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In this paper we are going to investigate the connections between the gaps
of power series with the distribution of the roots of their partial sums. Let

(1)

	

f(x) = 1 + aix + . . . + anxn + . . .

be a power series with the radius of convergence 1 . We say that it has Ostrow-
ski gaps p if there exists a p<1 and a pair of infinite sequences mk and nk,
with mk <nk and lira nk/mk> 1, such that I a„ I < pn for mk _<_ n < nk .

It has infinite Ostrowski gaps p (p < 1) if to every p'> p there corresponds
a pair of infinite sequences Ink and nk (depending on p') with mk <nk and
lim nk/mk= oo such that I an I < p' n for Mk < n < nk .

We denote by A (n, r) the number of roots of f(x) = 1 + a1x +

	

+ anxn
within the circle of radius r.

It is well known that every overconvergent power series has Ostrowski
gaps, and that every power series with Ostrowski gaps is overconvergent in a
domain of which every regular point of the circle of convergence is an interior
point .

We are going to prove the following theorems :

THEOREM I. A necessary and sufficient condition that a power series have
Ostrowski gaps is that there exist an r > 1, such that

A(n, r)
(2)

	

lim inf	 < 1.
n=-

	

n

THEOREM II . A necessary and sufficient condition that a power series have
infinite Ostrowski gaps p is that

A (n, r)

	

1
(3)

	

lim inf	 = 0

	

for all r < -
n=ao

	

n

	

P

Theorem I is not new . It has been proved by Bourion( 2), but his proof is
quite different from ours . The proof of Theorem I will be based on the follow-
ing lemma, which seems interesting in itself .

Presented to the Society, September 12, 1943 ; received by the editors September 25, 1946 .
(') Deceased December 23, 1945 .
(2) L'ultra convergence dans les séries de, Taylor, Actualites Scientifique et Industriel, no . 472,

Paris, 1937 .



LEMMA I. If 0 < p < 1 and 1 /p > r > 1, then there exists a constant c > 0 (de-
pending only on r and p) such that every equation fn(x) =1+a1x+ +anx n
= 0, in which

(4)

	

I a7'j
< p k

	

(m <_ k <_ n),

has at least c(n-m+1) roots outside the circle of radius r .

Proof. Without loss of generality we can assume m > n/2 . Since the prod-
uct of the moduli of the roots of our equation is I 1/a n I >_ p n, at least one of
the roots exceeds r . Therefore N/(n-m+1) >0, where N denotes the number
of roots outside the circle of radius r . If the lemma were false there would
exist a sequence of polynomials

(5)	fv(x) = 1 + a1x + . . . + amx m +

	

+ anxn

	

(m = m,, n = n,)

(here and in the future we shall omit the index v where there is no danger of
confusion) in which I ak I < pk, for m <_ k < n, and such that

(6)

	

c=N/(n-m+1) ---> 0

(c=cv , N=Nv , and so on, v-* ) .
We are going to show that these assumptions lead to a contradiction . We

choose
1 -}- r

	

1\
(7)

	

k > max
(
	, - / .
1-pr

	

pp

We write the polynomials (5) in the following form

(8)	fv(x) = a. II (x - yi) II (x - zi) fl (x - ui) = anY(x)Z(x)U(x)
i

	

i

	

i

where yi denotes the roots for which I yiI <_r, zi the roots for which

r < zi < 2D

	

D = knl(n- .+l),

and ui the roots for which 2D <ui . Further we denote by l, s, t the number
of roots yi, zi, ui respectively . From (6) we have

s+t
lim	= 0 ; hence
n-m+1

s

	

t

	

l
lim	 = lim

	

='0' lim - = 1 ;
n'- m+1

	

n-m+1

	

n
(9)

	

ls-m+i

	

t
lim +

	

= lim 1 -

	

1 ;
n-m+1

	

\ n-m+1
ls-n

	

t
lim	

-{-

	

= lim -

	

0.
n-m+1

	

n - m + 1



From the definition of the z's it follows that

r8 < I Z(0) < 2sDs

or

r s/n < I Z(0) I1/n <2slnDsln .

Hence from (9)

(10)

	

lim I Z(0) I
1/n = 1

	

(v -~ 00 ) .

From

1 = I a n • Y(0) • Z(0) U(0) ~

and (10) it follows that

(11)

	

lim
I any(O)U(O) 1/n

= 1 .

If x is any point within the circle of radius D we obtain from the definition
of the ui's that

1/2 < I (u, - x)/u, I < 3/2

or

(1/2) t < I U(x) - (U(0)) -1I < (3/2) 1 .

Hence from (9)

(12)

	

urn ( I U(x) - (U(0)) -l I
)1/n = 1

	

(U( X) = Uv(x), n = nv) .

Let now i be the point on the circle of radius D where the product I Y(x)Z(x) I
assumes its maximum . It follows from Cauchy's formula that this maximum
is greater than Dl+s We obtain from

I fv(~) I= I an-Y(~) .ZQ)-U(s) I >- I a.U(~) I D 1+8

and from (11) and (12) that

(13)

	

I fv(E) I > Dl+s(1 - E) n I Y(0) I -1 ,

for all sufficiently large v, where e is an arbitrarily small positive number .
Now we shall show that this is impossible, namely that the maximum of

I f ,(x) I on the circle of radius D is not as large as that .
Put

max a1, I = Bv .
x<„

The index of the largest coefficient is clearly less than m (since p < 1) . Now we
estimate B v . Let co be the point on the unit circle where I f ,(x) I assumes its
maximum . It follows from Cauchy's formula that



From (11) and (12) it follows that

(15)

	

lim I a Y(0) • U(w) I1/n = 1 .

(Observe that k > 1 so that w is in the interior of the circle of radius D.)
From the definition of the z ; we have

r-15Iz-wI 52D+1 < 3D,

or

(r - 1)8 5 I Z(w) I < (3D)8 .

Hence from (9)

(16)

	

lim (Z(w)) 1 / n = 1 .

From If8(w) I = Ian- Y(w) Z(w) • U(w) I we obtain by (16) and (15) that

(17) I fv(w) I <_ (1 + r)1(1 + E) n/Y(0) (l = lv , and so on)

for all sufficiently large v, where E is an arbitrarily small positive number .
From (14) and (17) it follows that

B 8 _<_ (1 + r)`(1 + e)n/Y(0) .

If we denote by M 8 the maximum of I f 8(x) I on the circle of radius D, we have

(1 + r)z(1 } E)n Dm_1 +

	

(p . D) iM~ _ m~

	

Y(O)

or, because of pD > 1,

(18)

	

My < m
(1 + r)z(1 + E)n Dm-1 + (n - m + 1)(p •D ) n.

I Y(O) I
From (13) and (18) it follows that

D1+8

	

(1 + r)l(1 + E)n
IY(0)I (1 - E)n < m	IY(0)I	Dm-1 + (n - m + 1)pnDn

for sufficiently large v and arbitrarily small positive c- . Hence we obtain from

I yi I <_ r, (9), the definition of D, m > n/2, and (7)

1 - m(1 + r)t(1 + E) n + (n - m + 1)pn .ya lin

[ Di+8-m+l(1 - )n

	

Da+8-n(1 - E) n J
(19)

	

rn1/n(1 + r)'/-(l + E)

	

(n - m + 1)l/nprl/n

	

1 + r
<

	

+

	

<

	

-- +pr+i7 < 1
Dcz+B'•m+1>in(1 - E)

	

D(I+8-n)/n(1 - E)

	

k



for every 71 if e is sufficiently small and v sufficiently large . This contradiction
establishes the lemma .

Proof of Theorem I. First we show that (2) is necessary. If the power
series has Ostrowski gaps there exists a p<1 and a pair of infinite sequences
mk and nk with mk<nk and lira nk/mk=B (0>1) such that lan d <p"° for
mk<_n<nk . By Lemma I, corresponding to any 1 <r<1/p there exists a posi-
tive constant c such that

nk - A(nk, r) > c(nk - Mk + 1) .

Hence for sufficiently large k

nk - A(nk, r) > cnk(1 - 1/0)

or
nk - A(nk, r)

	

C

	

1
> c 1-

nk

	

-6)

and therefore

A(n, r)
lim inf	 < 1,

n

which shows the necessity of condition (2) .
Assume now that (2) is satisfied . Then there exists a sequence nk such that

A(nk, r)
(20)

	

lim	< 1 .
k=.

	

nk

We denote by fnk(x) the polynomial consisting of the first nk+1 terms of f(x),
and by xQ nk, its roots. (To simplify notations we shall omit the index k where
there is no danger of confusion.) We choose E so that O<E<r-1 . It is well
known that for any -y>0, only a bounded number of roots of fnk(x),

k=1, 2, • . • , are within the circle of radius 1-y . It follows easily from
(20) that positive numbers c and c' exist, both less than 1 and such that

ll'xin) > (r - e) cn

	

(n = nk)

for sufficiently large k, where IJ'x,(n)I is the product of at least c'nk roots of
fnk(x) . Thus we obtain

an, < (r - E) -cnk.

Hence if we choose S such that (r- e) - c <p < 1, we can conclude that

l an,l < pnk . Now we choose S such that

0 < 6 < p(r - E) ° - 1 .



By Stirling's formula it is easy to see that C,,,ln < (1 + b)n for sufficiently
small 1. Now for

1<_p<_ln and p<(1-c')n

	

(p=pk,n=nk)

we obtain
n

	

f

	

n

	

(n)
I an, I :5 Cn , P

	

xi
ti=1

	

i=1

where ~ln) ,

	

, ~pn) are the roots with the greatest absolute values . There-
fore we have

1-~S n
I a,I <	 <pn<pn- P

(r - E)

which completes the proof of Theorem I .
For the proof of Theorem II we need the following lemma :

LEMMA 11 . Let f (z) =1 +alz+ • . . +anzn+ • • be a power series with
Ostrowski gaps p and radius of convergence 1, and let E>0 ; then for each

1 X

	

e

	

In k
(21)

	

r <
( -/

where X =

	

with µ = lim inf -
P

	

Q+ E

	

nk

we have

A(nk, r)

	

In k
(22)

	

lim inf	 <-- lim inf - + E .
k= .

	

nk

	

k=ac

	

nk

If this lemma were false there would exist an

(23)

	

rl < (1/p),,

such that

A(nk, r2)

	

Ink
(24)

	

lim	 > lim - + E .
k=m

	

nk

	

k=- nk

(We consider if necessary a subsequence of Ink and nk.) We choose r2 so
that

(25)

	

i < r2 < 1/p and rl < r2 .

Thus r l< r2 . Denote by Mnk (r) the maximum offnk (x) on the circle of radius r .
From Jensen's formula we have

µ2

(26)

	

Mn(r2) >=

	

r2

	

/12 = A(n, r2),

	

n = nk,I al . a2 . . . aµ2 I



where a1,

	

, aM2 are the roots of fn (x) within the circle of radius r 2. Hence

r2

	

Y2 \\µ'

(27 )

	

Mae(r2) > rµl rµ2-µl =
(

	

/ ,

	

tai= A(n, r) .
1 2

Since I a t i < p` for m <t <n we obtain

(28)

	

Mn(r2) < (1 + h) m •m •Y 2 + (n - m + 1)(pr2) m

where q is arbitrarily small . From (27) and (24) we obtain

~n > CY2 \µl~n >

( 2

°+E

(Mn(r2)) 11
rl

	

l

and from (28)

(Mn(r2))1/n G r2

for sufficiently large k . Hence
Er2 Q+E

	

v

	

Y2
(Y

/T2= r +1
QE <_

1

	

1

or
E/ (O+E)

r2

	

<_ rl

which contradicts (25) . Thus Lemma II is proved .
PROOF OF THEOREM II . Condition (3) is necessary . This follows immedi-

ately from Lemma II ; here we have lim mk/nk=0.
Condition (3) is sufficient . If a power series has no infinite Ostrowski gaps p,

there exists a p' (p <p' < 1) so that we have for every sequence nk a corre-
sponding sequence Mk such that I am,j >(p')mk and mk>cnk for some c>0. If
we choose r so that 1/p' <r < 1/p we have

(29 )

	

Mnk(r) > (p'r)mk > (p'r)` nk

for some c > 0 where p'r > 1 .
On the other hand if we choose r' so that r <r' < 1/p and if (3) holds, there

exists a sequence nk so that fnk(x) has only o(n) roots within the circle of
radius r'. We write

fn(x) = gn(x)hn(x)

	

(n = nk)
where

g.(X) _

	

I 1 -
X),

	

hn(x) _

	

C1 -
x /Yi

	

zi

and yi are the roots inside, z i the roots outside the circle of radius r'. Therefore



the degree of hn(x) is o(n) . There clearly exists an 1<1 such that

fn(x) ~,4- 0

	

for I x I <= l

(since f (0) =1) . Thus

(30)

	

lim (fn(x)) l/n = 1

	

for I x I <_ l

where that determination of fn (x) is taken which is 1 when x=0 . Also

(31)

	

lira (hn(x))'In = 1

	

for I xI < 1 .

Therefore from (30) and (31)

(32)

	

lira (g n(x))lln = 1

	

for I x I < 1 .

We have

(33)

	

gn(x) <_ II 1 1 + -I
x

	

<_ 11} I	x	I
/ n <_

2 n

	

for I x
y~

	

r

	

-

	

-

Thus by Vitali's theorem (by (32) and (33))

(34)

	

Jim (gn(x))1/n = 1

	

for I x I <= r < r' .

From

o(n)
max hn(x) <= C1 + -~
I xl <,

	

Z

we obtain from (34)

I fn(x) I = I g n (x) I I hn(x) I< (1 + 8) 2n

	

for I x I <_ r

for arbitrarily small 5>0 and sufficiently large k . Therefore we have

Jim sup ( I Mnk(r) I )l/nk < 1,

which contradicts (29) . This completes the proof of Theorem II .
Let Ejoakxk (ao=1) be a power series of radius of convergence 1 which

has Ostrowski gaps . Let fnk(x)=1+

	

+ankxnk and lim I ankl l/nk=1/l .
Bourion( 2 ) remarks that every boundary point of the region of overconver-
gence of fnk(x) has a distance from the origin which is less than a constant
depending on 1. In fact by using the concept of transfinite diameter(3) it is
easy to see that this constant is less than 41 . We are going to show that this
constant is greater than 1 .

Let Tn(x) be the nth Tschebicheff polynomial belonging to the interval
(0, 4) . It is well known that the maximum of Tn (x) in (0, 4) equals 2. We de-

(3) For the definition and properties of the transfinite diameter see M . Fekete, Math . Zeit.
vol . 17 (1923) pp . 228-249 . The result we need is that the transfinite diameter of an interval
of length l is 1/4 .



note by A n the largest coefficient (in absolute value) of T. (x) . It is easy to see
that lim IAnj I/n<4 . Let ni tend to infinity sufficiently fast and consider the
power series

Tni x
f(x)

	

x'ni

	

y

	

mi = mi_1 + ni-I + 1 .
i=I

	

An i
Put

fnk+mk(x) = k~, xm*
Tni(x)

i=1

	

A,i

It is easy to see that if the ni tend to infinity sufficiently fast the circle of con-
vergence of f (x) is 1, lim (1/A fk) I I(nk+mk) > 1/4 and every interior point of
(-1, 4) is in the region of overconvergence of fnk+mk(x) . This completes the
proof .

Let us denote by 4)(l) the maximum distance of a boundary point of the
region of overconvergence from the origin . We have

l < 4(l) < 41 .

The question of the exact value of 0(l) remains open .
Added in proof. P. Turán recently pointed out that Lemma I is a conse-

quence of the following theorem of Van Vleck (see, for example, Dieudonné,
La théorie analytique des polynomes d'une variable a coefficients quelconques
(Memorial des Sciences Mathématiques, vol . 93), Paris, Gauthier-Villars,
1939) . Let h(z) =bo+ • . . +bnzn and a be the unique positive root of

Cn-I.p-I I bo I + G-2,,-21 bI I X + . . . + Cn_P,o I b,_1 I xP_I - I bn xn = 0 .

Then h(z) has at least p roots in I z I <a.
More precisely, Turán obtains the following result : Let p > p' > 1,

0<0< 1/10, and
20

	

9

	

p
0 log

	

<

	

log0

	

20

	

p'
and n sufficiently large . Then if f (z) = 1 + . . . +anzn, I a, j <p- l' for m < v < n,
f (z) has for I z I > p' at least 0(n -m) roots .

Turin obtains this result by a simple computation, by applying Van
Vleck's theorem with p= [0(n-m)I +1 to znf(1/z) .
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