> Reprinted from the Bulletin of the American Mathematical Society Vol. 50, No. 12 , pp. 881-882
> December, 1944

A CON JECTURE IN ELEMENTARY NUMBER THEORY

LEON ALAOGLU AND PAUL ERDÖS

A well known conjecture of Catalan states that if $f(n)$ is the sum of all divisors of n except n, then the sequence of iterates of $f(n)$ is either eventually periodic or ends at 1 . It not only seems impossible to prove this, but it is also very difficult to verify. ${ }^{1}$

Another conjecture of Poulet, ${ }^{2}$ which appears equally difficult to prove, has the doubtful merit that it is easy to verify. Let $\sigma(n)$ be the sum of all divisors of n, and let $\phi(n)$ be Euler's function. Then for any integer n the sequence

$$
f_{0}(n)=n, \quad f_{2 k+1}(n)=\sigma\left(f_{2 k}(n)\right), \quad f_{2 k}(n)=\phi\left(f_{2 k-1}(n)\right)
$$

is eventually periodic.
We have verified this conjecture to $n=10000$ (extending Poulet's verification) by using Glaisher's tables. ${ }^{3}$ The checking was facilitated by the following observation: if the conjecture is to be checked for all $n<x$, it is enough to find a member of the sequence other than the first which is less than x.

The longest cycle found was in the sequence $f_{k}(9216)$. It starts with $f_{6}(9216)$, and is: $34560,122640,27648,81800,30976,67963,54432$, 183456, 48384, 163520, 55296, 163800, 34560. However our method of checking does not show that this is the largest cycle up to 10000 , and in fact Poulet found that $f_{k}(1800)$ has the same length 12.

As a rule $\phi(\sigma(n))$ is less than n. In fact, it can be shown that for every $\epsilon>0, \phi(\sigma(n))<\epsilon n$, except for a set of density 0 . The proof follows from the following two observations:

[^0](1) For a given prime p, the set of all n such that $\sigma(n) \equiv 0(\bmod p)$ is of density 1 .

The set of all integers not divisible by any prime q of the form $p x-1$ is of density zero, since $\sum_{q} 1 / q$ diverges. Hence the set of all integers divisible by a prime $q>N$ of this type is of density 1 . But the set of all integers divisible by $q^{2}, q>N$, is of density less than $\sum_{q>N} 1 / q^{2}=o(1)$. Therefore, if x is large, the number of n less than x such that $\sigma(n) \equiv 0(\bmod p)$ exceeds $(1-\epsilon) x$.
(2) Except for ϵ integers n less than $x, \sigma(n)<c(\epsilon) n$.

This follows from the fact that $\sum_{n<x^{\prime}} \sigma(n) \sim \pi^{2} n^{2} / 12$.
Choose p so that $\prod_{q \leqq p}(1-1 / q)<\delta / c(\epsilon)$. Then, if x is sufficiently large, all except $\eta x+\epsilon x$ integers n less than x have $\sigma(n)<c(\epsilon) n$, $\sigma(n) \equiv 0(\bmod q)$ for all $q \leqq p$. But, with these exceptions, $\phi[\sigma(n)]<\delta n$, which completes the proof, since η and ϵ are arbitrary.

In much the same way it can be shown that for every $c>0, \sigma[\phi(n)]$ $>$ cn except for a set of density zero.

Actually, much more can be shown. Except for a set of density zero, $\boldsymbol{e}^{\gamma} \phi[\sigma(n)] \log \log \log n \sim \sigma(n)$, and $e^{-\gamma} \sigma[\phi(n)] / \log \log \log n \sim \phi(n)$, where γ is Euler's constant. The proof is suppressed, but it might be noted that the reason for this result is that, for almost all $n, \phi(n)$ and $\sigma(n)$ are both divisible by all primes less than $(\log \log n)^{1-\epsilon}$, and by relatively few primes greater than $(\log \log n)^{1+e}$.

There exist numbers for which $\phi(\sigma(n))=n$. Up to 2500 these numbers are $1,2,8,12,128,240,720$; while two further solutions are 2^{15} and 2^{31}. Poulet gives many others; we do not know whether there are infinitely many solutions.

We state two further conjectures:
(a) Form the sequence $\sigma(n), \sigma(\sigma(n)), \phi(\sigma(\sigma(n))), \sigma(\phi(\sigma(\sigma(n))))$ in which the functions are successively applied in the order σ, σ, ϕ, $\sigma, \sigma, \phi, \sigma, \sigma, \phi, \cdots$. This sequence seems to tend to infinity if n is large enough.
(b) On the other hand, the sequence $\phi(n), \phi(\phi(n)), \sigma(\phi(\phi(n))), \cdots$, in which the order is $\phi, \phi, \sigma, \phi, \phi, \sigma, \phi, \phi, \sigma, \cdots$, seems to converge to 1 , for all n.

Obviously many more such conjectures can be formulated.

[^0]: Received by the editors May 18, 1944.
 ${ }^{1}$ L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math. vol. 44 (1913) pp. 264-296, and P. Poulet, La Chasse aux Nombres, vol. 1, pp. 68-72, and vol. 2, p. 188.
 ${ }^{2}$ P. Poulet, Nouvelles suites arithmetiques, Sphinx vol. 2 (1932) pp. 53-54.
 ${ }^{3}$ J. W. L. Glaisher, Number-divisor tables, British Association for the Advancement of Science, Mathematical Tables, vol. 8.

