SEQUENCES OF PLUS AND MINUS

By PAUL ERDÖS AND IRVING KAPLANSKY

SUPPOSE n one's and an equal number of minus one's are arranged in a series. In all there are ${ }_{2 n} C_{n}$ possible arrangements. For example, when $n=2$ the following $6\left(={ }_{4} C_{2}\right)$ arrangements are possible:

$$
\begin{array}{ll}
1+1-1-1 & -1+1+1-1 \\
1-1+1-1 & -1+1-1+1 \\
1-1-1+1 & -1-1+1+1
\end{array}
$$

The sum of any of these series is, of course, 0 . A partial sum, formed by breaking off a series at a point, can be either positive or negative; in any case it lies between n and $-n$. In connection with an investigation being made by one of the authors, the following question arose: in how many of the arrangements are all the partial sums non-negative?

Of the 6 arrangements above, two (the first two) are acceptable. Similarly, of the 20 arrangements for $n=3$, the following 5 are acceptable:

$$
\begin{aligned}
& 1+1+1-1-1-1 \\
& 1+1-1+1-1-1 \\
& 1+1-1-1+1-1 \\
& 1-1+1+1-1-1 \\
& 1-1+1-1+1-1
\end{aligned}
$$

and of the 70 arrangements for $n=4$, one can verify that there are 14 good ones. It is now easy to guess the right formula: in general ${ }_{2 n} C_{n} /(n+1)$ of the ${ }_{2 n} C_{n}$ arrangements fulfill the condition.

It is a curious fact that, in order to prove this conjecture, it seems to be wise to generalize as follows: let there be m one's and n minus one's and let it be required that all partial sums are at least $m-n$. Let us denote by $f(m, n)$ the number of arrangements that fulfill this condition. If $m>n+1$, it is evident that already the first partial sum cannot fulfill the condition, for it cannot be greater than 1 . Thus

$$
\begin{equation*}
f(m, n)=0 \quad(m>n+1) \tag{1}
\end{equation*}
$$

If $m=n$ or $n+1$, we shall have to begin the series with 1 . Then
we are left with $m-1$ one's and n minus one's, and the partial sums are now to be greater than $m-n-1$. Hence

$$
\begin{equation*}
f(m, n)=f(m-1, n) \quad(m=n \text { or } n+1) . \tag{2}
\end{equation*}
$$

Finally if $m<n$, we are entitled to begin with either 1 or -1 and we find similarly

$$
\begin{equation*}
f(m, n)=f(m-1, n)+f(m, n-1) \quad(m<n) \tag{3}
\end{equation*}
$$

One can now easily verify by induction that the solution of equations (1), (2), (3), with the boundary conditions $f(1,0)=f(0, n)=1$, is given by (1), (4), and (5):

$$
\begin{gather*}
f(m, n)=\frac{n-m+1}{n+1}{ }_{m+n} C_{m} \quad(m<n) \tag{4}\\
f(n+1, n)={ }_{2 n} C_{n} /(n+1) . \tag{5}
\end{gather*}
$$

By taking $m=n$ in (4), we obtain in particular the result earlier conjectured.

The problem can be given in a chess-board setting. Take a onedimensional board stretching to infinity to the right and bounded to the left, and place a king at the left-hand end. Then $f(n, n)$ is the number of ways for the king to make $2 n$ moves which return it to its starting point. The corresponding problem for a two-dimensional board seems to be quite difficult if we permit the king its diagonal moves; however, if we restrict the king to horizontal and vertical moves the answer is just $[f(n, n)]^{2}$.

A problem that further suggests itself is to place the king in the middle of the board and ask for the number of ways for it to take a trip to another designated square. In the one-dimensional case this is conveniently formulated as follows: in how many ways can m one's and n minus one's be arranged so that all partial sums are at least $m-n-a$? If we iet the desired number be $g(m, n, a)$ then $g(m, n$, $0)=f(m, n)$, and for $a<0$ we have $g(m, n, a)=0$ since the final sum cannot be greater than $m-n$. We can get a recurrence formula by splitting the acceptable arrangements into two subsets: those which finish with 1 and those which finish with -1 . In the former case we are left with $m-1$ one's and n minus one's to be arranged with partial sums of at least $m-n-a$, and there are $g(m-1, n, a-1)$ such arrangements. Similarly there are $g(m, n-1, a+1)$ in the latter group so that we have

$$
g(m, n, a)=g(m-1, n, a-1)+g(m, n-1, a+1) .
$$

Setting $a=0,1,2$ in succession we find

$$
\begin{aligned}
& g(m, n, 1)=f(m, n+1) \\
& g(m, n, 2)=f(m, n+2)-f(m-1, n+1) \\
& g(m, n, 3)=f(m, n+3)-2 f(m-1, n+2)
\end{aligned}
$$

and the general formula is

$$
g(m, n, a)=\sum_{i=0}^{[a / 2]}(-1)_{a-t}^{i} C_{i} f(m-i, n+a-i)
$$

Stanford University
University of Chicago

CURIOSA

118. Factorials and Sub-factorials. The number of permutations P_{n} of n distinct objects n at a time is $P_{n}=n l=1 \cdot 2 \cdot 3 \ldots n$. Obviously, $P_{n+1}=(n+1) P_{n}$. The number of permutations of n objects so that none of them occupies its original position is $P_{n^{\prime}}=$ $n!\left[1-1 / 1!+1 / 2!-1 / 3!+1 / 4!-\ldots+(-1)^{n} 1 / n l\right]$, sometimes called sub-factorial of n. The first eight successive values of \dot{P}_{n}^{\prime} are: $P_{0^{\prime}}^{\prime}=1, P_{1}^{\prime}=0, P_{2}^{\prime}=1, P_{3}^{\prime}=2, P_{4}^{\prime}=9$, $P_{b^{\prime}}=44, \mathrm{P}_{\mathrm{a}}{ }^{\prime}=265, P_{7^{\prime}}=1854, P_{\mathbf{a}^{\prime}}=14,833$. The recurrences $p_{n+1}^{\prime}=n\left(P_{n}{ }^{\prime}+P_{n-1^{\prime}}\right)$, and $P_{n+1}{ }^{\prime}=(n+1) P_{n}^{\prime}+(-1)^{n+1}$ are known in the literature.

The following relationship seems to be new:

$$
P_{n}=\left(1+P^{\prime}\right)^{n}=1+C_{1} P^{\prime}+C_{2} P^{\prime 2}+C_{3} P^{\prime 3}+\ldots+C_{n} P^{\prime n}
$$

where $C_{1}, C_{2} \ldots$ are the corresponding binomial coefficients and $P^{\prime k}$ stands for P_{k}^{\prime}.
For example, $4!=1+4 \cdot 0+6 \cdot 1+4 \cdot 2+9 ; 5!=1+5 \cdot 0+10 \cdot 1+10 \cdot 2+$ $5 \cdot 9+44=120$, etc.
S. Gutrman
119. The Dual of the above Formula. The formula

$$
P_{n}=\left(P^{\prime}+1\right)^{n}
$$

remains valid when P and P^{\prime} are interchanged and the plus is changed to a minus, yielding

$$
P_{n^{\prime}}=(P-1)^{n} .
$$

For example, $P_{4}^{\prime}=9=4!-4.3!+6.2!-4.1!+1$, $P_{5}^{\prime}=44=5!-5.4!+10.3!-10.2!+5.1!-1$.
J. Ginsburg

