INTEGRAL DISTANCES

NORMAN H, ANNING AND PAUL ERDÖS

In the present note we are going to prove the following result:
For any n we can find n points in the plane not all on a line such that their distances are all integral, but it is impossible to find infinitely many points with integral distances (not all on a line). ${ }^{1}$

Proof. Consider the circle of diameter $1, x^{2}+y^{2}=1 / 4$. Let p_{1}, p_{2}, \cdots be the sequence of primes of the form $4 k+1$. It is well known that

$$
p_{i}^{2}=a_{i}^{2}+b_{i}^{2}, \quad a_{i} \neq 0, \quad b_{i} \neq 0,
$$

is solvable. Consider the point (on the circle $x^{2}+y^{2}=1 / 4$) whose distance from $(-1 / 2,0)$ is b_{i} / p_{i}. Denote this point by $\left(x_{i}, y_{i}\right)$. Consider the sequence of points $(-1 / 2,0),(1 / 2,0),\left(x_{i}, y_{i}\right), i=1,2, \cdots$. We shall show that any two distances are rational. Suppose this has been shown for all $i<j$. We then prove that the distance from $\left(x_{i}, y_{i}\right)$ to $\left(x_{i}, y_{i}\right)$ is rational. Consider the 4 concyclic points $(-1 / 2,0),(1 / 2,0)$, $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right) ; 5$ distances are clearly rational, and then by Ptolemy's theorem the distance from $\left(x_{i}, y_{i}\right)$ to $\left(x_{i}, y_{j}\right)$ is also rational. This completes the proof. Thus of course by enlarging the radius of the circle we can obtain n points with integral distances.

It is very likely that these points are dense in the circle $x^{2}+y^{2}=1 / 4$, but this we can not prove. It is easy to obtain a set which is dense on $x^{2}+y^{2}=1 / 4$ such that all the distances are rational. Consider the

[^0]point x_{1} whose distance from ($-1 / 2,0$) is $3 / 5$; the distance from $(0,1 / 2)$ is of course $4 / 5$. Denote $(-1 / 2,0)$ by $P_{1},(1 / 2,0)$ by P_{2}, and let α be the angle $P_{2} P_{1} X_{1}$. α is known to be an irrational multiple of π. Let x_{i} be the point for which the angle $P_{1} P_{2} X_{i}$ equals $i \alpha$; the points X_{i} are known to be dense on the circle $X^{2}+y^{2}=1 / 2$, and all distances between x_{i} and x_{i} are rational because if $\sin \alpha$ and $\cos \alpha$ are rational, clearly $\sin i \alpha$ and $\cos i \alpha$ are also rational.

To give another configuration of n points with integral distances, let m^{2} be an odd number with d divisors, and put

$$
m^{2}=x_{i}^{2}-y_{i}^{2} .
$$

This equation has clearly d solutions. Consider now the points

$$
(m, 0), \quad\left(0, y_{i}\right) \quad i=1,2, \cdots .
$$

It is immediate that all the distances are integral.
These configurations are all of very special nature. Several years ago Ulam asked whether it is possible to find a dense set in the plane such that all the distances are rational. We do not know the answer.

Now we prove that we cannot have infinitely many points P_{1}, P_{2}, \cdots in the plane not all on a line with all the distances $P_{i} P_{i}$ being integral.

First we show that no line L can contain infinitely many points Q_{1}, Q_{2}, \cdots. Let P be a point not on L, Q_{i} and Q_{i} two points very far away from P and very far from each other. Put $d\left(P Q_{i}\right)=a$, $d\left(Q_{i} Q_{i}\right)=b, d\left(P Q_{i}\right)=c .(d(A, B)$ denotes the distance from A to B.

$$
\begin{equation*}
c \leqq a+b-1 \tag{1}
\end{equation*}
$$

Let $Q_{i} R$ be perpendicular to $P Q_{i}$. We have

$$
a<d(P R)+\left(d\left(Q_{i} R\right)\right)^{2} / d(P R), \quad b<d\left(Q_{j} R\right)+\left(d\left(Q_{i} R\right)\right)^{2} / d\left(Q_{j} R\right) .
$$

Thus from (1)

$$
\left(d\left(Q_{i} R\right)\right)^{2}\left(\frac{1}{d(P R)}+\frac{1}{d\left(Q_{j} R\right)}\right)>1
$$

which is clearly false for a and b sufficiently large. $\left(d\left(Q_{i} R\right)\right.$ is clearly less than the distance of P from L.) This completes the proof.

There clearly exists a direction $P_{1} X$ such that in every angular neighborhood of $P_{1} X$ there are infinitely many P_{i}.

Let P_{2} be a point not on the line $P_{1} X$.
Denote the angle $X P_{1} P_{2}$ by $\alpha, 0<\alpha<\pi$. Evidently the P_{i} cannot form a bounded set. Let Q be one of the P_{i} sufficiently far away from
P_{1}, where the angle $Q P_{1} X$ equals $\in(\epsilon$ sufficiently small). Denote $d\left(P_{1}, P_{2}\right)=a, d\left(P_{1}, Q\right)=b, d\left(P_{2}, Q\right)=c$. We evidently have

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (\alpha-\epsilon) .
$$

a, b, c all are integers. From this we shall show that if b and c are sufficiently large, ϵ sufficiently small, then

$$
\begin{equation*}
c=b-a \cos \alpha . \tag{2}
\end{equation*}
$$

Put

$$
c=b-a \cos \alpha+\delta, \quad \delta>0 .
$$

Then

$$
\begin{aligned}
(b-a \cos \alpha+\delta)^{2}= & b^{2}-2 a b \cos \alpha+a^{2} \cos ^{2} \alpha+2 \delta(b-a \cos \alpha) \\
& +\delta^{2}>a^{2}+b^{2}-2 a b \cos (\alpha-\epsilon)
\end{aligned}
$$

if b is sufficiently large and ϵ sufficiently small. Similarly we dispose of the case $\delta<0$. Thus (2) is proved.

From (2) we have

$$
a^{2}+b^{2}-2 a b \cos (\alpha-\xi)=b^{2}-2 a b \cos \alpha+a^{2} \cos ^{2} \alpha
$$

or

$$
\cos (\alpha-\epsilon)-\cos \alpha=\frac{a^{2} \sin ^{2} \alpha}{2 b} .
$$

Thus we clearly obtain

$$
\epsilon<c_{1} / b .
$$

Thus clearly all the points Q_{i} have distance less than c_{2} from the line $P_{1} X$. Let Q_{1}, Q_{2}, Q_{3} be three such points not on a line, where $d\left(Q_{i} Q_{i}\right)$ are large. Let $Q_{1} Q_{3}$ be the largest side of the triangle $Q_{1} Q_{2} Q_{2}$. Let $Q_{2} R$ be perpendicular to $Q_{1} Q_{2}$. We have as before
also

$$
d\left(Q_{1} Q_{3}\right) \leqq d\left(\varrho_{1}, Q_{2}\right)+d\left(Q_{2} Q_{3}\right)-1 ;
$$

$$
d\left(Q_{1} Q_{z}\right)-d\left(Q_{1} R\right)<\epsilon, \quad d\left(Q_{2} Q_{3}\right)-d\left(Q_{3} R\right)<\epsilon
$$

an evident contradiction; this completes the proof.
By a similar argument we can show that we cannot have infinitely many points in n-dimensional space not all on a line, with all the distances being integral.

University of Michigan

[^0]: Received by the editors February 20, 1945.
 ${ }^{1}$ Anning gave 24 points on a circle with integral distances. Amer. Math. Monthly vol. 22 (1915) p. 321. Recently several authors considered this queation in the Mathematical Gazette.

