ON THE MAXIMUM OF THE FUNDAMENTAL FUNCTIONS OF THE ULTRASPHERICAL POLYNOMIALS

By P, Endös
(Received August 27, 1943)

In the present note we are going to prove the following theorem: Let $-1 \leqq$ $x_{1}<x_{2} \cdots<x_{n} \leqq 1$ be the roots of the ultraspherical polynomial $P_{n}^{(\alpha)}(x)$ with $0 \leqq \alpha \leqq 3 / 2$. (The normalisation is of no importance.) $\alpha=\frac{1}{2}$ gives the Legendre polynomial $\alpha=3 / 2$ gives $U_{n}(x)=T_{n+1}^{\prime}(x)$, where $T_{n}(x)$ is the $n^{\text {th }}$ Tchebicheff polynomial. Let

$$
l_{k}^{(n)}(x)=\frac{P_{n}^{(\alpha)}(x)}{P_{n}^{\prime(\alpha)}\left(x_{k}\right)\left(x-x_{k}\right)}
$$

be the fundamental polynomial of the Lagrange interpolation. Then

$$
\max _{x-1,2, \cdots, n,-1 \leqq x \leqq 1}\left|l_{k}^{(n)}(x)\right|=l_{1}^{(n)}(-1)=l_{n}^{(n)}(1) .
$$

Special cases of this theorem have been proved by Erdös-Grünwald ${ }^{1}$ and Webster ${ }^{2}$ (the cases $\alpha=1 / 2$ and $\alpha=3 / 2$). If there is no danger of confusion we shall omit the upper index n in $l_{k}^{(n)}(x)$.

Proof of the theorem. It clearly suffices to consider the $l_{k}(x)$ with $-1 \leqq$ $x_{k} \leqq 0$. From the differential equation of the ultraspherical polynomials ${ }^{2}$ we obtain

$$
\begin{equation*}
l_{k}^{\prime}\left(x_{k}\right)=\frac{P_{n}^{\prime(\alpha)}\left(x_{k}\right)}{\frac{1}{2} P_{n}^{\prime(\alpha)}\left(x_{k}\right)}=\frac{\alpha x_{k}}{1-x_{k}^{2}} . \tag{1}
\end{equation*}
$$

Thus for $x_{k} \leqq x \leqq x_{k+1} 0 \leqq l_{k}(x) \leqq 1$. Suppose now that $k \neq 1$, then we prove that in $\left(x_{k-1}, x_{k}\right) l_{k}(x)$ lies below its tangent at x_{k}. Denote by $y_{1}, y_{2}, \cdots y_{n-1}$ the roots of $l_{k}^{\prime}(x)$ and by $z_{1}, z_{2}, \cdots z_{n-2}$ the roots of $l_{k}^{\prime \prime}(x)$. From (1) it follows that $x_{k-1}<y_{k-1}<x_{k}$. To prove our assertion it suffices to show that $z_{k-1}>x_{k}$. First we prove that $y_{k-1}>\frac{x_{k-1}+x_{k}}{2}=u$. From (1)

$$
\frac{1}{2} \frac{\alpha}{1+x_{k}}+\sum_{i<k} \frac{1}{x_{k}-x_{i}}=\frac{\alpha}{2\left(1-x_{k}\right)}+\sum_{i>k} \frac{1}{x_{j}-x_{k}}
$$

thus

$$
\begin{equation*}
\frac{1}{1+x_{k}}+\sum_{i<k} \frac{1}{x_{k}-x_{i}}>\sum_{j>k} \frac{1}{x_{j}-x_{k}} . \tag{2}
\end{equation*}
$$

[^0]Now from (2)

$$
\begin{aligned}
\sum_{i<k} \frac{1}{u-x_{i}} & =\sum_{i<k-1} \frac{1}{u-x_{i}}+\frac{1}{u-x_{k-1}}>\sum_{i<k-1} \frac{1}{x_{k}-x_{i}}+\frac{1}{u-x_{k-1}} \\
= & \sum_{i<k} \frac{1}{x_{k}-x_{i}}-\frac{1}{x_{k}-x_{k-1}}+\frac{1}{u-x_{k-1}} \\
= & \sum_{i<k} \frac{1}{x_{k}-x_{i}}+\frac{1}{x_{k}-x_{k-1}}>\sum_{j>k} \frac{1}{x_{i}-x_{k}}-\frac{1}{x_{k}+1} \\
& \quad+\frac{1}{x_{k}-x_{k-1}}>\sum_{i>k} \frac{1}{x_{i}-x_{k}}>\sum_{i>k} \frac{1}{x_{j}-u}
\end{aligned}
$$

which proves $y_{k-1}>u$. Now evidently from $y_{k-1}>u$

$$
\begin{aligned}
\sum_{i<k} \frac{1}{x_{k}-y_{i}} & =\sum_{i<k-1} \frac{1}{x_{k}-y_{i}}+\frac{1}{x_{k}-y_{k-1}}>\sum_{i<k-1} \frac{1}{x_{k}-x_{i}}+\frac{1}{x_{k}-u} \\
& =\sum_{i<k} \frac{1}{x_{k}-x_{i}}-\frac{1}{x_{k}-x_{k-1}}+\frac{1}{x_{k}-u} \\
& =\sum_{i<k} \frac{1}{x_{k}-x_{i}}+\frac{1}{x_{k}-x_{k-1}}>\sum_{i<k} \frac{1}{x_{k}-x_{i}}+\frac{1}{x_{k}+1}
\end{aligned}
$$

and

$$
\sum_{i \geq k} \frac{1}{y_{i}-x_{k}}<\sum_{i>k} \frac{1}{x_{i}-x_{k}}
$$

Thus by (2)

$$
\sum_{i \leqq k-1} \frac{1}{x_{k}-y_{i}}>\sum_{i \geq k} \frac{1}{y_{i}-x_{k}}
$$

which proves $z_{k-1}>x_{k}$.
Thus we obtain for $k \neq 1$

$$
\begin{equation*}
\max _{x_{k-1} \leq x \leq x_{k}+1}\left|l_{k}(x)\right|<1+\frac{\alpha\left|x_{k}\right|}{1+\left|x_{k}\right|} \tag{3}
\end{equation*}
$$

and of course from (1)

$$
\begin{equation*}
l_{1}(-1)>1+\frac{\alpha\left|x_{k}\right|}{1+\left|x_{2}\right|} \geqq 1+\frac{\alpha\left|x_{k}\right|}{1+\left|x_{k}\right|} . \tag{4}
\end{equation*}
$$

Suppose now $1 / 2 \leqq \alpha \leqq 3 / 2$. A well known theorem of M. Riesz ${ }^{4}$ states: Let $f(x)$ be a polynomial of degree n which assumes its absolute maximum in $(-1,1)$ at x_{0}; then for every root x_{k} of $f(x)$ in $(-1,+1)$ we have $\vartheta_{k}-\vartheta_{0} \geqq \frac{\pi}{2 n}$. Here $x_{k}=\cos \vartheta_{k}, x_{0}=\cos \vartheta_{0}, 0<\vartheta_{\ell} \leqq \pi, 0<\vartheta_{0} \leqq \pi$.
${ }^{4}$ M. Riesz, Jahresbericht der Deutschen Math Vereinigung, (1916) p. 354-368.

Let $-1 \leqq x_{1}<x_{2}<\cdots<x_{n} \leqq 1$ be the roots of $P_{n}^{(a)}(x)$; put $\cos \vartheta_{k}=x_{k}$ $0<v_{k}<\pi$, then it is well known that ${ }^{5}$

$$
\vartheta_{s}-\vartheta_{n+1} \leqq \frac{\pi}{n+(2 \alpha+1) / 2} \leqq \frac{\pi}{n} .
$$

Thus $\left|l_{k}(x)\right|$ can take its absolute maximum in $(-1,1)$ only in $\left(x_{k-1}, x_{k+1}\right)$, or at the points -1 and 1 . We shall prove that for $k \not \approx 1$,

$$
\begin{equation*}
\left|l_{k}(-1)\right|<l_{1}(-1) . \tag{5}
\end{equation*}
$$

It clearly suffices to show that

$$
\left|P_{n}^{(\alpha) \prime}\left(x_{k}\right)\left(1+x_{k}\right)\right|>\left|P_{n}^{(\alpha) \prime}\left(x_{1}\right)\left(1+x_{1}\right)\right| .
$$

Or that

$$
\begin{equation*}
\left|P_{n}^{(\alpha) \prime}\left(x_{k}\right)\left(1-x_{k}^{2}\right)\right| \geqq\left|P_{n}^{(\alpha) \prime}\left(x_{1}\right)\left(1-x_{1}^{2}\right)\right| . \tag{6}
\end{equation*}
$$

By the differential equation we have

$$
\left(1-x^{2}\right) P_{n}^{(\alpha) \prime \prime}(x)-(2 \alpha+4) x P_{n}^{(\alpha) \prime}(x)+n(n+2 \alpha+3) P_{n}^{(\alpha)}(x)=0 .
$$

Now apart from a constant factor $P_{n}^{(\alpha)}(x)=P_{n-1}^{(\alpha+1)}(x)$. Thus we can write

$$
\left(1-x^{2}\right) P_{n}^{(\alpha)}(x)+c_{1} x P_{n}^{(\alpha)}(x)+c_{2} P_{n-1}^{(\alpha-1)}(x)=0 .
$$

Hence for the roots of $P_{n}^{(a)}(x)$

$$
\left|\left(1-x_{k}^{2}\right) P_{n}^{(\alpha)}\left(x_{k}\right)\right|=\left|c_{2} P_{n+1}^{(\alpha-1)}\left(x_{k}\right)\right| .
$$

The points x_{k} are the relative maxima of $P_{n+1}^{\alpha-1}(x)$. It is well known ${ }^{6}$ that for $\alpha \leqq 1 / 2$ the successive maxima of $P_{n}^{(a)}(x)$ increase toward the origin i.e. for $\alpha \leqq 3 / 2$

$$
\left|P_{n+1}^{(\alpha-1)}\left(x_{1}\right) \leqq\left|P_{n+1}^{(\alpha-1)}\left(x_{k}\right)\right| .\right.
$$

This proves (6) and therefore (5). By the symmetry of the x it follows that for $k \neq n$

$$
\begin{equation*}
l_{1}(-1)=l_{n}(1)>\left|l_{k}(1)\right| . \tag{7}
\end{equation*}
$$

Thus, finally, from (3), (4), (6) and (7) we obtain our theorem for $1 / 2 \leqq \alpha \leqq 3 / 2$.
Suppose now that $0 \leqq \alpha<1 / 2$. Then it is well known that $\vartheta_{1} \leqq 2 n$. Thus according to the theorem of M. Riesz it suffices to consider the interval $\left(x_{1}, x_{n}\right)$. Suppose then that $l_{k}(x)$ assumes its absolute maximum at x_{0}, and that x_{0} is not in $\left(x_{k-1}, x_{k+1}\right)$. It is easy to see that ${ }^{8}$

[^1]$$
l_{i}\left(x_{0}\right)+l_{i+1}\left(x_{0}\right)>1, \quad x_{i}<x_{0}<x_{i+1} .
$$

According to a formula of Fejér ${ }^{\circ}$

$$
\begin{align*}
& \sum_{k=1}^{n} v_{k}\left(x_{0}\right) l_{k}^{2}\left(x_{0}\right)=1, \quad \text { where } \quad v_{k}\left(x_{k}\right)=1 \\
& v_{k}\left(x_{k}+\frac{1-x_{k}^{2}}{2 \alpha x_{k}}\right)=0, \quad v_{k}(x) \text { linear } \tag{8}
\end{align*}
$$

hence

$$
v_{i}\left(x_{0}\right) l_{i}^{2}\left(x_{0}\right)+v_{i+1}\left(x_{0}\right) l_{i+1}^{2}\left(x_{0}\right)+v_{k}\left(x_{0}\right) l_{k}^{2}\left(x_{0}\right) \leqq 1 .
$$

Thus from (8)

$$
v_{i}\left(x_{0}\right)>1-\frac{2 \alpha x_{i}}{1+\left|x_{i}\right|} \geqq 1-\frac{2 \alpha\left|x_{1}\right|}{1+\left|x_{1}\right|}=c, \quad \frac{1}{2}<c \leqq 1
$$

Clearly one of the numbers $v_{c}\left(x_{0}\right), x_{i+1}\left(x_{0}\right)$ is greater than 1 . Thus

$$
v_{i}\left(x_{0}\right) l_{i}^{2}\left(x_{0}\right)+v_{i+1} l_{i+1}^{2}\left(x_{0}\right)>\min _{x+y=1, x, y>0}\left(x^{2}+c y^{2}\right)=\frac{c}{1+c} .
$$

Hence

$$
\left|l_{k}\left(x_{0}\right)\right|<\sqrt{\frac{1}{c(1+c)}}
$$

From (4) we have

$$
l_{1}(-1)>\frac{3-c}{2}
$$

and it is easy to see that

$$
\frac{3-c}{2}>\sqrt{\frac{1}{c(1+c)}} \quad(1 / 2<c \leqq 1)
$$

which completes the proof.
If $\alpha>3 / 2$ our theorem does not hold any more, since it is easy to see that $l_{1}(-1)$ remains bounded but max $l_{k}(x)$ does not remain bounded.

Webster ${ }^{10}$ proved that

$$
l_{1}^{(n)}(-1) \rightarrow\left(1 / 2 j_{1}\right)^{\alpha-2}\left|\Gamma(\alpha) y_{\alpha}\left(j_{1}\right)\right|^{-1}
$$

${ }^{\prime}$ L. Ferser, Math. Annalen, 106, (1932) p. 4 and p. 43.
${ }^{10}$ Webster, Bull. Amer. Math. Soc. 47 (1941), p. 73.
where j_{1} is the first zero of $J_{\alpha-1}(J(x)$ denotes Bessel functions). I think it can be shown that

$$
l_{\mathrm{i}}^{(n)}(-1)<\left.\left(1 / 2 j_{1}\right)^{a-2} \Gamma(\alpha) y_{\alpha}\left(j_{1}\right)\right|^{-1},
$$

in fact $l_{1}^{(s)}(-1)<l_{1}^{(n+1)}(-1)$. If so, we could state the following theorem: Let $0 \leqq \alpha \leqq 3 / 2$. Then

$$
\max _{k=1,2, \cdots \mathrm{~m}_{-1} \leq x \leq 1}\left|l_{k}(x)\right|<\left(\frac{1}{2} j_{1}\right)^{\alpha-2}\left|\Gamma(\alpha) y_{\alpha}\left(j_{1}\right)\right|^{-1},
$$

and this result is the best possible.
Purdue Univeriaty

[^0]: ${ }^{1}$ Erdơs-Grunwald, Bull. Amer. Math. Soc. 44 (1938), p. 515-518.
 ${ }^{2}$ Webster, ibid. 45 (1939), p. $870-873$.
 ${ }^{2}$ See e.g. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publications vol. XXIII p. 59. Our notation differs from that of Szegö. This α has to be replaced by $\alpha+1$.

[^1]: ${ }^{5}$ G. Szegö, ibid. p. 121, theorem 6.3.1.
 ${ }^{6}$ Ibid. p. 163164 , proof of theorem 7.32.1.
 ${ }^{\text {z }}$ Ibid. p. 117, theorem $6.21 .1, \vartheta_{1} \leqq \frac{\pi}{2 n}$ follows from the remark that in case of $T_{n}(x)\left(\alpha=\frac{0}{2}\right) v_{1}=\frac{\pi}{2 n}$.

 EErdös-Ttran, Annals of Math, vol. 41 (1940) p. 429 lemma IV.

