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In the present note we are going to prove the following theorem: Let -1 c
x1 < x2 . . . < x„ < 1 be the roots of the ultraspherical polynomial P ;," (x) with
0 a 3/2. (The normalisation is of no importance .) a = i gives the Le-
gendre polynomial a = 3/2 gives Un(x) = Tn+i(x), where Tn(x) is the nth Tche-
bicheff polynomial . Let

(n) P,(")
lk

(x)

	

Pn ")
(xk) (x - xk)

be the fundamental polynomial of the Lagrange interpolation . Then
max

	

f lk°l (x) = ill', (-l) = l ;,n } (1) .

Special cases of this theorem have been proved by Erdös-Grünwald' and Webster2
(the cases a = 1/2 and a = 3/2) . If there is no danger of confusion we shall
omit the upper index n in lk`, n ~ (x) .
PROOF OF THE THEOREM . It clearly suffices to consider the lk(x) with -1 =<

xk < 0 . From the differential equation of the ultraspherical polynomials' we
obtain

(")
lk(xk) =

	

{«~xk) _ axk zzP„ (xk)

	

1 - xk

Thus for xk < x <= xk+10 =< lk(x) <= 1 . Suppose now that k ~ 1, then we prove
that in (xk_ 1 , Xk) lk(x) lies below its tangent at Xk . Denote by yl , y2 , • • • yn-1
the roots of lk(x) and by z1 , z2 , z„_2 the roots of lk' (x) . From (1) it follows
that xk_1 < yk-1 < xk . To prove our assertion it suffices to show that zk- 1 > xk .

xk =First we prove that yk_1 > xk-1 +2		u. From (1)

1 a + E1 = a + E1
2 1 + xk 1<k xk - xi 2(1 - xk) j>k xj - xk'

thus

(2)
	 1

+ z-
1 > E --- 1

I -- .
1 + xk

	

i<k xk - xi j>k xj r. xk

(1)

' ERDÖS-GRÜNALD, Bull . Amer. Math . Soc . 44 (1938), p . 515-518-
2 WEBSTER, ibid . 45 (1939), p . 870-873 .
a See e.g . G . SZEGÖ, Orthogonal Polynomials, Amer. Math. Soc . Coll . Publications vol,

XXIII p . 59 . Our notation differs from that of Szegö. This a has to be replaced by a + 1 .
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which proves yk-1 > u .

and

Thus by (2)

Now from (2)

1

	

_

	

1

	

1

	

1

	

1
i<k U - xi

	

i<k-1 u - xi + u - xk-1 > i<k-i Xk - xi + 'u -- xk-1

E
1 _

	

1 + 1
i < k Xk - x i xk - xk-1 U - xk-1

1

	

1

	

1

	

1
> 57

i < k Xk - xi xk - xk-1

	

j > k xj - Xk xk + 1

+	 1 >

	

1 > E 1
Xk - xk-1

	

j > k xj - xk

	

a > k xj - U

Now evidently from yk_1 > u

Y 1 = E 1 + 1 > E 1 + 1
i<k Xk - yi

	

i<k-1 Xk - yi

	

Xk - yk-1

	

i<k-i xk - xi

	

Xk - U

1

	

1

	

+ 1
Xk - U=~

	 -
, xk

-
Xi Xk - xk-1

= E1 + 1 > I 1 + 1
i<k Xk - xi Xk - xk-1

	

i<k Xk - xi xk + 1

Y, 1 < 57 1
j> k yj - xk

	

j > k xj -- xk

1

	

> 5~,

	

1
i<_k-1 Xk - yi

	

j?k yj -

which proves zk_1 > Xk .
Thus we obtain for k 3-1- 1

(3)

	

max

	

ik (x) I< 1+
	 aIXk I

x k_ 1 <_z<zk+1

	

1 + I xk I
and of course from (1)

(4)

	

ll(-1)>1+ .alxkI ?1+
al~,kI

1+Ix1I

	

1+ xkI .

Suppose now 1/2 <= a <_ 3/2 . A well known theorem of M . Riesz4 states: Let
f (x) be a polynomial of degree n which assumes its absolute maximum in (-1, 1)

zr

at xo ; then for every root Xk of f (x) in (-1, + 1) we have z?k - zoo >_
2~a

. Here

xk = COStgk , x0 = COSJO , 0 < dk <_ 7r, 0 < 00

	

7r .

4 M. RIESZ, Jahresbericht der Deutschen Math Vereinigung, (1916) p. 354-363 .
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Let -1 <--_ x l < x_ <

	

< x, <_ 1 be the roots of P ;,a) (x) ; put cost = xk
0 < tk < ar, then it is well known that'

zr

	

7r
z~v-0'+1

	

n+(2a+1)/2-n'

Thus I 1k (x) I can take its absolute maximum in (- 1, 1) only in (xk_1 ,
or at the points -1 and 1 . We shall prove that for k ~ 1,
(5)

	

I lk(-1) I <

It clearly suffices to show that

PIna), (xk)(1 + Xk) I > I P na), (xl)( 1 + xl) I •
Or that

(6) P»a)'(xk)(1 _ xk) I

	

I P na)' ( x l)( 1 - x1) I •
By the differential equation we have

(1 - x2)P;,a)"(x) - (2a + 4)xP;,a)'(x) + n(n + 2a + 3)Psa ) (x) = 0.
low apart from a constant factor P(,a)'(x) = Pn«i l) (x). Thus we can write

(I - x2)P ;,a)'(x) + c1xPla) (x) + c2P ;,~i)(x) = 0 .
Hence for the roots of P(,a) (x)

(1 - xk)Pna)'(xk)
I = I C2P(,+11)(xk) I •

The points xk are the relative maxima of P"+'l(x) . It is well known6 that for
a < 1/2 the successive maxima of P,( ' ) (x) increase toward the origin i .e . for
a <_- 3/2

n+1 ( ) < I rna+-1 (1) xk)Pn+i xl

	

P
This proves (6) and therefore (5) . By the symmetry of the x it follows that
for 1;5n

(7)

	

l1(-1) = ln(1) > 118(1) I
Thus, finally, from (3), (4), (6) and (7) we obtain our theorem for 1/2 _< a < 3/2 .

Suppose now that 0 - a < 1/2 . Then it is well known that 01 <_ 2n.' Thus
according to the theorem of \I . Riesz it suffices to consider the interval (x 1 , x,) .
Suppose then that 18(x) assumes its absolute maximum at x0, and that x0 is not
in (xk_1 , xk+l) . It is easy to see that'

s G . SZEGÖ, ibid . p. 121, theorem 6 .3 .1 .
s Ibid . p . 163 164, proof of theorem 7 .32 .1 .

Ibid . p. 117, theorem 6 .21 .1 . t?, <
Zn follows from the remark that in case of

T,.(x)(a = f}+~, =
2n

.

8 ERDÖS-TURÁN, Annals of Math . vol . 41 (1940) p . 429 lemma IV .



338

	

P. ERDÖS

li(xo) + li+1(xo) > 1,

	

x; < x0 < x,+1 .

According to a formula of Fejér
n

v,,(xo)lk(xo) = 1, where Vk(Xk) = 1,
k_1

(8)

hence

v k xk + 1	
_ xk

	

0,

	

vk(x) linear,
2axk

vi(x0)Ii(x0) + vi+1(xo) 1i+1(x0) + vk(x0)lk(x0) < 1 .

Thus from (8)

2al x1 I =C

	

1
1'i(xo)>1- 1 t+1ax ;x ?1- 1 +l x1

	

,

	

< c<_1

Clearly one of the numbers v i (x o ), xi+1(xo) is greater than 1 . Thus

vi(x0)l2(x0)
+ yi+1 1 +1(xo) > min (x 2 + cy2) _

x+i, 1,x,y>0

h(-1) > 23	

s L. FEAR, Math . Annalen . 106, (1932) p . 4 and p . 43 .
10 WEBSTER, Bull . Amer. Math . Soc . 47 (1911), p . 73 .

C

1+c

Hence

From (4) we have

and it is easy to see that

3	
2

c
> '~c(1+ c)

	

(1/2 < c <- 1)

which completes the proof .
If a > 3/2 our theorem does not hold any more, since it is easy to see that

1 1(- 1) remains bounded but max lk(x) does not remain bounded .
Webster10 proved that

11,)(_l) -' (1/271)¢ _ r(a)y.(.11) 1~

lk(xa) ~ < ~
1

c(1 + c)
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where j1 is the first zero of J«-1 (J(x) denotes Bessel functions) . I think it can
be shown that

ll n, (-1) < (1/2j1) c-2r(a)y.(1) I -I ,
in fact lin) (- 1) < lin+I>(-1) . If so, we could state the following theorem :

Let 0 < a <_ 3/2. Then

max

	

I lk(x) I < ( zjl)'-2 l r(a)ya(jl) l -1 ,
k=L2, . . . n' -1 :9X :9 I

and this result is the best possible .

PURDUE UNIVERSITY
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