NOTE ON NORMAL NUMBERS

ARTHUR H. COPELAND AND PAUL ERDÖS

D. G. Champernowne ${ }^{1}$ proved that the infinite decimal

$$
0.123456789101112 \cdots
$$

was normal (in the sense of Borel) with respect to the base 10, a normal number being one whose digits exhibit a complete randomness. More precisely a number is normal provided each of the digits $0,1,2, \cdots, 9$ occurs with a limiting relative frequency of $1 / 10$ and each of the 10^{k} sequences of k digits occurs with the frequency 10^{-k}. Champernowne conjectured that if the sequence of all integers were replaced by the sequence of primes then the corresponding decimal

$$
0.12357111317 \ldots
$$

would be normal with respect to the base 10 . We propose to show not only the truth of his conjecture but to obtain a somewhat more general result, namely:

Theorem. If a_{1+}, a_{2}, \cdots is an increasing sequence of integers such that for every $\theta<1$ the number of $a^{\prime} s$ up to N exceeds N^{\ominus} provided N is sufficiently large, then the infinite decimal

$$
0 . a_{1} a_{2} a_{3} \cdots
$$

is normal with respect to the base β in which these integers are expressed.
On the basis of this theorem the conjecture of Champernowne follows from the fact that the number of primes up to N exceeds $c N / \log N$ for any $c<1$ provided N is sufficiently large. The corresponding result holds for the sequence of integers which can be represented as the sum of two squares since every prime of the form $4 k+1$ is also of the form $x^{2}+y^{2}$ and the number of these primes up to N exceeds $c^{\prime} N / \log N$ for sufficiently large N when $c^{\prime}<1 / 2$.

The above theorem is based on the following concept of Besicovitch. ${ }^{2}$

Definition. A number A (in the base β) is said to be (ϵ, k) normal if any combination of k digits appears consecutively among the digits of A with a relative frequency between $\beta^{-h}-\epsilon$ and $\beta^{-\pi}+\epsilon$.

[^0]We prove the following lemma.
Lemma. The number of integers up to N (N sufficiently large) which are not (ϵ, k) normal with respect to a given base β is less than N^{β} where $\delta=\delta(\epsilon, k, \beta)<1$.

First we prove the lemma for $(\epsilon, 1)$ normality. Let x be such that $\beta^{2-1} \leqq N<\beta^{\text {x }}$. Then there are at most

$$
\beta \sum_{1} \beta_{k}+\beta \sum_{2} \beta_{k}
$$

numbers up to N among whose digits there are less than $x(1-\epsilon) / \beta$ 0 's, 1 's, and so on, or more than $x(1+\epsilon) / \beta 0$'s, 1 's, and so on, where $\beta_{h}=(\beta-1)^{x-k} C_{x, h}$ and where the summations \sum_{1} and \sum_{2} are extended over those values of k for which $k<(1-\epsilon) x / \beta$ and $k>(1+\epsilon) x / \beta$, respectively. The remaining numbers must have between $x(1-\epsilon)$ and $x(1+\epsilon)$ digits and hence for these remaining numbers the relative frequencies of 0 's, 1 's, 2 's, and so on, must lie between $(1-\epsilon) / \beta(1+\epsilon)$ and $(1+\epsilon) / \beta(1-\epsilon)$. We have to show that $\beta\left(\sum_{1} \beta_{k}+\sum_{2} \beta_{k}\right)<N^{\delta}$. The following inequalities result from the fact that the terms of the binomial expansion increase up to a maximum and then decrease.

$$
\begin{equation*}
\sum_{1} \beta_{k}<(x+1) \beta_{r_{v}} \quad \sum_{2} \beta_{k}<(x+1) \beta_{r_{r}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{1}=[(1-\epsilon) x / \beta], \quad r_{2}=[(1+\epsilon) x / \beta] \tag{2}
\end{equation*}
$$

and where $[(1-\epsilon) x / \beta]$ is the largest integer less than or equal to $(1-\epsilon) x / \beta$. Similarly for r_{2}. By repeated application of the relation

$$
\begin{equation*}
\beta_{k+1} / \beta_{k}=(x-k) /(k+1)(\beta-1) \tag{3}
\end{equation*}
$$

we obtain

$$
\beta_{r_{1}} p_{1}^{* \pi / 2}<\beta_{r^{\prime} 1}<\beta^{z}
$$

where

$$
\left.r_{1}^{\prime}=[(1-\epsilon / 2) / \beta], \quad \rho_{1}=\left(x-r_{1}\right) /\left(r_{1}+1\right) \beta-1\right)
$$

and where $\rho_{1}>1$ for x sufficiently large. It follows that

$$
\beta_{r_{1}}<\left(\rho_{1}^{-t / 2} \beta\right)=
$$

and similarly

$$
\beta_{\mathrm{rr}_{3}}<\left(p_{2}^{-\varepsilon / 2} \beta\right)=
$$

Hence

$$
\begin{aligned}
\beta\left(\sum_{1} \beta_{k}+\sum 2 \beta_{k}\right) & <\beta(x+1)\left\{\left(\rho_{1}^{-k / 2} \beta\right)^{z}+\left(\rho_{2}^{-\alpha / 2} \beta\right)^{z}\right\} \\
& <\beta^{b(-1)} \leqq N^{b}
\end{aligned}
$$

and the lemma is established for ($\epsilon, 1$) normality.
The extension to the case of (ϵ, k) normality is accomplished by a method similar to that used by Borel ${ }^{1}$ and we shall only outline the proof. Consider the digits b_{0}, b_{1}, \cdots of a number $m \leqq N$ grouped as follows:

$$
b_{0}, b_{1}, \cdots, b_{k-1} ; b_{k}, \cdots, b_{2 k-1} ; b_{2 k}, \cdots, b_{s k-1} ; \cdots .
$$

Each of these groups represents a single digit of m when m is expressed in the base β^{k}. Hence there are at most N^{s} integers $m \leqq N$ for which the frequency among these groups of a given combination of k digits falls outside the interval from $\beta^{-k}-\epsilon$ to $\beta^{-k}+\epsilon$.

The same holds for

$$
b_{1}, b_{2}, \cdots, b_{k} ; b_{k+1}, \cdots, b_{2 k} ; \cdots,
$$

and so on. This gives our result.
To prove the theorem consider the numbers a_{1}, a_{2}, \cdots of the increasing sequence up to the largest a less than or equal to N where $N=\beta^{n}$. At least $N^{0}-N^{(1-\omega)}$ of these numbers have at least $n(1-\epsilon)$ digits since by hypothesis there are at least N^{0} of the numbers in this sequence and since at most $\beta^{n(1-\theta)}=N^{1-\epsilon}$ of them have fewer than $n(1-\epsilon)$ digits. Hence these numbers altogether have at least $n(1-\epsilon)\left(N^{\theta}-N^{1-\theta}\right)$ digits. Let f_{N} be the relative frequency of the digit 0 . It follows from the lemma that the number of a 's for which the frequency of the digit 0 exceeds $\beta^{-1}+\epsilon$ is at most $N^{\text {t }}$ and hence

$$
\begin{aligned}
f_{N} & <\beta^{-1}+\epsilon+\frac{n N^{\delta}}{n(1-\epsilon)\left(N^{\theta}-N^{1-\theta}\right)} \\
& =\beta^{-1}+\epsilon+\frac{N^{\delta-\theta}}{(1-\epsilon)\left(1-N^{1-\epsilon \theta}\right)} .
\end{aligned}
$$

Since we are permitted to take θ greater than δ and greater than $1-\epsilon$ it follows that $\lim _{N \rightarrow \infty} f_{N}$ is at most $\beta^{-1}+\epsilon$ and hence at most β^{-1}. Of course we have allowed N to become infinite only through values of the form β^{n} but this restriction can readily be removed. A similar result holds for the digits $1,2, \cdots, \beta-1$ and hence each of these digits

[^1]must have a limiting relative frequency of exactly β^{-1}. In a similar manner it can be shown that the limiting relative frequency of any combination of k digits is β^{-4}. Hence the theorem is proved.

We make the following conjectures. First let $f(x)$ be any polynomial. It is very likely that $0 . f(1) f(2) \cdots$ is normal. Besicovitch ${ }^{4}$ proved this for $f(x)=x^{2}$. In fact he proved that the squares of almost all integers are (ϵ, k) normal. This no doubt holds for polynomials.

Second let $\beta_{1}, \beta_{2}, \cdots, \beta_{r}$ be integers such that no β is a power of any other. Then for any $\eta>0$ and large enough r the number of integers $m \leqq n$ which are not (ϵ, k) normal for any of the bases β_{i}, $i \leqq r$, is less than $n^{\prime \prime}$. We cannot prove this conjecture.

University of Michigan

[^2]
[^0]: Presented to the Society, September 17, 1945; received by the editors June 30, 1945, and, in revised form, January 3, 1946.
 ${ }^{1}$ J. London Math. Soc. vol. 8 (1933) pp. 254-260.
 ${ }^{2}$ Math. Zeit. vol. 39 (1935) pp. 146-147.

[^1]: ${ }^{2}$ Ibid. p. 147.

[^2]: ${ }^{4}$ Ibid. p. 154.

