}^{1}}{\left(m_{n}\right.} \log \log m_{n}\right)^{t} \tag{4.6}
\end{equation*}
$$

for sufficiently large n, then

$$
\begin{equation*}
\varphi\left(m_{n+1}\right) \geqq\left(\frac{m_{n+1}}{m_{n}}\right)^{1} \varphi\left(m_{n}\right)>\left(1+\frac{c_{31}}{\log \log m_{n}}\right) \varphi\left(m_{n}\right) \tag{4.7}
\end{equation*}
$$

by (0.11), and hence

$$
\begin{equation*}
\varphi\left(m_{n+1}\right)-\varphi\left(m_{n}\right)>c_{n 1} \frac{\varphi\left(m_{n}\right)}{\log \log m_{n}}>\frac{c_{n 1}}{20}\left(\frac{m_{n}}{\log \log m_{n}}\right)^{1} . \tag{4.8}
\end{equation*}
$$

- Consequently, by Theorem $3, \varphi(n)$ must belong to the lower class again.

Thus, in order to prove Theorem 4, we have only to consider the case when there exist two sequences of integers tending to infinity $\left\{M_{i}\right\}=\left\{m_{n_{i}}\right\}$ $(i=1,2, \cdots)$ and $\left\{N_{i}\right\}=\left\{m_{n_{i}^{\prime}}\right\}(i=1,2, \cdots)$ such that $M_{1}<N_{1}<M_{2}<$ $N_{2}<\cdots<M_{i}<N_{i}<\cdots$, and

$$
\begin{align*}
& \varphi\left(M_{i}\right)=\varphi\left(m_{m_{i}}\right) \geqq \frac{1}{10}\left(M_{i} \log \log M_{i}\right)^{\frac{1}{2}} \tag{4.9}\\
& \varphi\left(N_{i}\right)=\varphi\left(m_{n_{i}}\right) \leqq \frac{1}{\frac{1}{0}}\left(N_{i} \log \log N_{i}\right)^{\ddagger} . \tag{4.10}
\end{align*}
$$

We may assume that

$$
\begin{equation*}
\varphi\left(m_{n}\right)<\frac{1}{1_{0}}\left(m_{n} \log \log m_{n}\right)^{\frac{1}{4}} \tag{4.11}
\end{equation*}
$$

for $M_{i}<m_{n} \leqq N_{i}$ (i.e. for $\left.n_{i}<n \leqq n_{i}^{\prime}\right)(i=1,2, \cdots)$.

We shall prove that the conditions of Lemma 1 are all satisfied by these $\left\{M_{i}\right\}$ $(i=1,2, \cdots)$ and $\left\{N_{i}\right\}(i=1,2, \cdots)$. Since $\varphi\left(M_{i}\right) /\left(M_{i}\right)^{i} \leqq \varphi\left(N_{i}\right) / N_{i}^{i}$ by assumption, we have $\frac{1}{10}\left(\log \log M_{i}\right)^{\frac{1}{2}} \leqq \frac{1}{20}\left(\log \log N_{i}\right)^{\frac{1}{2}}$ for $i=1,2, \cdots$. Since $M_{i}, N_{i} \rightarrow \infty$ as $i \rightarrow \infty$, it follows that we have $M_{i}^{4} \leqq N_{i}$ for sufficiently large i.

Let now $M_{i}<m_{n}<N_{i}$. Then

$$
\begin{align*}
\operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) & >c_{1} \frac{\left(m_{n}\right)^{i}}{\varphi\left(m_{n}\right)} e^{-2\left(\varphi\left(m_{n}\right)\right)^{2 / m_{n}}} \\
& >c_{1} \frac{10}{\left(\log \log m_{n}\right)^{i}} e^{-\left(\log \log m_{n}\right) / \Delta 0}=\frac{10 c_{1}}{\left(\log \log m_{n}\right)^{4}\left(\log m_{n}\right)^{1 / 50}} \tag{4.12}\\
& >\frac{1}{\left(\log m_{n}\right)^{1 / 49}}
\end{align*}
$$

for sufficiently large i. Since $2 \cdot \log M_{i} \cdot \log \log M_{i}<n<3 \cdot \log M_{i} \cdot \log \log M_{i}$ implies $\log M_{i}<n / \log n<4 \log M_{i}$, or equivalently $M_{i}<e^{n / \log n}<M_{i}^{4}$, for sufficiently large i, we have

$$
\begin{align*}
\sum_{M_{i}<m_{A} \leq N_{i}} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right) & >\sum_{M_{i}<m_{n} \leq N_{i}} \frac{1}{\left(\log m_{n}\right)^{1 / 40}} \tag{4,13}\\
& >\sum_{M_{i}<m_{n} \leq N_{i}} \frac{1}{\left(\log m_{n}\right)^{1 / 49}}>\sum_{2 p_{i}<n \leq \delta_{i}} \frac{1}{n^{1 / 49}},
\end{align*}
$$

where $p_{i}=\log N_{i} \cdot \log \log N_{i}$. Thus (4.4) is satisfied. (4.3) is clearly satisfied with $c_{29}=\frac{1}{10} ;(4.8)$ shows that (4.2) is also satisfied. This completes the proof of Theorem 4 .

5

Theorem 5. Let $\varphi(n)$ satisfy

$$
\begin{align*}
& \varphi(n)>c_{s n}(n \log \log n)^{\frac{1}{2}}, \tag{5.1}\\
& \sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)=\infty . \tag{5.2}
\end{align*}
$$

Then $\varphi(n)$ belongs to the lower class.
To prove Theorem 5 we need the following
Lemma 2. Let $\varphi(n)$ be monotone increasing, and let $\left\{m_{n_{i}}\right\}(i=1,2, \cdots)$ be a subsequence of $\left\{m_{n}\right\}(n=1,2, \cdots)$ such that

$$
\begin{gather*}
\varphi\left(m_{n_{i}+1}\right) \geqq \varphi\left(m_{n_{i}}\right)+c_{z z}\left(\left(m_{n_{i}+1} \log \log m_{n_{i}+1}\right)^{t}-\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\dagger}\right) \tag{5.3}\\
\sum_{i=1}^{\infty} \operatorname{Pr}\left(A_{m_{n_{i}}}\left(\varphi\left(m_{n_{i}}\right)\right)\right)=\infty \tag{5.4}
\end{gather*}
$$

Then $\varphi(n)$ belongs to the lower class.
Since the proof of Lemma 2 can be carried out exactly as in the proof of Theorem 3, we omit the proof.

Prooy of Theorem 5. As in the proof of Theorem 3, we may assume that

$$
\begin{equation*}
\varphi(n) \leqq(n \log \log n)^{t} \tag{5.5}
\end{equation*}
$$

for sufficiently large n. We shall find a subsequence $\left|m_{n 6}\right|(i=1,2, \cdots)$ of $\left\{m_{s}\right\}(n=1,2, \cdots)$ which satisfies the conditions of Lemma 2. For this purpose we classify the integers m_{n} into two classes. The first class I consists of all integers m_{p} for which

$$
\begin{equation*}
\varphi\left(m_{q}\right) \geqq \geqq \varphi\left(m_{p}\right)+e\left(\left(m_{q} \log \log m_{q}\right)^{\dagger}-\left(m_{p} \log \log m_{p}\right)^{\dagger}\right) \tag{5.6}
\end{equation*}
$$

for all $q \geqq p$, where ϵ is a positive constant with $0<\epsilon<c_{3}$ which we shall determine later. All other integers m_{p}, will belong to the second class II. We shall prove that, if we denote by $\left(m_{\pi_{i}}\right)\left(i=1,2, \cdots, m_{\pi_{i}}<m_{s_{i+1}}\right)$ the integers of the class I, then this sequence satisfies the conditions of Lemma 2. Indeed, (5.3) is clear from (5.6). In order to prove (5.4) for the $m_{a c}$'s of the class I, let us denote by Π_{i} the set of all integers m_{p} of the class II such that $m_{p}<m_{n i}$ and

$$
\begin{equation*}
\varphi\left(m_{n_{i}}\right)<\varphi\left(m_{p}\right)+\epsilon\left(\left(m_{n_{c}} \log \log m_{n_{i}}\right)^{t}-\left(m_{p} \log \log m_{p}\right)^{\dagger}\right) \tag{5.7}
\end{equation*}
$$

By definition, for each m_{p} of the class II, there exists an $m_{q}\left(m_{q}>m_{p}\right)$ such that

$$
\begin{equation*}
\varphi\left(m_{\mathrm{q}}\right)<\varphi\left(m_{p}\right)+\epsilon\left(\left(m_{\mathrm{q}} \log \log m_{\mathrm{q}}\right)^{t}-\left(m_{p} \log \log m_{p}\right)^{\dagger}\right) . \tag{5.8}
\end{equation*}
$$

Because of (5.1) and the relation $\epsilon<c_{72}$, there exists, for each m_{p} of II, a largest integer $m_{q}\left(m_{q}>m_{p}\right)$ satisfying (5.8). This m_{q} clearly belongs to I. Hence we have $\sum_{i=1}^{\infty} I_{i}=I I$ (I_{i} are not necessarily mutually disjoint).

Thus in order to prove (5.4), we need only prove that there exists a constant $\mathrm{c}_{3}>0$ such that

$$
\begin{equation*}
\sum_{m_{p} \in \mathrm{II} ;} \operatorname{Pr}\left(A_{m_{p}}\left(\varphi\left(m_{p}\right)\right)\right)<c_{s} \operatorname{Pr}\left(A_{m_{n_{i}}}\left(\varphi\left(m_{n_{i}}\right)\right)\right) . \tag{5.9}
\end{equation*}
$$

For this purpose we shall first show that

$$
\begin{equation*}
m_{n_{i}}<c_{23} m_{p} \tag{5.10}
\end{equation*}
$$

for all $m_{p} \in I I_{i}$, where c_{30} is independent of i and p. Indeed, if (5.10) is false, we have

$$
\begin{align*}
\varphi\left(m_{n_{i}}\right) & <\varphi\left(m_{p}\right)+\epsilon\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\dagger}-\left(m_{p} \log \log m_{p}\right)^{\dagger}\right) \\
& <\left(m_{p} \log \log m_{p}\right)^{\dagger}+\epsilon\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{3} \tag{5.11}\\
& <\left(\frac{1}{\sqrt{ } c_{3 s}}+\epsilon\right)\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\dagger}
\end{align*}
$$

and this is a contradiction to (5.1) if c_{36} is sufficiently large.

By (5.5) , (5.7) and (5.10), if $m_{p}=m_{n_{i}-k} \in \Pi_{i}$, then we have

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{m_{p}}\left(\varphi\left(m_{p}\right)\right)\right)<c_{2} \frac{m_{p}^{!}}{\varphi\left(m_{p}\right)} e^{-2\left\{\varphi\left(m_{p}\right)^{2}\right)^{2} / m_{p}} \\
&<\frac{c_{1}}{\left(\log \log m_{p}\right)^{\frac{1}{2}}} \\
& \cdot \exp \left[-\frac{2\left\{\varphi\left(m_{n_{i}}\right)-\epsilon\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\frac{3}{3}}-\left(m_{p} \log \log m_{p}\right)^{\frac{1}{2}}\right)\right\}^{2}}{m_{n_{i}}}\right]
\end{aligned}
$$

(5.12)

$$
\begin{aligned}
& <\frac{c_{2}}{\left(\log \log m_{p}\right)^{\frac{t}{i}}} \\
& <\cdot \exp \left[-\frac{2\left(\varphi\left(m_{n_{i}}\right)\right)^{2}-4 \epsilon \varphi\left(m_{n_{i}}\right)\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\frac{1}{2}}-\left(m_{p} \log \log m_{p}\right)^{j}\right)}{m_{n_{i}}-k \cdot c_{5} \frac{m_{p}}{\log \log m_{p}}}\right] \\
& <\frac{c_{s k}}{\left(\log \log m_{n}\right)^{\frac{1}{2}} \exp \left[-\frac{2\left(\varphi\left(m_{n_{i}}\right)\right)^{2}}{m_{n_{i}}}\right] \cdot \eta^{2}<c_{s 7} \cdot \operatorname{Pr}\left(A_{m_{n_{i}}}\left(\varphi\left(m_{n_{i}}\right)\right)\right) \cdot \eta^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta=\exp \left[\frac{\left(\varphi\left(m_{n_{i}}\right)\right)^{2}}{m_{m_{i}}}\right. \\
& \left.-\frac{\left(\varphi\left(m_{n_{i}}\right)\right)^{2}-2 \epsilon \varphi\left(m_{n_{i}}\right)\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\frac{1}{2}}-\left(m_{p} \log \log m_{p}\right)^{\frac{1}{i}}\right)}{m_{n_{i}}-k c_{3 s} \frac{m_{n_{i}}}{\log \log m_{n_{i}}}}\right] \\
& <\exp \left[\frac{\left(\varphi\left(m_{n_{i}}\right)\right)^{2}}{m_{\pi_{i}}}\right. \\
& -\frac{\left(\varphi\left(m_{n_{i}}\right)\right)^{2}-2 \epsilon \varphi\left(m_{n_{i}}\right)\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\frac{1}{1}}-\left(m_{p} \log \log m_{p}\right)^{\frac{1}{i}}\right)}{m_{n_{i}}} \\
& \left.\cdot\left(1+k \frac{c_{39}}{\log \log m_{n_{i}}}\right)\right] \\
& <\exp \left[\frac{2 \epsilon \varphi\left(m_{n_{i}}\right)}{m_{n_{i}}}\left(\left(m_{n_{i}} \log \log m_{n_{i}}\right)^{\frac{1}{2}}-\left(m_{p} \log \log m_{p}\right)^{\frac{1}{1}}\right)\right. \\
& -\frac{k c_{40}\left(\varphi\left(m_{n_{i}}\right)\right)^{2}}{m_{m_{i}} \log \log m_{n_{i}}} \\
& <\exp \left[-\frac{2 \epsilon\left(m_{n_{i}}\right)}{m_{n_{i}}} \cdot k \cdot c_{7}\left(\frac{m_{n_{i}}}{\log \log m_{n_{i}}}\right)^{\frac{1}{2}}-k \frac{c_{40}\left(\varphi\left(m_{n_{i}}\right)\right)^{2}}{m_{n_{i}} \log \log m_{n_{i}}}\right] \\
& <\exp \left[\left(2 \epsilon \cdot c_{7} c_{32}-c_{40} \cdot c_{32}^{2}\right) \cdot k\right] .
\end{aligned}
$$

Hence, if we take e sufficiently small, then

$$
\begin{equation*}
\eta<e^{-e_{0} t} \tag{5.14}
\end{equation*}
$$

with a positive constant c_{42}. Hence

$$
\begin{align*}
\sum_{m_{p} \in \mathrm{II} i} \operatorname{Pr}\left(A_{m_{p}}\left(\varphi\left(m_{p}\right)\right)\right) & <\operatorname{crrr} \operatorname{Pr}\left(A_{m_{m_{i}}}\left(\varphi\left(m_{m_{i}}\right)\right)\right) \cdot \sum_{k=1}^{\infty} e^{-2 c_{q} k} \tag{5.15}\\
& =\frac{c_{8 r}}{1-e^{-2 c_{c i}}} \operatorname{Pr}\left(A_{m_{m_{i}}}\left(\varphi\left(m_{n_{i}}\right)\right)\right)
\end{align*}
$$

which proves (5.9). This completes the proof of Theorem 5 .
Before concluding this chapter, let us add some more results without proof.
1). If $\varphi(n)$ is monotone increasing and belongs to the lower class, then $\varphi(n)+c(n / \log \log n)^{\dagger}$ belongs to the lower class for all c.

This result is the best possible. For, if $\psi(n) \rightarrow \infty$, then we can find a monotone function $\varphi(n)$ belonging to the lower class such that $\varphi(n)+$ $\psi(n)(n / \log \log n)^{\dagger}$ belongs to the upper class.
2). If $\varphi(n)$ is monotone increasing and belongs to the lower class, then $\varphi(n)+c(n / \varphi(n))$ belongs to the lover class for all c. Since we can always assume that $\left.\varphi(n)<(n \log \log n)^{\frac{t}{2}}, 2\right)$ is slightly stronger than 1).
3). Let $\varphi(n)$ be monotone increasing, and suppose that it belongs to the upper class. Then for almost all t, there exist only finitely many n such that for some $m<n,\left|f_{n}(t)-f_{m}(t)\right|>\varphi(n)$.
4). For almost all t, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} f_{k}(t)}{\frac{1}{2} n^{1}\left(\frac{\log \log n}{2}\right)^{1}}=1 . \tag{5.16}
\end{equation*}
$$

Professor J. L. Doob suggested that if $n_{1}<n_{2}<\cdots$ is a sequence of integers with $n_{i+1} / n_{i}>c>1$, then for almost all t,

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{i=1}^{n} \frac{\sum_{i=1}^{n_{i}} f_{k}(t)}{n_{i}^{\frac{1}{i}}}=0 . \tag{5.17}
\end{equation*}
$$

Indeed, it is not difficult to show that (5.17) holds. In fact, the condition $n_{i+1} / n_{i}>c>1$ can be weakened, but it is necessary that n_{i} tends to infinity with a certain speed (quicker than i).
5). There exists a continuous strictly decreasing function $\psi(x)$ defined for $0 \leqq$ $x \leqq 1$, with $\psi(0)=1, \psi(1)=0$, such that, for almost all t, the upper density of the set of n 's for which

$$
\begin{equation*}
f_{\mathrm{n}}(t) \geqq x\left(\frac{n \log \log n}{2}\right)^{t} \tag{5.18}
\end{equation*}
$$

is exactly $\psi(x){ }^{10}$

[^4]
6

In this final chapter, we shall construct an increasing function $\varphi(n)$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{Pr}\left(A_{m_{n}}\left(\varphi\left(m_{n}\right)\right)\right)=\infty, \tag{6.1}
\end{equation*}
$$

and nevertheless $\varphi(n)$ belongs to the upper class. This shows that the converse of Theorem 1 is not true.

We put

$$
\begin{equation*}
p_{k}=2^{22^{2}}, \quad k=1,2, \cdots, \tag{6.2}
\end{equation*}
$$

and define $\varphi(n)$ as follows:

$$
\begin{equation*}
\varphi(n)=\log k \cdot \sqrt{ } p_{k}, \quad \text { for } p_{n-4}<n \leqq p_{k} . \tag{6.3}
\end{equation*}
$$

It follows from (0.11) that the number of m_{n} 's satisfying $\frac{1}{2} p_{k}<m_{n} \leqq p_{k}$ is $\geqq c_{a} \log \log p_{a}$ and hence $\geqq c_{4} 2^{k}$. Consequently, from (0.7) we have

$$
\begin{equation*}
\sum_{i n<=\pi \leq n} \operatorname{Pr}\left(A_{n_{-}}\left(\rho\left(m_{2}\right)\right)\right)>\frac{c_{1}}{\log k} e^{-t(\operatorname{los} k)^{2}} \cdot c_{n t} 2^{k} \geq c_{n}>0 . \tag{6.4}
\end{equation*}
$$

Since this is true for each $k,(6.1)$ is proved.
Denote now

$$
\begin{equation*}
M_{v}=E\left[t: \max _{1 \leq \leq \leq n} f_{n}(t)>\log k \cdot \sqrt{ } p_{k}\right] . \tag{6.5}
\end{equation*}
$$

In order to show that $\varphi(n)$ belongs to the upper class, it is clearly sufficient to prove that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \operatorname{Pr}\left(M_{k}\right)<\infty . \tag{6.6}
\end{equation*}
$$

It is easy to see that ${ }^{11}$

$$
\begin{equation*}
\operatorname{Pr}\left(M_{k}\right) \leqq 2 \operatorname{Pr}\left(B\left[t ; f_{m_{k}}(t)>\log k \sqrt{ } p_{k}\right] .\right. \tag{6.7}
\end{equation*}
$$

${ }^{2}$ In general, we have

$$
\operatorname{Pr}\left(E\left[t: \max _{1 \leq n \pi p} f_{n}(t)>z\right]\right) \leqq 2 \operatorname{Pr}\left(E\left[t: f_{p}(t)>z\right]\right) .
$$

Indeed, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(E\left[t: \max _{1 \leqq n \leqq p} f_{m}(t)>x\right]\right)=\operatorname{Pr}\left(E\left[t: f_{p}(t)>x\right]\right) \\
&+\sum_{n=1}^{p-1} \operatorname{Pr}\left(E\left[t: f_{1}(t) \leqq x_{0}, \cdots, f_{n-1}(t) \leqq x_{1} f_{n}(t)>x_{1}, f_{p}(t) \leqq x\right]\right) \\
&= \operatorname{Pr}\left(E\left[t: f_{p}(t)>x\right]\right) \\
&+\sum_{n=1}^{p-1} \operatorname{Pr}\left(E\left[t: f_{1}(t) \leqq x_{1} \cdots, f_{n-1}(t) \leqq x_{1} f_{n}(t)>x_{1}, f_{p}(t) \geqq 2 f_{n}(t)-x\right]\right) \\
& \leqq \operatorname{Pr}\left(E\left[t: f_{p}(t)>x\right]\right) \\
&+\sum_{n=1}^{p-1} \operatorname{Pr}\left(E\left[t: f_{1}(t) \leqq x_{1}, \cdots, f_{n-1}(t) \leqq x, f_{n}(t)>x_{1} f_{p}(t)>x\right]\right) \\
&= 2 \operatorname{Pr}\left(E\left[t: f_{p}(t)>x\right]\right) .
\end{aligned}
$$

Thus from (0.7) we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \operatorname{Pr}\left(M_{k}\right) \leqq 2 \cdot c_{2} \cdot \sum_{k=1}^{\infty} \frac{1}{\log k} e^{-2(\log k)^{2}}<\infty, \tag{6.8}
\end{equation*}
$$

which proves (6.6).
My indebtedness to my friend S. Kakutani is very great. In fact, he wrote the whole paper after listening to my rough oral exposition.

University of Pennsylyania Philadelphia, Pa.

[^0]: ${ }^{1}$ Cf. M. Kac and H. Steinhaus, Sur les fonctions independentes, Studia Math. 6 (1936), 46-58, 59-66, 89-97.
 ${ }^{1}$ A. Khintchine, Asymptotiache Gesetz der Wahrscheinlichkeitsrechnung, Berlin, 1933.
 ${ }^{3}$ A. Kolmogoroff, Uber dail Gesetz der iterierien Logarithmus, Math. Annalen, 101 (1929), 120-135.

[^1]: ${ }^{4}$ Cf. A. Khintehine, loc. cit. 2. Cf. also N. Wiener, Differential space, Journal of Math. and Phys. 2 (1023), 181-174, and the book of P. Levy quoted in footnote 5.

[^2]: ${ }^{1}$ P. Lévy, Théorie de l'addition des variables aleatoires, Paris, 1937.
 ${ }^{1}$ J. Ville, Etude critique de la notion de collectif, Peris, 1937.

[^3]: 'It follows from (0.11) that the number of m_{s} 's in the interval $(x, 2 x)$ does not exceed $c_{w n} \log \log x$. Thus the number of $m_{a}^{\prime} s$ in the interval $(x, z \log x)$ does not exceed

[^4]: ${ }^{10}$ This problem was suggested by W. Ambrose.

