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Let

with

0 < 6"', < ~ 2 n) < . . . < 6'n" < 7r .

Put cj,, (x) _ II(x - x á ) . 1 Suppose 0 <_ A < B < 7r . 'e denote by
N"(A, B) the number of the z9j in (A, B) . Let -1 <- a < b <_ 1 . Then we
denote by M,,,(a, b) the number of the x i in (a, b) . It does not matter whether
the intervals (A, B) and (a, b) are open or closed .

In a previous paper2Turán and the author proved that if

wn(x) < f2n)n

then
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be a triangular matrix, where, for each n,

1> x 1n > x 2Ty > . . . > xn n >---1 .

Since x," ) may be written in the form x i( n) = cos (6j( ' ) ), where 0
we may define another triangular matrix
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t52n) . . . ?~( n)

Nn(A B) = B - A
n + 0(n'(logf(n)) ) •

7r

59

< o2") < 7r,

1 We omit the upper index n where there is no danger of confusion.
On the uniformly dense distribution of certain sequences of points, Annals of Math . Vol .

41 (1940), pp . 162-173 .
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In another paper' we proved that if I lk n (x) I < c l then

Nn(A, B) = B - A n + 0[(B - A)n]1+E
W

(lkn'(x) denotes the fundamental polynomials, i .e . lkn (x) = w(x)/[w'(xk)(x - xk)]
is of degree n - 1, and lk(xk) = 1, lk(x 2 ) = 0, i

	

k.)
In the present paper we are going to improve these results . First we prove
THEOREM 1 . Put xo = -1, xn+1 = 1, and let

(1)

	

max I wn(x) I <
C2n and

	

max

	

I Wn(x) I >
C3

,

	

k = 0, 1 . . . n .
1<x_<1

	

2

	

xk<x<xk+ 1

	

2n

Nn(A, B) = B - A n + 0[log n(B - A)] .

This result is the best possible .
Next we prove
THEOREM 2. Let I lk (x) I < C4 ; then

Nn(A B) = B - A n + 0[(log n) (log n(B - A))]7r
if I lk(x) I < n` 5 , then

Nn(A B) = B - A n + O[(log n) 2 ] .
T

Theorem 2 is also the best possible . Theorems 1 and 2 can be generalized to
THEOREM 3 . Let w(x) be such that

C s2(n) <

	

max

	

I .n (X) I <
c,2(n)

	

k = 0, 1, 2 . . . n ;
xk<x5xk+1

then

Nn(A, B) = B - A n + 0[(log n)(log f(n))] .7r

Similarly, if I lk(x) < esf(n) then

Nn(A, B) = B - A
n + 0[(log n)(log nf(n))] .r

To prove Theorem 1 we first have to prove two lemmas .
LEMMA 1 . Suppose that (1) holds ; then

e9

	

e10(2)

	

- < Yik+1-dk< -,

	

k=0,1 . . .n .n

	

n

a On interpolation iii, ibid. pp . 510-553 .

1
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PROOF . A theorem of M . Riesz states that if h(x) is a polynomial of degree n
which assumes its absolute maximum in (-1, 1) at the point x o , and if
y 1 , • • • , yr are the roots of h(y) = 0 in the interval (-1, 1), then I Bi - 60 1 >_
a/2n, where cos 01 = yi and cos Bo = x o . Thus if x0 lies between the roots yi
and yi+1 , then Bi+1 - O i >_ 7r/n . Also if max h(x) assumes its smallest

7/i Sx-7/i+1
value for i = k then

Bk+1 - Bk < 7r/n .

Suppose that (2) does not hold, for example assume that

1%k+l - 6k > r(n)/n,

where lim r(n) _ oc . Take c > 0, and define u and v by the relations : u and v
are symmetric with respect to (xk + xk}1)/2, and are cos u - are cos v = 7r/n + E .
Consider the polynomial O(x) = w(x)•(x - u) • (x - v)/(x - x k)(x
It can be seen that if u < x < v then

(x - u)(x - v)
< cii/r(n) ;(x - xk) (x - xk+l)

hence

(3)

	

max I O(x) I < (ell/r(n)) max wn(x) .
u<x<I,

	

xk-<x~xk+1

Also, since the sum of two quantities whose sum is fixed increases as they tend
to equality, we have, in the intervals (-1, xk) and (xk+l , 1),

(4)

	

1 O(x) I > I w(x) I •
We have are cos v - arc cos u > 7r/n ; and a simple calculation shows that,
if r(n) is large enough, #k+l - are cos v > 7r/n and are cos u - tk > r/n ; thus
it follows from the lemma of M . Riesz (applied to (~ (x)) that max I O(x) I between
two consecutive roots of O(x), assumes, its smallest value between the roots xi
and xi+1 , where either i <= k - 2 or i >= k + 2 . Thus, from (3) and (4),

max

	

o(x) j > r(n) min

	

max I w(x) ~ .
xk<x<xk+1

	

C11 7=0,1, • • • , n xi<x<xj+1

This contradicts (1), which completes the proof . By the same argument we
could prove the other inequality in (2) .
COROLLARY . We obtain from Lemma 1, by a simple computation, that

C12 ' (1 - xk) < xk+1 - xk < -C13 (1 - xj k) ,

	

.(k = 1, 2, . . . , n - 1) .
n

	

n

LEMMA 2 . Suppose that (1) holds ; then for -1 -< x -< 1,

£k(x)
I < C14 (1 - xk)

(x - xk)n

1

- xk+1) .
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PROOF . We have lk (x) = W(x)/[W'(xk)(x - xk)] ; thus by (1) it suffices to
show that

n
W '(xk) > C15 2 a (1 - xk)

Consider the polynomial, (x) = W(x)/(x - xk) . It is clear that either W'(xk) _

~(xk) >- I ~(y) if xk-1 < y = xk , or I W'(xk) I = y ( xk) > CY) if xk

	

y < xk+1 .

Without loss of generality we can assume that the first inequality holds . Then
by (1) and the corollary to lemma 1 we have

max I W(x) I

	

nxk-t ~ s ~ xk	W (xk) =

	

xk
-

xk-1

	

> C15 2 'á (1 - xk) '
which completes the proof .

Now we can prove Theorem 1 . To simplify the calculations we assume that
a = 0, b = 1 . Then we have to show that, assuming (1)

2 - c16 log n < Mn (0, 1) < 2 + w log n .

It will be sufficient to prove the first inequality . Suppose that it does not
hold ; then

31.(0' 1) < 2 - r(n) log n,

	

lim r(n) _ ~ .

Consider the polynomial g(x) whose roots are defined as follows : In the interval
(-1, log n./n), g(x) has the same roots as T,,_i(x)(I',,,(x) denotes the n", Tchebi-
cheff polynomial) ; at the points O' log n/n, r = 1, 2, - - - s where s is such that

(3)s
logn

	

1 < (3)'+1 logn
2

	

n

	

2

	

n

g(x) has a root of multiplicity r(n)
10

; and finally g(x) vanishes at the roots of

w(x) in the interval (0, 1) . Clearly the degree of g(x) does not exceed

n+logn+ 3lo n r(n)+2-r(n)logn<n-1
2

	

10

if r(n) > 10 . Thus, by the lemma of M . Riesz, g(x) assumes its absolute
maximum in the interval (log n/n, 1) . Suppose that it assumes its absolute
maximum at xo , log n/n _< xo <= 1 . We have for some r

(21'
log n <

xo
< C2/ +1 log n .J.

(If O'-i_1 log n/n > 1, we replace it by 1 .) Put (4)' log n/n = q ; we consider
the polynomial



91(x) = 9(x)

	

__ [r(n)
(x - q) P ,

	

p

	

10

By the Lagrange interpolation formula we evidently have
n

91(x) _

	

91(xk)lk(x)
k=1

where the xk are the roots of w(x) . Thus
n

91(x0) -

	

91(xk)lk(xo) •
k-1

(5)

Now gi(xk) = 0 for 0 <_ x,5 1 ; and since xo was the place where g(x) takes its
absolute maximum, we have

91(x0) [2(t + 1)]'g1(x)
if x satisfies
(6)

	

-logn t (2)r > x > - log n (t + 1)
C3j) ;

	

t = 0, l, 2

(6) may be verified by noting that

91(x0) =	 9(x0) 	>	9(x) 	_ g1(x) C
x -

(x0 - q) P

	

(x0

	

q) P

	

xo

Hence from (5) and (6), by putting

- log n t(3)' = ut

we obtain
M.(ut, ut+1)

	

max

	

1k(X0)
1 < L

	 nt?xk?gl¢+1

	

= ~,1 +t>o

	

C2 (t + 1)r

where in ~1 t is restricted by u t ? - z • Now by the corollary to Lemma 1,
and Lemma 2 .

1

	

1

	

1

	

1E1 < t~, clsn(ut+1 - ut)clsnt+l
[2(t + 1)] P < c20 t>o [2(t + IT < 2

for sufficiently large p .
For the xk in E2 we clearly have xk < - 3 . Thus by lemma 2 .

E,2 < c21n max I 1k(X0) I < 12P xk< I

	

2

for sufficiently large p. Thus E1 + 572 < 1, and this contradiction establishes
the proof .

In the proof we did not use the full strength of Lemma 2 ; in fact we only used
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lk(x) I < c22

	

1

	

We would have had to use the sharper estimate if
njx - xkj'

we had not restricted ourselves to the interval (0, 1) but had considered a
"small" interval near -1 or +1 .

Now we have to prove that the error term in Theorem 1 is the best possible .
Put

ar

	

ar

	

kar

	

k 1 1
i%0= 2 ,

	

Ok =2+ n + Z ,

where k and l take all positive integral values such that 6k < ar -
-2

, and
0, > n

2 it is easy to see that the number of the t9's is n + 0(1) . Consider the
polynomial w(x) whose roots are the cos 6's . It can be shown by elementary
computations that w(x) satisfies (1) . We do not give the details . On the other
hand it is easy to see that

Mn(0, 1) < 2 - c23 log n

which shows that the error term in Theorem 1 is the best possible .
The proof of Theorem 2 is very similar to that of Theorem 1 . The difference

is that, in defining g(x), g(x) now has roots of order
Ir(n)10

g
nI at the points

(3)r log n/n . The proof of Theorem 3 also runs along the same lines .
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