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Introduction
Let t be a real number (0 :5 t =< 1), and let t = O.EI(t)E2(t) . . . be its dyadic

expansion, or equivalently,

E l (t)

	

E2 (t)

	

En (t)
(0 .1)

	

t = E2 } T2_ +
. . . +	 2n

	

. . .

where E,(t) = 0 or 1 according as the integral part of 2 n t is even or odd . It
is well known that { E .(t) } ( n = 1, 2, ) is an independent system in the
sense of probability,' and that
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fn(i) _ ~ Ek(t) - 2

It was proved by A . Khintchine2 and A. Kolmogoroff3 that

(0 .4)

	

lim sup	 n t	
- 1

(2 log log n 1

for almost all t

	

/
.

Let ~p(n) be a monotone increasing non-negative function defined for all
sufficiently large integers . Following P . Lévy we say that ~o(n) belongs to the
upper class if, for almost all t, there exist only finitely many n such that

(0 .5)

	

fn(t) > w(n) ;
and ~o(n) belongs to the lower class if, for almost all t, there exist infinitely many
n such that (0.5) is true . According to the well-known law of 0 or 1, each ~o(n)
must belong to one of these classes . Then the result of A . Khintchine and A .
Kolmogoroff stated above means that ~(n) _ (1 + E)(2n loglog n) belongs to
the upper class if c- > 0, and to the lower class if e < 0.

The purpose of the present paper is to give a sharpening of this result . The

1 Cf . M . Kac and H . Steinhaus, Sur les fonctions indépendentes, Studia Math. 6 (1936),
46-58, 59-66, 89-97 .

2 A. Khintchine, Asymptotische Gesetz der Wahrscheinlichkeitsrechnung, Berlin, 1933.
3 A . Kolmogoroff, Über das Gesetz der iterierten Logarithmus, Math . Annalen, 101

(1929), 126-135.
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main results are stated in Theorems 1, 2, 3, 4, and 5 below . Among other
results, it follows from Theorem 3 that, for k > 3,

~
`o (n) = (2 log
	 n

log n) (log log n -I- Slogs n -} 2log 4 n

+ . . . + I log,.., n + (2 + e) log,k n)

belongs to the upper class if e > 0 and to the lower class if a 0.
Our proof is direct and elementary. We do not assume the result of A .

Khintchine and A. Kolmogoroff, and the paper can be read without knowledge
of any particular results concerning the law of the iterated logarithm . The only
facts we need are the notion of independence, and the well known inequality

(0 .7)

	

ci ne20/n < Pr(A,(x)) < c2 e -s z 9/ ",x

	

x
where

(0.8)

	

A,,(x) = E[t : fn(t) > x]

means the set of all real numbers t (0 -5 t 5 1) satisfying fn (t) > x, and Pr(A)
means the ordinary Lebesque measure of a measurable set A in the interval
0 5- t 5 1 . ci (i = 1, 2, • • •) will denote positive constants .

Throughout the present paper, the sequence { m„ l (n = 1, 2,

	

) defined
by m, = land

(0 .9)

	

mn = [ e n/loan] '

	

n = 2 , 3 , . . .

will play a fundamental role. The fact that we adopt the sequence {m n l

(n = 1, 2, • • •) instead of [a') (n = 1, 2, • • • ), which was used by A . Khint-
chine and A . Kolmogoroff, is essential in our proof, and will enable us to ob-
tain our sharper results . The following inequalities, which are easy to prove,
will be used very often :

(0.10)

	

Mn < mn+l < csm n ,

M,,
(0.11)

	

c4 1og log mn < mn,1 - mn < c5 1og log Mn
mn 	~

ce (log log M

	

< (mn+l log log mn+l) 1
(0.12)
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mn

i
- (Mn 109 109 m0 1 < c7

	

n

(log
y
log m)

It is not difficult to extend our results to the case in which the parameter n
is continuous, i .e. the case of Brownian motion .4 We can define the upper and

4 Cf. A . Khintchine, loc . cit . 2. Cf . also N . Wiener, Differential space, Journal of Math .
and Phys . 2 (1923), 131-174, and the book of P . Lévy quoted in footnote 5 .



the lower classes in this case, and can obtain the corresponding results . It was
stated by P . Lévy5 that A. Kolmogoroff has proved the following result : Let
> (A) _ be monotone increasing. Then a necessary and sufficient
condition that ~p(A) belong to the lower class is given by the divergence of the
integral

(0.13)

It is easy to see that this is equivalent to Theorem 4 . As far as I know, the
proof of A. Kolmogoroff has not been published . Recently, J . Ville6 proved
that the divergence of (0 .13) is necessary . This corresponds to a special case
of Theorem 1, but his proof is entirely different from ours .

1
THEOREM 1 . ~p(n) belongs to the upper class if it is monotone increasing and if

(1 .1)

	

E Pr(Amn(~P(mn))) <

	

.
n-1

PROOF . First we remark that we may assume that

(1 .2)

	

~o(n) s- (n loglog n) 1

for sufficiently large n . Indeed, otherwise we may consider p i(n) _
min (,p(n), (n loglog n)~) instead of ~o(n) . It is clear that ~o 1 (n) is monotone in-
creasing, that p1 (n) satisfies (1 .1) if p(n) does (because, by (0 .7), ~Oo(n) _
(n log log n)~ satisfies (1 .1)) ; and that if ~p 1 (n) belongs to the upper class so does
~o(n) too .

Next we notice that, under the assumption (1 .2), we have

(1 .3)

	

Pr(Amn+1((P(mn))) < csPr(A,nn(~o(mn))) .

This is an easy consequence of the relations (0 .7), (0.10) and (0 .11) . We omit
the proof .
Now assume that Theorem 1 is not true. Then there exists a constant c9 > 0

such that, for any M o = mno , there exists an No = mn o (nó > n o ) such that

(1 .4)

	

Pr( E

	

A,,(yo(u))) > c9 > 0 .
M0<u$N0

Let us put
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m

P(u) = A,,(,p(u)) - A,,(w(u)) E A,,(,pM)
MO<v<U

E[t :f,,(t) > cp(u) ; f„(t) S cp(v), Mo < v < u] .

5 P. Lévy, Théorie de l'addition des variables aléatoires, Paris, 1937 .
s J . Ville, Étude critique de la notion de collectif, Paris, 1937 .
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Then {B(u)} (Mo < u <= No) are mutually disjoint, and

(1 .6)

	

E B(u) _

	

E AJ(p(u)) .
Mo<u<No

	

MO<u<No

For each u (Mo < u <= No) take an n (n o <_ n < nó) such that m„ < u _<_ m„}1 ,
and put

(1 .7)

	

Du,m, = E[t: fin+, (t) - fu(t) > 0] .

Then it is clear that B(u) and D',mn+1 are independent, and hence

(1 .8)

	

Pr(B(u) .A+.m„+,) = Pr(B(u))Pr(D+u,m,+,) > 2 •Pr(B(u)) .

On the other hand, since t e B(u) • °ú,mn+l implies f„z„ +1 (t) >= fu(t) > ~p(u) >_
,p(mn), we have

(1 .9)

	

B(u) • Au, ,,1 C Amn+,('p(mn))

form, < u <= m,+, . Hence, since {B(u) • Ou,n ,n+ , } (Mo- < u No) are mutually
disjoint, we have, by (1 .3), (1 .8), (1 .6) and (1 .4),

C8 E Pr(AmJ(o(mn))) ?

	

E Pr(A-,(<p(mn)))
MO<USNO

	

MO<USNO

(1 .10)

	

Pr(B(u)'oú >= 2

	

Pr(B(u))
Mo<u<NO

	

Mo<u<NO

2Pr(

	

B(u)) = 2Pr( F- A.(~p(u))) >
c9

> 0 .
_-

	

MO<u<NO

	

MO<uSNO

	

2
Since c8 and c 9 are positive constants, and since Mo = mno can be arbitrarily
large, this contradicts to the assumption (1 .1) . This proves Theorem 1 .
COROLLARY 1 . ~p(n) _ (1/(2) 1 + e) (n log log n)~ belongs to the upper class

for e > 0 .
COROLLARY 2 . The expression (0.6) belongs to the upper class for e > 0 .
PROOF . Follows immediately from Theorem 1 and (0.7) .

2

THEOREM 2 . If ~p(n) is monotone increasing, then a necessary and sufficient
condition that cp(n) belong to the lower class is that, for almost all t, there exist
infinitely many n such that

(2.1)

	

fmnW > ~P(mn) ,

PROOF . The sufficiency is obvious . In order to prove the necessity, let us
assume that ~o (n) belongs to the lower class . First we remark that we may
assume

(2.2)

PAUL ERDŐS

~p(n) 5 (n log log n) 4

for sufficiently large n . Indeed, by Corollary 1 to Theorem 1, ~po(n) _ (n loglog n)l
belongs to the upper class . Hence, if we put ~pi(n) = min (~p(n), Soo(n)), then



and a simple calculation shows that

which completes the proof of (2 .7) .
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(pl (n) belongs to the lower class if p(n) does ; and if the necessity of the condition
is proved for -~pl(n), then it is obviously true for (p(n) too .

By assumption, there exists a constant c10 > 0 such that for any Mo = m uo
there exists an No = m,, (nó > no) such that
(2 .3)

	

Pr( E

	

A,(~o(u))) > clo .
Mo<u <No

Let us put

C(u) = A u (,p(u)) - Au(,p(u)) • 2: A v«p(v»
u<v<No

= E[t :fu(t) > cp(u) ;fv(t) < <o(v), u < v < Nob

Then {C(u)} (Mo < n _< No) are mutually disjoint, and

(2 .5)

	

C(u) _

	

E

	

A u(,p(u)) .
Mo<u<No

	

M o <u<No

For each u (Mo < u < N o ) take an n (no <_ n < nó) such that m n < u < m„ +
and put

(2 .6)

	

Amn,u = E[t : fu(t) - fmn(t) < O, •

It is to be noticed that C(u) and AM, are not independent, but it can be shown
by computations' that there exists a constant ell > 0 such that

(2 .7)

	

Pr(C(u) • D n,u ) > e11Pr(C(u)) .

7 We sketch the proof of (2.7): Let us put

C(u, k) = E[t :fu(t) = k ;

	

f„(t) < P(V),

	

u < v <= No],

where k > V(u) is an integer or integer +' according as u is even or odd . Then a simple
calculation with binomial coefficients shows that

Pr(

	

E

	

C(u, k)) > C46Pr(C(u)) .
.p(u)<k<,p(u)+u/p(u)

Thus it suffices to show that, for p(u) < k <_ ,o(u) + u/,p(u),

Pr(C(u, k) • Om n,u) > COPr(C(u, k)) .

Now, it is easy to see that

Pr(C(u, k))

	

u

	

/ m„
< C48Pr(C(u, k)

	

2
.+. k /

	

2
+ k '

u

	

mn

u

	

> C49 u2+k

	

2+k
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(2 .9) ell

(3 .4)

	

(P(mn) > c,4(*n log log Mn

From (3 .4) and (0.7) it follows easily that

(3.5)

	

lim Pr(A ,(,p(mn))) = 0.
n-•w

On the other hand, since t e C(u) • A-. , implies fj,,,(t)

	

fu(t) > ~0(u) >_ ~0(m„),
we have
(2.s)

	

C(u) • om, C A,,((mn))

for m n < u _< mn+, . Hence, since {C(u)

	

(Mo < u 5 No) are mutually
disjoint, we have, by (2.7) and (2.5),

Pr(A,n„ (~o(mn)))

	

Pr(C(U) -AZ--U)
Mo<-n<NO

	

MO<u_<No .

Z Pr(C(u)) y c 11 Pr(

	

C(u))
Mo<u<NO

	

MO<u<NO

= .c,,Pr( E

	

Áu(~o (u))) > c,o •c„ > 0 .
Mo<u<NO ,

Since c10 and c11 are absolute positive constants, and since Mo = m, can be
taken arbitrarily large, this means that the set of all t for which the inequality
(2.1) holds for infinitely many n, has positive measure . By the law of 0 or 1,
this set must have measure 1, and thus Theorem 2 is proved .

3
THEOREM 3 . Let p(n) be monotone increasing and let us assume that

(3 .1)

	

~P(mn+,) - 'P(Mn) > e,2 (mn/log log mn) k .

Then a necessary and sufficient condition that 0(n) belong to the lower class is that

(3 .2)

	

Pr(A,nn({P(mJ)) _

	

.

PROOF . The necessity follows from Theorem 1, without assuming (3 .1) .
In order to prove that the condition (3 .1y is sufficient, let us assume that ~0(n)
is monotone increasing and satisfies (3A) and (3.2) . We first notice that
(3 .1) and (0.12) imply

(3.3) ~P(mn+,) - p(mn) > cs((mn+, log'log mn+,) - ( Mn log log mn) I ),

and hence

Next we notice that we may assume
(3 .6)

	

p(n) 9 (n log log n)

for sufficiently large n . Indeed, otherwise we may consider ~p l ( n) _
min (,p (n), (n log log n)') instead of ~o (n) . Since cpo(n) _ (n log log n) ~ clearly
satisfies (3 .1), ~o,(n) satisfies it too . Further, it is obvious that (3.2) is satisfied
by pl(n) whenever it is satisfied by p(n) . Moreover, since 0(n) belongs to the



upper class, by the corollary to Theorem 1, ~p,(n) belongs to the lower class at
the same time as ~p(n) .

Because of the law of 0 or 1, and because of Theorem 2, it is sufficient to prove
that there exists a constant c,b > 0 such that there exists, for any Mo = m no ,
an No = m, Q (no > no) such that
(3 .7)

	

Pr( E

	

Amn(<p(mn))) > en
Mo<mn<No

Let S > 0 be a small positive number, which we shall determine later . Then,
by (3.2) and (3 .-4), there exists an N such that, for any Mo = mno > N, an
N o = mno (no > no)" exists such that
(3 .8)

	

S <

	

7

	

Pr(Amn(~p(mn))) < 26 .
Mo<mn<XÚ

We shall prove that if 8 is chosen sufficiently small (but fixed), then (3 .7) is
satisfied, withh the same integers M o and No as in (3.8), by a suitable positive
constant c,6 > 0 .

In order to prove this, let us first put
D(mn) = Am n(~a(lnn)) - Amn(~p(mn)) •

	

Amn+ r ( ~O(mn+r))
(3 .9)

	

mn<mn+r <No

= E[t :fm n (t) > lp(mn) ;fmn+r(t)

	

~0(mn+r), inn < mn+r = Nob

Then ID(mn)I (MO < Inn < No ) are mutually disjoint, and

(3.10)

	

D(mn) _

	

Amn(w(nnn)),
MG<mn-NO

	

Mo<mn<No

Let us further put

Di(mn) = Amn(w(mn)) - Amn (~(M.) + 22
(l0g 109 Mn) ')

E~t :40(mn) < fm n (t) -:5 Ip(Mn) T 22 (10g Ong mn)
Then a simple computation will show that'

(3 .11)

8 We have clearly
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~r

	 Cmn/Pr(Dl(mn))

	

u
Pr(A' (w(mn)))

where the dash indicates that u runs only over the interval

C7?

L
1S

	 Mn

g
V(mn) +

	

0 M Mn)

A simple calculation shows that

u
Mn

) / n >~ n)

(Mn

Zl) >
X16

mn
n > N (mn) (-)

425
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(3.12)

	

Pr(D1(mn)) > CHPr(Am n(~o(mn)))'

Let us put

(3 .13) D2(Mn) = D1(mn) •E [t : fmn+r-,(t) -fmn+r(t) _< O, r = 1 , 2 , . . . , h],

where h is a positive integer which we shall determine later . Then it is easy to
see that

(3 .14)

	

Pr(D2(mn)) ? 2-hPr(D I(mn)),

and that t e D2(Mn) implies

(3 .15)

	

fmn+r(t)

	

fmn(t) < w(mn+r),

for r = 1, 2,

	

, h. Let us further put

(3 .16) D3(mn) = D2(Mn) •E [t:fmn+ r(t) < <P(mn+r), mn+h < mn+r < NO]-

Then it is clear that D3(Mn) C D(mn) C Amn(~p(mn)) . In order to complete the
proof of Theorem 3, it is sufficient to prove that, if a is chosen sufficiently small
and if h is chosen sufficiently large (but both fixed), then there exists a constant
c17 > 0 such that

(3 .17)

	

Pr(D3(mn)) > c17Pr(Amn(1P(mn))) •

Indeed, (3 .17) will imply
Pr(

	

Amn(~o(mn))) = Pr(

	

D(mn))
MO<mn <NO

	

MO<mn <NO

(3.18)

	

_

	

y~

	

Pr(D(mn)) ?

	

Pr(D3(mn))
NO<mn<_NO

	

MO<mn<NO

> c17

	

E

	

Pr(Amn(~p(mn))) > c17's,
NO<mn'5NO

which means that (3 .7) is satisfied by c,5 = C17'6 > 0, thus completing the proof
of Theorem 3 .

The rest of the proof of Theorem 3 is devoted to establishing the relation
(3 .17) . For this purpose, put

(3 .19)

	

D3.r(mn) = D2(mn) . Amn+r((P(mn+r)),

for all integers r such that mn+h < mn+r < No . It is easy to see that

(3 .20)

	

D2(Mn) C D5(Mn) +

	

1:

	

D3,r(mn) •
mn+h<mn+r <NO

We shall evaluate Pr(Emn+h<mn+r!~NO D3,r(mn)) by decomposing the sum into
three parts : Emn+h<mn+r<2mn , F,2mn<mn+r<-mn 10 9 mn , and Emn toe mn<mn+r:~NO '

In the first place, t e D3, r (mn) implies



(3 .21)

Since,

(3 .24)

fmn+r(t) - fmn+h( t )

LAW OF ITERATED LOGARITHM

r-1
m n+r - mn+h <

	

(Mn+k+1 - mn+k)
k=0

fmn+r(t) - fmn(t)

•

	

w(mn+r) - cp(m,y) - C12	mn
2 (log 10g mn

1

	

)2

mn+k> E C12
k=0

	

lOg lOg mn+k

•

	

C12 r
2 (log

mn
log m

)

2

	

1

Hence

(3 .22)

	

Pr(D3 , r(m n)) < _ a, . • Pr(A(m n)),

C12 r mn
where

	

ar = Pr
(E

[t :f..+,(t) - f n+h(t) > 2 (log log m n) )

_

	

r	mn

(3 .23)

	

Pr (Amn+r-mn+h
c 12

( 2 (log log MY))
c12 r z

	

mn
(mn+r - mn+h)' exp

	

2
( 2	log log mn

-	
C12 r

	

m

	

mn< C2

2 (log*log mn)

on the other hand, mn+h < mn+r :!!~ 2m, implies

rlbn
og mn

•

	

c5 r
mn+r < 2cb r

M109 log mn+r

n
log log mn '

we have, by (0.7),

(3 .25) ar < C18e
°19r

for mn+ h < mn+r < 2mn . Consequently,

(3 .26)

	

Pr(

	

~

	

Ds,r(mn)) < c13 •Pr(Dz(mn)) • 1: e-"".

mn+h<mn+ r ~ zmn

	

r=h+1

427

Secondly, t e D 3 ,r(mn) and 2m, < mn+r =< mn log mn imply

./'

	

C12 r-1

	

mn+k

	

~
fmn+r(t) - fmnth(t) > Z̀ ~ (log log mn)

(3.27)

	

r-1
•

	

c1z E ((mn+k}1 log log mn+k+1) l - (mn+k log log mn+k)~)
2c7 k=o

•

	

czo(mn+r log log mn+r) l .
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Hence

(3.28)

	

Pr(D3,,(mn)) < 0,-Pr(D2(m n ))

for 2m, < mn+r =< m n log m., where

Or = Pr(E[t :f,nn+,(t) - fnan+h(t) > C20(mn+r 109 109 Mn+r) l)

= Pr(Am,-m +h(C20(nln+r 109 109 mnF ,) I ))

(3.29)

	

< c2	(nln+, - mn+h) l

	

eXp _ 2c2omn+r 109 log mn+r '

c2o(mn+ , log log mn+r)'

	

mn+r - mn+h

< C21 C-C22 109 109 mn+r <	C21
(log mn)C22

On the other hand, the number Of m n+r 's satisfying 2mn < mn+r <= Mn log Mn
does not exceed C23(109 109 m n) 2 . 9 Hence we have

(3 .30)

	

Pr(

	

E

	

D3 ,,(m n )) < Pr(D2(m n )) •C24
(log log mn)2 .

2mn< ,nn+r<- ,nn 10B,nn

	

(log Mn) C21

Lastly, t e D3,,(m n ) and m n log mn < mn+r _< N o imply

C12	Mn

(3 .31)
fmn+,(t) - f,nn+h(t) > <P(mn+,) - 1P(Mn) - 2

(log log mn)

> 1P(mln+r) - 2(mn log log Mn)i .

Hence

(3.32)

	

Pr(D3,,(mn)) < y, •Pr(D2(m n ))

for Mn log Mn < mn+, <= No , where

yr = Pr(E[t :f -n+r(t) - f'mn+h(t) > ~P(mn+r) - 2(mn log log mn)I ])

= Pr(Amn+r mn+h(~P(mn+r) - 2(m n 109 log mn)~))

< c2	(M.--r - mn+h) f
w(mn+,) - 2(mn log log mn) l

(3 .33)

	

•exp -
2(~p(m n+,) - 2(mn log log Mn)1,)2

Jmn+ r - mn+h

< c2

	

(mn+,)
1c(mn+r) - 2(m n log log Mn)'

2(~o(m,n+r»2

	

S<P(mn+r)(mn log logmn) 3exp -	
mn+r

	

+

	

Mn+r

	

J .

9 It follows from (0 .11) that the number of m n ' s in the interval (x, 2x) does not exceed
c 5o log log x. Thus the number of mn's in the interval (x, x log x) does not exceed

c 5 o log log x
log log

x -
< c'a(log log x) 2 .

log 2

i
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On the other hand, for sufficiently large n, mn+r > mn log mn implies

(3 .34)

	

~p(mn+r) - 2(mn log log m,,) ' > '2P*-+r),

(3 .35)

	

~I(mn+r) (mn log log mn)' < mn+r .

Hence
(M."), exp - 2(w(mn+r))2~

yr < c26 •	

(3 .36)

	

(P(Mn+r)

	

.mn+r

< 026Pr(Amn+r(~O(mn+r)) )-

429

Consequently,

Pr(

	

D3 . r (mn) )
Mn 10gmn<mn+r<N0

(3.37)

	

< Pr(D2(mn)) •C26

	

Pr(Amn+ r (~P(mn+r)))
MO<mn+r<No

< C26.26 • Pr(D2(mn))

Combining (3 .26), (3 .30) and (3 .37), we have finally

Pr(

	

E

	

D3,r(mn))
mn+h <mn+r<N0

(3 .38)
< Pr(D2(mn)) S C18*

	

e-"gr + C24
(log log mn)z + c26 . 26

l

	

=h+~

	

(log mn)
C22

Hence, if we take h súfficiently large and 3 sufficiently small, then we have

(3 .39)

	

Pr(

	

E

	

D3,r(mn)) < 0 •Pr(A(mn)),
rnn+h,< -n+, <No

where 0 is a constant with 0 < 0 < 1 . Consequently, by (3.20),

Pr(D3(mn)) > (1 - 0) •Pr(D2(Mn))

(3 .40)

	

> 2-h(1 - 0) •Pr(Di(mn)) > (1 - 0) cz7Pr(Am n(w(mn) (by 3 .12)

> c1,Pr(Am n ('P(mn))),

which proves (3.17) . The proof of Theorem 3 is completed .
COROLLARY 1 . cp(n) _ (1/1/2 + c) (n log log n)' belongs to the lower class

for c <= 0 .
COROLLARY 2 . The expression (0 .6) belongs to the lower class for c 5 0 .
PROOF . Follows immediately from Theorem 3 and (0.7) .

4

THEOREM 4. Let <p(n)/n' be monotone increasing . Then a necessary and suffi-
cient condition that ~p(n) belong to the lower class is that

We need the following

(4 .1)

	

Pr(Amn(,p(mn))) _ - .
n=1
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LEMMA 1 . Let M, < N, < M2 < N2 < . . . < Mi < N i < . . . be a sequence
of positive integers tending to infinity, and let ip(n) be such that

m(4 .2)

	

w(mn+1) - ip(mn) > C2s (log log In)

	

Mi < Mn

	

mn+1 <_ Ni,

(4.3)

	

(p(m n) > C29(mn log log Mn)
3
l ,

	

Mi < M n < mn+1 < Ni,
(4.4)

	

Pr(Amn(~O(mn))) > C30-

Then

	

Mi<m n <Ni
cp(n) belongs to the lower class .

We do not give the proof of Lemma 1, since it can be carried out in the same
way as in Theorem 3 .
PROOF OF THEOREM 4 . The necessity of the condition is clear by Theorem 1 .

In order to prove that it is sufficient, let us assume that ~p(n)/n # is monotone
increasing and that (4.1) is satisfied. We shall prove that there exists a sequence
of integers M, < N, < M2 < N2 . . . < M i < Ni < . . . tending to infinity,
which satisfies the conditions of Lemma 1 .

If we have

(4 .5)

	

w(Mn) < 11-(Mn log log mn) 1

for all sufficiently large n, then the fact that cpo(n) = -,!,-(n log log n)' belongs to
the lower class (see Corollary 1 to Theorem 3), together with-Theorem 2, will
imply that cp(n) belongs to the lower class . On the other hand, if

(4 .6)

	

p(mn) > -(m n log log mn)4

for sufficiently large n, then

(4 .7)

	

~(mn+i) >_	
( M.

	 +1)
IP(mn) >

C1 + log log Mn) `p(mn)

by (0.11), and hence

	 ~'(mn)

	

C31

	

Mn
log log mn > 20 (109 log mn

Consequently, by Theorem 3, p(n) must belong to the lower class again .
Thus, in order to prove Theorem 4, we have only to consider the case when

there exist two sequences of integers tending to infinity { M i } _ {mni }
(i= 1, 2, - . .)and {N i } _ {mn v } ( i = 1, 2, ) such that M, < N, < M2 <
N2 < . . . < M i < N i < . . ., and
(4 .9) ia(Mj) = ip(m n) ? 11-(Mi log log Mj) ,
(4 .10) ip(Ni) = ip(mni) < -(Ni log log NJ' .
We may assume that

(4 .11)

	

'P (Mn) <

	

(Mn log log Mn )'
for M i < mn <_ Ni (i .e . for ni < n <_ ni) (i = 1, 2,

	

) .

(4 .8)

	

'p(mn+1) - ~0(mn) > C31
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We shall prove that the conditions of Lemma 1 are all satisfied by these {M; }
(i = 1, 2 ; . . . ) and {Ni} (i = 1, 2,

	

) . Since ip(Mj)/(Mj)' < p(Nj)/N by
assumption, we have T1 (log log Mi)~ < ~ (log log Ni)l for i = 1, 2,
Since Mi ; Ni -* oo as i

	

it follows that we have M, 5 Ni for sufficiently
large i .
Let now Mi < m„ < Ni . Then

Pr(Amn(~p(mn))) > cl
(Mn) 1 2(Sp(m„)) 2 /mn
"(M.) ,

(4.12)

	

> cl	10	é (lo g 1" m„)"0 =	10 Cl
(log log mn)

	

(log log mn)t(log mn)i/s'

1
> (log m n)li4s

for sufficiently large i . Since 2 • log Mi • log log Mi < n < 3 • log Mi • log log Mi
implies log Mi < n/log n < 4 log Mi, or equivalently Mi < e

'/log n < Mi ,
for sufficiently large i, we have

(4 .13)
Pr(A.„(~o(mn))) >Mi<mn<Ni Mi<~<N i (1O9 mn.) 1/49

> ~.

	

1

	

> E 1
Mi<+nn5M9 (log mn)1/49

	

2Pi<n<3pi nl/49
a

	

-

where pi = log Ni -log log Ni . Thus (4.4) is satisfied . (4 .3) is clearly satisfied
with c2s = ó ; (4 .8) shows that (4.2) is also satisfied . This completes the proof
of Theorem 4.

5
THEOREM 5 . Let ip(n) satisfy

(5 .1)

	

~o(n) > C32(n log log n)',

(5 .2)

	

Pr(A.jp(mn))) _ 00 .n=1
Then ip(n) belongs to the lower class .
To prove Theorem 5 we need the following
LEMMA 2 . Let ip(n) be monotone increasing, and let {mni } (i = 1, 2,

	

) be a
subsequence of { mn } (n = 1, 2, • • • ) such that

(5 .3)

	

(mni+1) i ip(mni) T C33((mni+i log log mni+1)i - (Mni log log m,) 1 )

(5 .4)

	

Pr(Amn ; ( ip(mni))) _

	

.
i=1

Then ip(n) belongs to the lower class .
Since the proof of Lemma 2 can be carried out exactly as in the proof of

Theorem 3, we omit the proof .
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PROOF OF THEOREM 5 . As in the proof of Theorem 3, we may assume that

(5.5)

	

p(n) < (n log log n)

for sufficiently large n . We shall find a subsequence fmn, ) ( i = 1, 2,

	

) of
f Mn } (n = 1, 2, • • • ) which satisfies the conditions of Lemma 2 . For this
purpose we classify the integers mn into two classes . The first class I consists
of all integers mP for which

(5 .6)

	

~'*') >_ ~p(M,) + E((m q log log mq)' - (m' log log MP)')

for all q >_ p, where e is a positive constant with 0 < E < C32 which we shall
determine later . All other integers mP will belong to the second class IL We
shall prove that, if we denote by {m., } (i = 1, 2, • • • , mn , < mn,+,) the integers
of the class I, then this sequence satisfies the conditions of Lemma 2 . Indeed,
(5 .3) is clear from (5 .6) . In order to prove (5 .4) for the mn,'s of the class I,
let us denote by II ; the set of all integers mP of the class II such that mP < mn, and

(5.7)

	

cp(mn ;) < IP(mp) + e((mn ; log log mn)l - (m, log 'log M P )') .

By definition, for each mP of the class II, there exists an mq (m, > mP ) such
that

(5.8)

	

V(mq ) < ~'(m") + E((mq log log m q)' - (m' log log MP)') .

Because of (5.1) and the relation E < C32, there exists, for each mP of II, a
largest integer mq (mq > m,,) satisfying (5.8) . This mq clearly belongs to L
Hence we have E 1 II; = II (IIi are not necessarily mutually disjoint) .

Thus in order to prove (5.4), we need only prove that there exists a constant
C3a > 0 such that

(5 .9)

	

Z Pr(A .,,(~o(m,))) < C34Pr(Am,, .(,p(mn,))) •

For this purpose we shall first show that

(5.10) mn; < C3áMP

for all m, ,E II ; , where C3á is independent of i and p . Indeed, if (5.10) is false,
we have

cp(mn,) < ~O(MP) + E((mn, log log mn,) l - (mp log log MP)')

(5.11)

	

< (MP log log MP)' + E(mn, log log mnj)a

<	 /1 + E ' (mn, log log Mn)"
l~ C3á

and this is a contradiction to (5.1) if C 3á is sufficiently large .



By (5.5), (5 .7) and (5 .10), if mp = mn,_k e IL, then we have

Pr(Amp(ip(mp))) < c2
mp é 2(Ncmy>) 2 /mp

~P(mp)

(5.12)

where

(5 .13)

C2
(log log mp)i

exp
-21(p(mn,)- e((mn, log log mni) - (mp log log mp)') }2]

Mni

<	c2	
(log log mp ) ,

	 exp - 2(~p(mn;))2 - 4E~p(mn,)((mn; log log mn,) l - (mp log 109 mp)')
mp

mni - k- c6
log log m p

<	c3s

	

eXp _2(~p(mn;))2 772 < c37 •Pr(Amni(<P(mn ;))) •77 2(log log mn)

	

mn, ]

~ = exp r(IP(mn i )) 2
mn,
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((p(mn i )) 2 - 2E~p(m ni)((m n ; log log mni) - (m, log log m,,)')

mni - kc3s

	

Mni
tog log M.,

< exp C(~P(mni)) 2
mn ;

((p(m ni )) 2 - 2e~p(mni ) ((mn i log log m ni ) I - (mp log log mp)~)
Mni

C1
-E k log log Mn)]

< exp
2E~p('nni)

((mni 109 log m ni ) l - (mp log log mp) l )
[ Mn i

_ kC40(~P(mn;)) 2
mn i log log mn i

< exp ~2e~p(mn;) .k .C7~	
mni	) - kc40('P(mn,))

2
	 ]

mn;

	

log log mn i

	

mni log log mn ;

< exp [ ( 2E • C7 C32 - C40 • c32) • k] .
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Hence, if we take E sufficiently small, then
(5.14)

	

7) < e-" 2 k

with a positive constant C42 . Hence

(5.15)

(5.18)

is exactly 1,(x) .' O

PAUL ERDŐS

10 This problem was suggested by W . Ambrose .

Pr(Am p(so(mP))) < e37Pr(Am n

	

e
-2
"Zk

mp c II{

	

k=1

=

	

e37

	

Pr(A-,, .( ,p(mn,»)
1 - e - '

whichwhich proves (5.9) . This completes the proof of Theorem 5 .
Before concluding this chapter, let us add some more results without proof .
1) . If ~o(n) is monotone increasing and belongs to the lower class, then

<p(n) + c (n/log log n)' belongs to the lower class for all c .
This result is the best possible . For, if ¢(n) --> , then we can find

a monotone function <p(n) belonging to the lower class such that ~p(n) +
,~(n) (n/log log n)' belongs to the upper class .

2) . If ~p(n) is monotone increasing and belongs to the lower class, then
cp(n) + c(n/cp(n)) belongs to the lower class for all c . Since we can always assume
that cp(n) < (n log log n)', 2) is slightly stronger than 1) .

3) . Let ~o(n) be monotone increasing, and suppose that it belongs to the upper
class . Then for almost all t, there exist only finitely many n such that for some
m < n, I fn(t) - fm(t) > (p(n) .

4) . For almost all t, we have
n

E fk(t)
(5.16)

	

lim sup	
kn-- 1

	

log
/

n%' - 12nj(log 2

Professor J . L. Doob suggested that if nl < n 2 < . . . is a sequence of integers
with ni+1/ni > c > 1, then for almost all t,

n{

1 P

	

fk(t)
(5.17)

	

lim -

	

- i = 0.
P- p i= 1 n%

Indeed, it is not difficult to show that (5 .17) holds . In fact, the condition
ni+,/n; > c > 1 can be weakened, but it is necessary that ni tends to infinity
with a certain speed (quicker than i) .

5) . There exists a continuous strictly decreasing function 4,(x) defined for 0 <_
x <_ 1, with ip(0) = 1, ,y(1) = 0, such that, for almost all t, the upper density of
the set of n's for which

fn(0 >
x
(
nlog lognl'

J2



It is easy to see that"
(6.7)
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In this final chapter, we shall construct an increasing function cp(n) such that

(6.1)

	

Pr(A,rz n (~O(mn)))
n-1

and nevertheless ,p(n) belongs to the upper class . This shows that the converse
of Theorem 1 is not true .
We put

(6.2)

	

pi, = 222k ,

	

k = 1, 2,

and define cp(n) as follows :

(6 .3)

	

~p(n) = log k • 1/pk ,

	

for pk- 1 < n < Pk .

It follows from (0.11) that the number of mn' s satisfying Zpk < Inn 5
is >>=c 43 log log pk and hence >=c442 k . Consequently, from (0.7) we have

(6 .4)

	

Pr(Amn(~O(mn)))>01
e-4(logk)Z .C442k i 045 > 0.

I Pk<mn :5 Pk

	

log k

Since this is true for each k, (6 .1) is proved .
Denote now

(6 .5)

	

Mk = E[t : max fn(t) > log k • 1/pk] .
1<n<Pk

In order to show that ~p(n) belongs to the upper class, it is clearly sufficient
to prove that

(6.6)

	

Pr (Mk) < ~o .
k=1

Pr(Mk) 5 2Pr(E[t : fP k (t) > log k1/pk] .

11 In general, we have

Pr(E[t : -ax NO > x]) <= 2 Pr(E[t : f,(t) > x]) .
1<n<P

Indeed, we have

Pr(E[t : max f n (t) > x])

	

Pr(E[t : fv (t) > x1)
1<n<P

P-1
•

	

Pr(E[t : fi(t) < x, . . . , fn-i(t) < x, fn(t) > x, fp(t) < x])
n=1

= Pr(E[t : f,,(t) > x])
P-1•

	

E Pr(E[t : f, (t) <_ x, . . . fn-,(t) < x, fn(t) > x, f, (t) ? 2fn(t) - x])
n=1

< Pr(E[t : f,(t) > x])
P- 1

•

	

Pr(E[t : fi(t) < x, . . . , fn-,(t) < x, fn(t) > x, fp(t) > x])
rz=1

= 2 Pr (E[t : fp ( t) > x]) .

Pk
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Thus from (0.7) we have

(6.8)

	

Pr(Mk) < 2 •c z •E	ezciogk>z
k=I

	

-

	

k=l log k

which proves (6 .6) .
My indebtedness to my friend S . Kakutani is very great . In fact, he wrote

the whole paper after listening to my rough oral exposition .

UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PA .

PAUL ERDÖS
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