ON THE UNIFORM DISTRIBUTION OF THE ROOTS OF CERTAIN POLYNOMIALS

By P. Erdös
(Received July 21, 1941)

Let

$$
\cdots x_{n}^{(n)}
$$

be a triangular matrix, where, for each n,

$$
1 \geqq x_{1}^{(n)}>x_{2}^{(n)}>\cdots>x_{n}^{(n)} \geqq-1 .
$$

Since $x_{i}^{(n)}$ may be written in the form $x_{i}^{\langle n)}=\cos \left(v_{i}^{(n)}\right)$, where $0 \leqq v_{i}^{(n)} \leqq \pi$, we may define another triangular matrix

$$
\begin{gathered}
\vartheta_{1}^{(1)} \\
v_{1}^{(2)} \quad v_{2}^{(2)} \\
\cdots \cdots \cdots \\
v_{1}^{(n)} \\
v_{2}^{(n)} \cdots \cdots \vartheta_{n}^{(n)}
\end{gathered}
$$

with

$$
0 \leqq v_{1}^{(n)}<v_{2}^{(n)}<\cdots<v_{n}^{(n)} \leqq \pi .
$$

Put $\omega_{n}(x)=\Pi\left(x-x_{i}\right){ }^{1}$ Suppose $0 \leqq A<B \leqq \pi$. We denote by $N_{\mathrm{n}}(A, B)$ the number of the ϑ_{r} in (A, B). Let $-1 \leqq a<b \leqq 1$. Then we denote by $M_{n}(a, b)$ the number of the x_{i} in (a, b). It does not matter whether the intervals (A, B) and (a, b) are open or closed.

In a previous paper ${ }^{2}$ Turan and the author proved that if

$$
\left|\omega_{n}(x)\right|<\frac{f(n)}{2^{n}}
$$

then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O\left(n^{b}(\log f(n))^{\frac{1}{2}}\right)
$$

[^0]In another paper ${ }^{3}$ we proved that if $\left|l_{k}^{(n)}(x)\right|<c_{1}$ then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O[(B-A) n]^{1+\varepsilon}
$$

$\left(l_{k}^{(n)}(x)\right.$ denotes the fundamental polynomials, i.e. $l_{k}^{(n)}(x)=\omega(x) /\left[\omega^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)\right]$ is of degree $n-1$, and $l_{k}\left(x_{k}\right)=1, l_{k}\left(x_{i}\right)=0, i \neq k$.)

In the present paper we are going to improve these results. First we prove
Theorem 1. Put $x_{0}=-1, x_{n+1}=1$, and let
(1) $\max _{-1 \leqq a \leq 1}\left|\omega_{n}(x)\right|<\frac{c_{2}}{2^{n}}$ and $\max _{z_{\varepsilon} \leqq \pi \leq x_{k+1}}\left|\omega_{n}(x)\right|>\frac{c_{1}}{2^{n}}, \quad k=0,1 \cdots n$.

Then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O[\log n(B-A)] .
$$

This result is the best possible.
Next we prove
Theorem 2. Let $\left|l_{k}(x)\right|<c_{4}$; then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O[(\log n)(\log n(B-A))]
$$

if $\left|l_{k}(x)\right|<n^{t_{5}}$, then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O\left[(\log n)^{2}\right] .
$$

Theorem 2 is also the best possible. Theorems 1 and 2 can be generalized to
Theorem 3. Let $\omega(x)$ be such that

$$
\frac{c_{6} f(n)}{2^{n}}<\max _{x_{k}<x_{\leq} x_{n+1}}\left|\omega_{n}(x)\right|<\frac{c_{7} f(n)}{2^{n}} \quad k=0,1,2 \ldots n ;
$$

then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O[(\log n)(\log f(n))] .
$$

Similarly, if $\left|l_{k}(x)\right|<c_{8} f(n)$ then

$$
N_{n}(A, B)=\frac{B-A}{\pi} n+O[(\log n)(\log n f(n))] .
$$

To prove Theorem 1 we first have to prove two lemmas.
Lemma 1. Suppose that (1) holds; then

$$
\begin{equation*}
\frac{c_{9}}{n}<\vartheta_{k+1}-\vartheta_{k}<\frac{c_{10}}{n}, \quad k=0,1 \cdots n . \tag{2}
\end{equation*}
$$

[^1]Proof. A theorem of M. Riesz states that if $h(x)$ is a polynomial of degree n which assumes its absolute maximum in $(-1,1)$ at the point x_{0}, and if $y_{1}, \cdots, y_{\mathrm{r}}$ are the roots of $h(y)=0$ in the interval $(-1,1)$, then $\left|\theta_{i}-\theta_{0}\right| \geqq$ $\pi / 2 n$, where $\cos \theta_{1}=y_{i}$ and $\cos \theta_{0}=x_{0}$. Thus if x_{0} lies between the roots y_{i} and y_{i+1}, then $\theta_{i+1}-\theta_{i} \geqq \pi / n$. Also if $\max _{y_{i} \leqq \Sigma \leq y_{i+1}} h(x)$ assumes its smallest value for $i=k$ then

$$
\theta_{k+1}-\theta_{k} \leqq \pi / n .
$$

Suppose that (2) does not hold, for example assume that

$$
\vartheta_{k+1}-\vartheta_{k}>r(n) / n,
$$

where $\lim r(n)=\infty$. Take $\epsilon>0$, and define u and v by the relations: u and v are symmetric with respect to $\left(x_{k}+x_{k+1}\right) / 2$, and $\operatorname{arc} \cos u-\arccos v=\pi / n+\epsilon$. Consider the polynomial $\phi(x)=\omega(x) \cdot(x-u) \cdot(x-v) /\left(x-x_{k}\right)\left(x-x_{k+1}\right)$. It can be seen that if $u \leqq x \leqq v$ then

$$
\frac{(x-v)(x-v)}{\left(x-x_{k}\right)\left(x-x_{k+1}\right)}<c_{11} / r(n)
$$

hence

$$
\begin{equation*}
\max _{u \leq x \leq v}|\phi(x)|<\left(c_{11} / r(n)\right) \max _{x_{k} \leq x \leq z_{k+1}} \omega_{n}(x) . \tag{3}
\end{equation*}
$$

Also, since the sum of two quantities whose sum is fixed increases as they tend to equality, we have, in the intervals $\left(-1, x_{k}\right)$ and $\left(x_{k+1}, 1\right)$,

$$
\begin{equation*}
|\phi(x)|>|\omega(x)| . \tag{4}
\end{equation*}
$$

We have are $\cos v-$ are $\cos u>\pi / n$; and a simple calculation shows that, if $r(n)$ is large enough, $\vartheta_{k+1}-\operatorname{arc} \cos v>\pi / n$ and arc $\cos u-\vartheta_{k}>\pi / n$; thus it follows from the lemma of M. Riesz (applied to $\phi(x)$) that $\max |\phi(x)|$ between two consecutive roots of $\phi(x)$, assumes its smallest value between the roots x_{i} and x_{i+1}, where either $i \leqq k-2$ or $i \geqq k+2$. Thus, from (3) and (4),

$$
\max _{x_{k} \leq \pm \leq x_{k+1}}|\omega(x)|>\frac{r(n)}{c_{11}} \min _{i=0,1, \cdots, n} \max _{x_{j} \leq \equiv \equiv z_{j+1}}|\omega(x)| .
$$

This contradicts (1), which completes the proof. By the same argument we could prove the other inequality in (2).

Corollary. We obtain from Lemma 1, by a simple computation, that

$$
\frac{c_{12}}{n} \cdot\left(1-x_{k}^{2}\right)^{3}<x_{k+1}-x_{k}<\frac{c_{13}}{n}\left(1-x_{k}^{2}\right)^{\frac{1}{2}}, \quad(k=1,2, \cdots, n-1) .
$$

Lemma 2. Suppose that (1) holds; then for $-1 \leqq x \leqq 1$,

$$
\left|l_{k}(x)\right|<c_{14} \frac{\left(1-x_{k}^{2}\right)^{\frac{1}{2}}}{\left(x-x_{k}\right) n}
$$

Proor. We have $l_{k}(x)=\omega(x) /\left[\omega^{\prime}\left(x_{k}\right)\left(x-x_{4}\right)\right]$; thus by (1) it suffices to show that

$$
\omega^{\prime}\left(x_{k}\right)>c_{i k} \frac{n}{2^{n}\left(1-x_{k}^{2}\right)^{\prime}}
$$

Consider the polynomial $\psi(x)=\omega(x) /\left(x-x_{k}\right)$. It is clear that either $\left|\omega^{\prime}\left(x_{k}\right)\right|=$ $\psi\left(x_{k}\right) \geqq|\psi(y)|$ if $x_{k-1} \leqq y \leqq x_{k}$, or $\left|\omega^{\prime}\left(x_{k}\right)\right|=\psi\left(x_{k}\right) \geqq \psi(y)$ if $x_{k} \leqq y \leqq x_{k+1}$. Without loss of generality we can assume that the finst inequality holds. Then by (1) and the corollury to lemma 1 we have

$$
\omega^{\prime}\left(x_{k}\right)=\frac{\max _{2-1 \leq \pi \leq x_{k}}|\omega(x)|}{x_{k}-x_{k-1}}>c_{\mathrm{H}} \frac{n}{2^{n}\left(1-x_{k}^{2}\right)^{7}},
$$

which eompletes the proof.
Now we can prove Theorem 1. To simplify the calculations we assume that $a=0, b=1$. Then we have to show that, assuming (1)

$$
\frac{n}{2}-c_{3} \log n<M_{n}(0,1)<\frac{n}{2}+c_{11} \log n
$$

It will be sufficient to prove the first inequality. Suppose that it does not hold; then

$$
M_{n}(0,1)<\frac{n}{2}-r(n) \log n, \quad \quad \lim r(n)=\infty
$$

Consider the polynomial $g(x)$ whose roots are defined as follows: In the interval $(-1, \log n / n), g(x)$ has the same roots as $T_{n-1}(x)\left(T_{n}(x)\right.$ denotes the $n^{\text {s }}$ Tchebicheff polynomial); at the points $\left(\frac{2}{+}\right)^{r} \log n / n, r=1,2, \cdots s$ where s is such that

$$
\left(\frac{3}{2}\right)^{\prime} \frac{\log n}{n} \leqq 1<\left(\frac{3}{2}\right)^{+1} \frac{\log n}{n},
$$

$g(x)$ has a root of multiplicity $\left[\frac{r(n)}{10}\right]$; and finally $g(x)$ vanishes at the roots of $\omega(x)$ in the interval $(0,1)$. Clearly the degree of $g(x)$ does not exceed

$$
\frac{n}{2}+\log n+\frac{3 \log n}{10} r(n)+\frac{n}{2}-r(n) \log n<n-1
$$

if $r(n)>10$. Thus, by the lemma of M. Riesz, $g(x)$ asaumes its absolute maximum in the interval $(\log n / n, 1)$. Suppose that it assumes its absolute maximum at $x_{0}, \log n / n \leqq x_{1} \leqq 1$. We have for some r

$$
\left(\frac{3}{2}\right)^{\gamma} \frac{\log n}{n}<x_{0}<\left(\frac{3}{2}\right)^{r+1} \frac{\log n}{n}
$$

(If $\left(\frac{3}{2}\right)^{r+1} \log n / n>1$, we replace it by 1.) Put $(\#)^{r} \log n / n=q$; we consider the polynomial

$$
g_{1}(x)=\frac{g(x)}{(x-q)^{p}}, \quad p=\left[\frac{r(n)}{10}\right]
$$

By the Lagrange interpolation formula we evidently have

$$
g_{1}(x)=\sum_{k=1}^{n} g_{1}\left(x_{k}\right) l_{k}(x)
$$

where the x_{k} are the roots of $\omega(x)$. Thus

$$
\begin{equation*}
g_{1}\left(x_{0}\right)=\sum_{k=1}^{n} g_{1}\left(x_{k}\right) l_{k}\left(x_{0}\right) . \tag{5}
\end{equation*}
$$

Now $g_{1}\left(x_{k}\right)=0$ for $0 \leqq x_{k} \leqq 1$; and since x_{0} was the place where $g(x)$ takes its absolute maximum, we have

$$
g_{1}\left(x_{0}\right) \geqq[2(t+1)]^{p} g_{1}(x)
$$

if x satisfies

$$
\begin{equation*}
-\frac{\log n}{n} t\left(\frac{3}{2}\right)^{r} \geqq x \geqq-\frac{\log n}{n}(t+1)\left(\frac{3}{2}\right)^{r} ; \quad t=0,1,2 \ldots \tag{6}
\end{equation*}
$$

(6) may be verified by noting that

$$
g_{1}\left(x_{0}\right)=\frac{g\left(x_{0}\right)}{\left(x_{0}-q\right)^{p}} \geqq \frac{g(x)}{\left(x_{0}-q\right)^{p}}=g_{1}(x)\left(\frac{x-q}{x_{0}-q}\right)^{p}
$$

Hence from (5) and (6), by putting

$$
-\frac{\log n}{n} t\left(\frac{3}{2}\right)^{r}=u_{t}
$$

we obtain

$$
1 \leqq \sum_{t \geq 0} \frac{M_{n}\left(u_{t}, u_{t+1}\right) \max _{u_{t} \geq x_{k} \geq a_{t+1}}\left|l_{k}\left(x_{0}\right)\right|}{[2(t+1)]}=\sum_{1}+\sum_{2}
$$

where in $\sum_{1} t$ is restricted by $u_{t} \geqq-\frac{1}{2}$. Now by the corollary to Lemma 1 , and Lemma 2.

$$
\sum_{1}<\sum_{t \geq 0} c_{1 s} n\left(u_{t+1}-u_{t}\right) c_{10} \frac{1}{n_{t+1}} \frac{1}{[2(t+1)]^{\mathrm{p}}}<c_{20} \sum_{t \geq 0} \frac{1}{[2(t+1)]^{\mathrm{p}}}<\frac{1}{2}
$$

for sufficiently large p.
For the x_{k} in \sum_{2} we clearly have $x_{k}<-\frac{1}{3}$. Thus by lemma 2 .

$$
\sum_{2}<c_{21} \frac{n}{2^{p}} \max _{z_{k}<-1}\left|l_{k}\left(x_{0}\right)\right|<\frac{1}{2}
$$

for sufficiently large p. Thus $\sum_{1}+\sum_{2}<1$, and this contradiction establishes the proof.

In the proof we did not use the full strength of Lemma 2 ; in fact we only used
$\left|l_{k}(x)\right|<c_{22} \frac{1}{n\left|x-x_{k}\right|}$. We would have had to use the sharper estimate if we had not restrieted ourselves to the interval $(0,1)$ but had considered a "small" interval near -1 or +1 .

Now we have to prove that the error term in Theorem 1 is the best possible. Put

$$
\vartheta_{0}=\frac{\pi}{2}, \quad \vartheta_{k}=\frac{\pi}{2}+\frac{k \pi}{n}+\sum_{i=1}^{k} \frac{1}{i}, \quad \vartheta_{l}=\frac{\pi}{2}-\frac{l \pi}{n}-\sum_{i=1}^{l} \frac{1}{i}
$$

where k and l take all positive integral values such that $\vartheta_{k}<\pi-n^{-2}$, and $\vartheta_{l}>n^{-2}$ it is easy to see that the number of the ϑ 's is $n+O(1)$. Consider the polynomial $\omega(x)$ whose roots are the cos ϑ^{\prime} s. It can be shown by elementary computations that $\omega(x)$ satisfies (1). We do not give the details. On the other hand it is easy to see that

$$
M_{n}(0,1)<\frac{n}{2}-c_{2 s} \log n
$$

which shows that the error term in Theorem 1 is the best possible.
The proof of Theorem 2 is very similar to that of Theorem 1. The difference is that, in defining $g(x), g(x)$ now has roots of order $\left[\frac{r(n) \log n}{10}\right]$ at the points $\left(\frac{3}{8}\right)^{\tau} \log n / n$. The proof of Theorem 3 also runs along the same lines.

University of Pennsylvanta

[^0]: t We omit the upper index n where there is no danger of confusion.
 :On the uniformly dense distribution of certain sequences of points, Annals of Math. Vol. 41 (1940), pp. 162-173.

[^1]: ${ }^{1}$ On interpolation iiii, ibid. pp. 510-553.

