NOTE ON THE CONVERSE OF FABRY'S GAP THEOREM

> BY
> P. ERDÖS

Reprinted from the

NOTE ON THE CONVERSE OF FABRY'S GAP THEOREM

BY
P. ERDÖS

The gap theorem of Fabry states that if $f(z)=\sum a_{k} z^{n_{k}}$ is a power series whose circle of convergence is the unit circle and $\lim n_{k} / k=\infty$ then the unit circle is the natural boundary of $f(z)$.

Pólya (${ }^{1}$) proved the following converse of this result: Let n_{k} be a sequence of integers for which $\lim \inf n_{k} / k<\infty$; then there exists a power series $\sum a_{k} z^{n_{k}}$ whose circle of convergence is the unit circle and for which the unit circle is not the natural boundary.

Pólya's result shows that in some sense Fabry's result is the best possible. Perhaps the following direct and elementary proof might be of some interest.

There clearly exist two sequences of integers u_{i} and v_{i} such that $v_{i}=\left[\left(1+c_{1}\right) u_{i}\right], u_{i+1}>v_{i}^{2}$, and the number of n_{k} in (u_{i}, v_{i}) is greater than $c_{2}\left(v_{i}-u_{i}\right)>c_{3} u_{i}$. (The c 's denote absolute positive constants.) The existence of these sequences is immediate from $\lim \inf n_{k} / k<\infty$. Denote the n_{k} in the intervals $\left(u_{i}, v_{i}\right)$ by n_{k}^{\prime}. We clearly have $\lim \inf n_{k}^{\prime} / k<\infty$. For construction of $f(z)$ we shall use only the n_{k}^{\prime}. Put $f(z)=\sum a_{k} z^{n_{k}^{\prime}}$. We shall determine the a_{k} so that the unit circle will be the circle of convergence and the point 1 will be a regular point of $f(z)$. It will suffice to show that there exists a number l, $1>l>0$, such that the circle of convergence of

$$
f(z+l)=\sum_{k} a_{k}(z+l)^{n_{k}^{\prime}}=\sum_{m} b_{m} z^{m}
$$

has radius greater than $1-l$. We shall choose $l=(r-1) / r, r$ a sufficiently large integer. We have by the binomial expansion

$$
\sum_{k} a_{k}\left(z+\frac{r-1}{r}\right)^{n_{k}^{\prime}}=\sum_{m} z^{m} \sum_{k} a_{k} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m}=\sum_{m} b_{m} z^{m} .
$$

We have to show that $\lim \sup b_{m}^{1 / m}<r$, for some choice of the a_{k} with $\lim \sup \left|a_{k}\right|^{1 / n_{k}}=1$.

Let ϵ be a small but fixed number; we distinguish two cases. In case (i), m does not lie in any of the intervals $\left(\left(u_{i} / r\right)(1-\epsilon),\left(v_{i} / r\right)(1+\epsilon)\right)$. Then we show that for every choice of the a_{k} with $\left|a_{k}\right| \leqq 1, \lim \sup b_{m}^{1 / m}<r-\delta, \delta=\delta(\epsilon)$. This means that if m is large enough and does not lie in $\left(\left(u_{i} / r\right)(1-\epsilon)\right.$, $\left.\left(v_{i} / r\right)(1+\epsilon)\right)$ then $b_{m}<(r-\delta)^{m}$. Clearly

Presented to the Society, October 28, 1944; received by the editors November 19, 1943, and, in revised form, May 30, 1944.
${ }^{(1)}$ G. Polya, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 65-71.

$$
\begin{equation*}
b_{m} \leqq \sum_{k} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m} . \tag{1}
\end{equation*}
$$

If we define

$$
C_{n, m}((r-1) / r)^{n-m}=A_{n}
$$

we find

$$
\begin{equation*}
\left.A_{n+1} / A_{n}=((r-1) / r)(n+1) /(n-m+1)\right) . \tag{2}
\end{equation*}
$$

By studying the quotient (2) we see that $\max A_{n}=A_{r m}=C_{r m, m}((r-1) / r)^{(r-1) m}$, and by applying Stirling's formula

$$
n!\sim(2 \pi)^{-1 / 2} n^{n+1 / 2} \sigma^{-n}
$$

we note that $A_{m}^{1 / m} \rightarrow r$ as $m \rightarrow \infty$. It follows from (2) that there exists $n=n(\epsilon)$ >0 such that

$$
\begin{array}{lll}
A_{n+1} / A_{n}>1+\eta & \text { for } & n<r m /(1+\epsilon) \\
A_{n+1} / A_{n}<1-\eta & \text { for } & n>r m /(1-\epsilon) \tag{3}
\end{array}
$$

and hence a simple calculation shows that there exists a $\lambda=\lambda(\epsilon)>0$ such that

$$
\begin{equation*}
A_{n}<(r-\lambda)^{m} \tag{4}
\end{equation*}
$$

for n not in $(r m /(1+\epsilon), r m /(1-\epsilon))$.
Now clearly

$$
b_{m}=\sum_{1}+\sum_{2}
$$

where in \sum_{1} the summation is extended over the $n<r m /(1+\epsilon)$ and in \sum_{2} over the $n>r m /(1-\epsilon)$. (By assumption m does not lie in $\left(\left(u_{i} / r\right)(1-\epsilon),\left(v_{i} / r\right)(1+\epsilon)\right)$ and in (1) the n_{k}^{\prime} are all in $\left(u_{i}, v_{i}\right)$; thus if $m<\left(u_{i} / r\right)(1-\epsilon), n_{k}^{\prime}>r m /(1-\epsilon)$ and if $m>\left(v_{i} / r\right)(1+\epsilon), n_{k}^{\prime}<r m /(1+\epsilon)$.) Thus from (3) and (4) (by summing a geometric series)

$$
b_{m}<c_{4}(r-\lambda)^{m}
$$

or

$$
\lim \sup b_{m}^{1 / m}<(r-\delta)
$$

which completes the proof.
In case (ii)

$$
\left(u_{i} / r\right)(1-\epsilon)<m<\left(v_{i} / r\right)(1+\epsilon) \text { for some } i .
$$

We write

$$
b_{m}=b_{m}^{\prime}+b_{m}^{\prime \prime},
$$

where

$$
b_{m}^{\prime}=\sum_{1} a_{k} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m}, \quad b_{m}^{\prime \prime}=\sum_{2} a_{k} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m},
$$

\sum_{1} indicates that the summation is extended only over those k for which n_{k}^{\prime} does not lie in (u_{i}, v_{i}), and in \sum_{2} the summation is extended over the other k. We have

$$
b_{m}^{\prime} \leqq \sum_{1} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m}
$$

and we can show that $\lim \sup b_{m}^{1 / m}<r$ as before.
Now we show that we can choose the a_{k} to be such as to make all the $b_{m}{ }^{\prime \prime}$ for ($\left.u_{i} / r\right)(1-\epsilon) \leqq m \leqq\left(v_{i} / r\right)(1+\epsilon)$ equal to 0 . Thus we must determine the a_{k} so that

$$
\sum_{2} a_{k} C_{n_{k}^{\prime}, m}\left(\frac{r-1}{r}\right)^{n_{k}^{\prime}-m}=0
$$

These are homogeneous equations for the a_{k}. The number of these equations is less than $2\left(v_{i}-u_{i}\right) / r$ for sufficiently small ϵ and the number of unknowns is greater than $c_{3}\left(v_{i}-u_{i}\right)$ which is greater than the number of equations for large enough r. Thus the system of equations always has a solution, and further we can suppose that the absolute value of the largest a_{k} is 1 . This will insure that the circle of convergence of $f(z)$ will be the unit circle, which completes the proof.

It would be easy to construct by the same method an $f(z)$ whose circle of convergence is the unit circle and whose regular points are everywhere dense on the unit circle.

Let $n_{1}<n_{2}<\cdots$ be a sequence whose maximal density is α. Pólya proved $\left.{ }^{2}{ }^{2}\right)$ that if $f(z)=\sum a_{k} z^{n_{k}}$ is a power series, the radius of convergence of which is 1 , then no arc greater than $2 \pi \alpha$ of the unit circle is free of singular points. This is clearly a generalization of Fabry's gap theorem. It would be interesting to investigate the converse problem, that is, if $n_{1}<n_{2} \cdots$ is a sequence of maximal density α, what is the greatest c such that there exists a power series $f(z)=\sum a_{k} z^{n_{k}}$ whose radius of convergence is 1 , and such that the unit circle has a regular arc of length $2 \pi c$. In particular, is Polya's theorem best possible? So far our estimates of c are very much worse. Pólya $\left.{ }^{(3}\right)$ defines maximal density as follows: Denote by $N(a, b)$ the number of the n 's in (a, b). Then

$$
\alpha=\lim \sup _{c \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{N(m, m(1+c))}{c m}
$$

Purdue University,
Lafayette, Ind.
${ }^{(2}$) G. Polya, Math. Zeit. vol. 29 (1929) pp. 549-640.
${ }^{(3)}$ Ibid.

