SOME REMARKS ON EULER'S ϕ FUNCTION AND SOME RELATED PROBLEMS

PAUL ERDÖS
The function $\phi(n)$ is defined to be the number of integers relatively prime to n, and $\phi(n)=n \cdot \Pi_{p \mid n}\left(1-p^{-1}\right)$.

In a previous paper ${ }^{1}$ I proved the following results:
(1) The number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is $o\left(n[\log n]^{-1}\right)$ for every $\epsilon>0$.
(2) There exist infinitely many integers $m \leqq n$ such that the equation $\phi(x)=m$ has more than $m \cdot$ solutions for some $c>0$.

In the present note we are going to prove that the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is greater than $c n(\log n)^{-1} \log \log n$.

By the same method we could prove that the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution is greater than $n(\log n)^{-1}(\log \log n)^{k}$ for every k. The proof of the sharper result follows the same lines, but is much more complicated. If we denote by $f(n)$ the number of integers $m \leqq n$ for which $\phi(x)=m$ has a solution we have the inequalities

$$
n(\log n)^{-1}(\log \log n)^{k}<f(n)<n(\log n)^{-1}
$$

By more complicated arguments the upper and lower limits could be improved, but to determine the exact order of $f(n)$ seems difficult.

Also Turán and I proved some time ago that the number of integers $m \leqq n$ for which $\phi(m) \leqq n$ is $c n+o(n)$. We shall give this proof, and also discuss some related questions:

Lemma 1. Let $a<\epsilon, b<n, a \neq b, \epsilon=(\log \log n)^{-100}$. Then the number of solutions $N_{n}(a, b)$ of

$$
\begin{equation*}
(p-1) a=(q-1) b, \quad p \leqq n a^{-1}, \quad q \leqq n b^{-1}, \tag{1}
\end{equation*}
$$

p, q primes, does not exceed

$$
\begin{equation*}
\frac{(a, b)}{a b} \frac{n}{(\log n)^{2}}(\log \log n)^{\text {a0 }} \tag{2}
\end{equation*}
$$

Proof. Put $(a, b)=d$. Then we have $p \equiv 1 \bmod b d^{-1}$. Also $(p-1) a b^{-1}$ $+1=q$ is a prime. We can assume that both p and q in (1) are greater

Received by the editors February 9, 1945.
${ }^{1}$ On the normal number of prime factors of $p-1$, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 205-213.
than $n^{1 / 2}$, for the exceptional values of p and q give only $2 n^{1 / 2}$ solutions of (1). Let $r<n^{2}$, where $\delta=(\log \log n)^{-10}$, be a prime. If p is a solution of (1) it must satisfy the following conditions

$$
\begin{array}{ll}
p \equiv 1 \bmod b d^{-1}, & p<n a^{-1}, \\
p \neq 0 \bmod r, & p \not \equiv\left(-b a^{-1}+1\right) \bmod r .
\end{array}
$$

If r is not a divisor of $a(a-b)$ the excluded two residues are different. Thus we obtain by Brun's argument ${ }^{2}$

$$
N_{n}(a, b)<2 n^{1 / 2}+c_{1} n d(a b)^{-1} \prod_{-1 a(a-b)}\left(1-2 r^{-1}\right)
$$

where r runs through the primes less than n^{d}.
Now it is well known that ${ }^{2}$

$$
\prod_{r \leq x}\left(1-2 r^{-1}\right)<c_{2}(\log x)^{-2}, \quad \prod_{r \mid x}\left(1-2 r^{-1}\right)>c_{2}(\log \log x)^{-2}
$$

Hence

$$
\begin{aligned}
N_{n}(a, b) & <2 n^{1 / 2}+c_{\Delta} n d(a b)^{-1}(\log \log n)^{21}(\log n)^{-2} \\
& <n d(a b)^{-1}(\log \log n)^{20}(\log n)^{-2},
\end{aligned}
$$

which completes the proof.
Lemma 2. $\sum(p-1)^{-1}<(\log \log n)^{20} d^{-1}$ if this sum is extended over all $p<n^{*}$ for which $p \equiv 1 \bmod d$.

Clearly (summing over the indicated p)

$$
\sum p^{-1} \leqq d^{-1} \sum^{\prime} x^{-1}
$$

where the dash indicates that the summation is extended over the \boldsymbol{x} for which $x<n d^{-1}$ and $x d+1$ is a prime. Let $y<n d^{-1}$; first we estimate the number of these $x \leqq y \leqq n$. Let $r<y^{\mathbf{i}}\left(\delta=(\log \log n)^{-10}\right)$ be a prime; if $(r, d)=1$ then $x \neq-d^{-1} \bmod r$. Brun's method ${ }^{4}$ gives that the number of these $x \leqq y$ is less than

$$
c y \Pi\left(1-r^{-1}\right)<c y(\log y)^{-1}(\log \log y)^{10} \log \log d
$$

where the product is extended over the r which satisfy $r<y^{\boldsymbol{b}},(r, d)=1$. Thus a simple argument gives

$$
\sum^{\prime} x^{-1}<c \sum_{x<n}(\log \log z)^{10}(\log \log d)(z \log z)^{-1}<(\log \log n)^{20}
$$

which proves the lemma.

[^0]Lemma 3. The number $A(n)$ of integers m of the form $m=p q$, where

$$
\begin{equation*}
p q \leqq n, \tag{3}
\end{equation*}
$$

p, q primes, $p>q, q<n^{\star}$, equals
$n(\log \log n)(\log n)^{-1}+o\left(\left[n(\log \log n)(\log n)^{-1}\right]\right)=\pi_{2}(n)+o\left(\pi_{2}(n)\right)$.
Remark. Thus the number of integers satisfying (3) is asymptotically equal to the number $\pi_{2}(n)$ of integers which are less than n and have 2 prime factors. ${ }^{\text {b }}$

The number of integers satisfying (3) is clearly not less than

$$
\begin{aligned}
\sum\left(\pi\left(n q^{-1}\right)-n^{2}\right)= & \sum n q^{-1}\left(\log \left(n q^{-1}\right)\right)^{-1}-n^{2 e} \\
& +\sum o\left(n q^{-1}\left[\log \left(n q^{-1}\right)\right]^{-1}\right) \\
= & n(\log \log n)(\log n)^{-1}+o\left(n(\log \log n)(\log n)^{-1}\right)
\end{aligned}
$$

(here $\pi(n)$ denotes the number of primes, and the sums are taken over $\left.q<n^{\bullet}\right)$, since $\sum q^{-1}=\log _{2} n+\log \epsilon+o(1)$ and $\log \left(n q^{-1}\right)$ is asymptotic to $\log n$ for $q<n^{*}$. (The sum $\sum q^{-1}$ is for $q<n^{\bullet}$.)
Theorem. The number $f(n)$ of different integers m of the form $m=\phi(p r)$ where p, r are primes and $p r \leqq n$ equals

$$
n(\log \log n)(\log n)^{-1}+o\left(n(\log \log n)(\log n)^{-1}\right)=\pi_{2}(n)+o\left(\pi_{2}(n)\right) .
$$

Denote by $B(n)$ the number of solutions of $(p-1)(r-1)$ $=(q-1)(s-1)$, where p, q, r, s are primes, with $p q, r s<n$ and $s, r<n^{*}$. Clearly

$$
f(n) \geqq A(n)-B(n) .
$$

We have by Lemma 1 (the following sum being for $r, s<n$)

$$
\begin{aligned}
B(n) & =\sum N_{n}(r-1, s-1) \\
& <n(\log \log n)^{30}(\log n)^{-1} \sum(r-1, s-1)(r-1)^{-1}(s-1)^{-1} .
\end{aligned}
$$

Put $(r-1, s-1)=d$. Then

$$
B_{n}<n(\log n)^{-2}(\log \log n)^{30} \sum \sum d(q-1)^{-1}(s-1)^{-1},
$$

where the first sum is for $d<n^{\prime}$ and the second for $\eta \equiv s \equiv 1 \bmod d$, with $r, s<n$. By Lemma 2 we have, summing over the same r and s,

$$
\sum(r-1)^{-1}(s-1)^{-1}<(\log \log n)^{40} d^{-2} .
$$

[^1]Hence

$$
B(n)=\operatorname{cen}(\log n)^{-1}(\log \log n)^{70}=o\left(n(\log n)^{-1}\right)
$$

Hence by Lemma 3

$$
f(n) \geqq n(\log \log n)(\log n)^{-1}-o\left(n(\log n)^{-1}\right)
$$

which completes the proof. (Clearly $f(n)<\pi_{2}(n)<(1+\epsilon) n(\log \log n)$ - $(\log n)^{-1}$.) Our result shows that the number of different integers not greater than n of the form $(p-1)(q-1)$ is asymptotic to the total number of integers not greater than n of the form $(p-1)(q-1)$. Nevertheless there exist integers m such that $(p-1)(q-1)=m$ has arbitrarily many solutions. ${ }^{6}$

By similar but more complicated methods we can prove:
The number of integers not greater than n of the form

$$
\left.\prod_{i=1}^{k}\left(p_{i}-1\right)=\phi\left(p_{1}, \cdots, p_{k}\right) \quad \text { (} p_{i} \text { primes }\right)
$$

is greater than

$$
c n(\log \log n)^{k-1}[(k-1)!\log n]^{-1}=c \pi_{k}(n)+o\left(\pi_{k}(n)\right)
$$

($\pi_{k}(n)$ denotes the number of integers not greater than n having exactly k prime factors). The constant c depends on k and tends to 0 as $k \rightarrow \infty$. For $k \geqq 3, c<1$. We omit the proof of these results.

Theorem. The number $M(n)$ of integers for which $\phi(m) \leqq n$ equals $c n+o(n)$.

Denote by $f(x)$ the density of integers for which $m / \phi(m) \geqq x$. It is well known that this density exists. ${ }^{7}$ We are going to prove that

$$
c=1+\int_{1}^{\infty} f(x) d x
$$

First we have to show that $\int_{1}^{\infty} f(x) d x$ exists. Since $f(x)$ is nondecreasing it will suffice to show that for large $r, f(r)<c r^{-2}$. We have

$$
\begin{aligned}
\sum_{m=1}^{n}(m / \phi(m))^{2} & =\sum_{m=1}^{n} \prod_{p \mid m}\left(1+p^{-1}+\cdots\right)^{2}<\sum_{m=1}^{n} \prod_{p \mid m}\left(1+5 p^{-1}\right) \\
& =\sum_{m=1}^{n} \sum_{d \mid m} \mu(d) d^{-1} 5^{v(d)}<n \sum_{d=1}^{\infty} 5 d^{-2}<c n .
\end{aligned}
$$

[^2]Hence

$$
\lim n^{-2} \sum_{m=1}^{n}(m / \phi(m))^{2}<c
$$

and this shows $f(r)<\mathrm{cr}^{-2}$.
Let k be a large number. Consider the integers m satisfying $n u k^{-1}$ $\leqq m<n(u+1) k^{-1}, u \geqq k$. We clearly have

$$
\begin{aligned}
& \lim \sup M(n) / n<1+k^{-1} \sum_{u=k}^{\infty} f\left(u k^{-1}\right), \\
& \lim \inf M(n) / n>1+k^{-1} \sum_{u=k}^{\infty} f\left((u+1) k^{-1}\right) .
\end{aligned}
$$

(If $u k^{-1} \leqq m \leqq(u+1) k^{-1}$ and $m / \phi(m) \geqq(u+1) k^{-1}, \phi(m)<n$ and if $m / \phi(m)<u k^{-1}, \phi(m)>n$.) If $k \rightarrow \infty$ both sums tend to $\int_{1}^{*} f(x) d x$, thus

$$
\lim M(n) / n=1+\int_{1}^{\infty} f(x) d x
$$

which completes the proof.
Let $\sigma(m)$ be the sum of the divisors of m. By the same methods as used before we can prove the following results:
(1) The number of integers m for which $\sigma(m) \leqq n$ is $c n+o(n)$.
(2) Denote by $g(m)$ the number of integers $m \leqq n$ for which $\sigma(x)=m$ is solvable. Then $n(\log n)^{-1}(\log \log n)^{k}<g(n)<n(\log n)^{-1}(\log n)^{*}$.

It seems likely that there exist integers m such that the equation $\phi(x)=m$ has more than m^{1-4} solutions, and also that there exist, for every k, consecutive integers $n, n+1, \cdots, n+k-1$ such that $\phi(n)=\phi(n+1) \cdots \phi(n+k-1)^{8}$ We can make analogous conjectures for $\sigma(n)$. It also would seem likely that there are infinitely many pairs of integers x and y with $\sigma(x)=\sigma(y)=x+y$, that is, there are infinitely many friendly numbers, but these conjectures seem intractable at present.

One final remark: Let $\psi(n) \geqq 0$ be a multiplicative function which has a distribution function. $f(x)$ denotes the density of integers with $\psi(n) \geqq x$. Denote by $M(n)$ the number of integers for which $n \psi(n) \leqq n$. Then $\lim M(n) / n$ always exists since it can be shown that $\int_{0}^{-} f(x) d x$ always exists. The proof is the same as in the case of $\phi(n)$.

University of Michigan

[^3]
[^0]: ${ }^{2}$ Landau, Vorlesungen Wher Zahlentheoric, vol. 1, p. 71.
 ${ }^{1}$ Hardy-Wright, Theory of numbers.
 ${ }^{4}$ Landau, ibid.

[^1]: ' Denote by $\pi_{a}(n)$ the number of integers having k different prime factors. Landau proves (Verteilung der Primsahlen, vol. 1, pp. 208-213) that $\pi_{k}(n)$ $\sim(n / \log n)(\log \log n)^{n-1} /(k-1)!$. The same asymptotic formula holds if $\pi_{k}(n)$ denotes the number of integers having k prime factors, multiple factors counted multiply, (Landau, ibid.)

[^2]: ${ }^{6}$ P. Erdoss, On the totient of the product of two primes, Quart. J. Math. Oxford Ser. vol. 7 (1936) pp. 227-229.
 ${ }^{\text {T }}$ Schönberg, Math. Zeit. vol. 28 (1928) pp. 171-199.

[^3]: ${ }^{1}$ It is known that there exists a number $n<10000$ such that $\phi(n)=\phi(n+1)$ $=\phi(n+2)$, but I do not remember n and cannot trace the reference.

 - The necessary and sufficient condition for the existence of the distribution function is given by Erdös-Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721.

