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Let i < k < 1 be any integers . A theorem of Ramsey ' states that
there exists a function f (i, k, 1) such that if n > f (i . k, 1), and if we
select, from each combination of order Ic of n elements, a combination
of order i, then there exists a combination of order 1 all of whose
combinations of order i have been selected .

All the proofs give very bad estimates for f (i, lc, 1) . If i = 2 the
theorem of Ramsey can be formulated as theorem about graphs
Let n > p (lc, 1), and consider any graph having n points ; then either
the number of independent points is > k or the graph contains a
complete graph of order 2 1 .

~- 1 - 2) . proof gives p (k, 1) < k

		

)
. This is probably very

Ic-1
far from the best possible value . We do not even know whether or

not lim y (3, 1) < oo is true . Perhaps even the following stronger

result holds : There exists an integer c (independent of n) such that,
given a graph without a triangle, we can number its vertices with
the integers 1, 2, . .. c, in such a way that no two vertices numbered
with the same integer are connected . It is easy to see that c > 4 .

Ramsey 3 also proved that if G is an infinite graph, then either G

' F . P. RAMsEY, Collected papers . On a problem of formal logic, 82-111 . See also
SKOLEM, Fundamenta Math ., 20 (1933), 254-261, and P . ERDÖS and G . SZEKERES,
Compositio Math . 2 (1935), pp . 463-470 .
s In a graph G a set A of points is called independent if no two points of A

are joined by a line . A graph is complete if any two of its points are joined by
a line .

3 RAMSEY, ibid.
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contains an infinite set of independent points or G contains an infinite
complete graph.

If the number of vertices of G is not countable, Duschnik, Miller
and I proved the following theorem 4 : Let the power of the points
of G be m ; then either G contains an infinite complete graph, or G
contains a set of m independent points .We can also state this theorem
as follows : If we split the complete graph of in points into two sub-
graphs G, and G 27 then if G1 does not contain an infinite complete
graph, G 2 contains a set of m independent points .

In the present note we prove the following results

Theorem I : Let a and b be infinite cardinals such that b > aa . If
we split the complete graph of power b into a sum of a subgraphs at
least one of them contains a complete graph of power > a .

In particular : If b > e (the power of the continuum) and we split
the complete graph of power b into a countable sum of subgraphs ; at
least one subgraph contains a non denumerable complete graph .

Theorem I is best possible. As a matter of fact, if b = a,," = 211 we
can split the complete graph of power b into the sum of a subgraphs,
such that no one of them contains a triangle. For the sake of simpli
city we show this only in the case b = c = 2 1'x . 'We write

x
~x =

	

'3 k
k=1

where G is a graph connecting every two points of the interval (0, .1),

and the edges of. Gk connect two points x and y if 2k . 1 > y - x

Clearly none of the Gk's contains any triangles .
Let us now assume that the generalized continuum hypothesis is

true, i.e. 2"x = :4x+1 . Let m = nx+ 2, and let G be the complete
graph containing m points, then we prove

Theorem 11, : Put G = G l + G2 ; if G 1 does not contain a complete
graph of power m, then G2 contains a complete graph of power 8x+ .
From theorem I it would only . follow that either G 1 or G2 contains a
complete graph of power By using results of paper of Sierpin-
ski 5 it is not difficult to find a, decomposition G=G 1 + (X'2 such that

' Ben DUSCKNIK and. E . W . MILLER, Partially ordered sets, Amer .. Journal of
Math ., 63 (1941), p . 606 .

' W. SZERPINSKI, Fundamenta Math ., 5 (1924), p . 179 .



neither G I nor G 2 contains a complete graph of power in, which
shows that theorem II can not be improved . (We have to assume
that in is accesible) .

Tukey and I have shown by using a result of Sierpinski ° that the
complete graph of power 8, can be decomposed into the countable
sum of trees. Without assuming the continuum hypothesis we can
not decide whether this also holds for the complete graph of power 9 2 .

Proof of theorem I. Let G be the complete graph of power b ; write

G=IG,,.,

	

a<12a,

where Q,,, denotes the least ordinal corresponding to the power a .
Let p be any point of G . We split the remaining points of G into a

classes Q,,. , , a l < Q,,,, by the rule ; -a point q is in Q,_ , if the line pq
is in G,, . Take now an arbitrary point p,, e Q„ (a, = 1, 2 . . ., aI < St d )
and split the remaining points of Q, , into classes Q,,, , , ; , a2 < Qa, by
the rule : - q belongs to Q,,, ,, if the line p,,q belongs to G,, ., . Next
we take an arbitrary point in and split the remaining
points of Q, , , into classes Q, , , ,.„ ,_ ,, etc. If k is not a limit ordinal we
define the classes Q,,, , , ,, ,,, ,k in the obvious way from the classes

'k-I (ak"< Qa ) . If k is a limit ordinal, we define the classes
(i < k) as II

	

Our construction can stop only if
i<k

for some k all the classes become empty ; in other words if
all the points of G become (i < Ic) . Denote now by a+
the smallest power > a, and by S2 a~ the smallest ordinal belonging to
a+ . We shall prove that not all the sets Q,,, ,, ,.i ( i < Qa +) can be
empty. Clearly the power of the points , i (i < S2 a .) does not
exceed a+ . a s = as (i .e . as > a+) . But the power of the points of G is by
assumption > aa ; thus not all the points of G are p,,, ,, . . . , ti 's (i < Qa •) •

Let r be such a point, and consider the sets

	

(i < S2a •) with
Clearly re II

	

thus

	

< S2"') is
i .< U .+

non empty. If i is not a limit ordinal, ai runs at most through a values
(ai < 12 a ) thus there must be an index j (j < S2 a) which occurs in
Q,, , a+ times. Clearly G, contains a complete graph of power a+ .
For letj = ai, = ai = . . . aik =- • . . . and consider the points p,.,,a,, . . .Nk- I .
It is clear from our construction that the complete graph determined
by these points is in G;, this completes the proof of theorem I .

° W . SIERPINSKI, ibid .

3 65 -
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Proof of theorem 11 . We state theorem II as follows : Let G he a
graph containing ;fix+2 points. Then if each set of independent points
has power < Rx+2, our graph contains a complete graph of power
Rx 1 .1 •

Let p 1 , p 2i . . . P-, . . . be a complete set of independent points
(x1 < Clearly every other point of G is connected with at
least one of the p's . The point q of G will belong to class Q,., if p„_, is
the p with smallest index with which q is connected. In each Q u, con-
sider now a maximal system of independent points . Thus we obtain the
points p u„ ',, a1, x2 < !Drx+1, and we split the remaining points of
Q,, into classes as before ; the point q= Q., belongs to Q,., ifpa,, ~, is
the point of lowest index with which q is connected. We can conti-
nue this process as in the proof of theorem I . We claim that
this process can not stop in 9x+1 steps, in other words, the sets
Q~.„ -„--j--)j.< .0. .4,, + ,, can not all be empty . For if these sets were
all empty, all points of G would bep u„ a„ . „ a,.'s for some j < Qgx+1 •

But the number of these points does not exceed .4x+1 x+1 = x+1,
by the generalized hypothesis of the continuum .

Consider, then, a sequence of sets, Q~„Q . ,

	

Q,, , ,	j < Q~11x+ 1

whose intersection is non empty . Clearly our graph contains the com-
plete graph determined by the points p, , p u < S2 . x+1
and this completes the proof of theorem II .

I do not know whether theorem II remains true if the power of the
points of G is $x+1, where ~; x is a limit cardinal .

If the power of the points of G is a limit cardinal e . g . K_ the theo-
rem is certainly false . Let M be the set of points of G and write

M =

	

Mi where the power of M is N,,, . We define G as follows : Two
i=1

points of G are connected if and only if they belong to the same M i .
Then clearly G does not contain a complete graph of power M, and
every system of independent points is countable .

In general, let m be a limit cardinal, which is the sum of .4 k sets of
power < m, but not the sum of fewer than Sk such sets. Then we can
construct a graph G the power of whose points is m, such that G does
not contain a complete graph of power m, and every set of indepen-
dent points has power < : k. On the other hand, perhaps the follow-
ing result holds : If such a graph G does not contain a complete
graph of power m, then it contains a set of independent points of
power &-1 •

Let A be a set of power m, and let n < m . To every point xeA, we
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correspond a subset f (x) of A such that xaf (x), and the power off (x)
is < n . A subset B of A is called independent if B -f(B) is empty . If
we assume the generalized continuum hypothesis we can prove that
there always exists an independent set of power m . This result has
been proved previously, without using the continuum hypothesis, in
the cases : (I) m is not a limit cardinal ; (II) m is a countable sum of
smaller cardinals

D . LÁZÁR, Fundamenta Math., 3 (1936), p . 304 . SOPHIE PICCARD, Fundamenta
Math., 29 (1937), pp . 5-8, C . R. Soc . Sc . Varsovie, 30 (1937) .
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