ON THE CONNECTION BETWEEN GAPS IN POWER
SERIES AND THE ROOTS OF THEIR
PARTIAL SUMS

BY
P. ERDOS AND H. FRIED{)

In this paper we are going to investigate the connections between the gaps
of power series with the distribution of the roots of their partial sums. Let

[1} f{#}-1+ﬂtz+---+unx"+-..

be a power series with the radius of convergence 1. We say that it has Ostrow-
ski gaps p if there exists a p<1 and a pair of infinite sequences m; and ny,
with ms <, and lim s, /mi> 1, such that | 'mnl < p* forme = 2 = H;.

It has infinite Ostrowski gaps p (p<1) if to every p’ >p there corresponds
a pair of infinite sequences m; and n, (depending on p') with m:<n, and
lim #x/ms= = such that | anl < p'n form = 5 = m.

We denote by 4 (n, #) the number of rootsof f{x) = 1 4 a4+« « 4 g,z
within the circle of radius r.

It is well known that every overconvergent power series has Ostrowski
gaps, and that every power series with Ostrowskd gaps is overconvergent in a
domain of which every regular point of the circle of convergence is an interior
point,

We are going to prove the following theorems:

TueoreM 1. A necessary end sufficient condition thal o power series have
Ostrowski paps is that there exist an r>1, such that

@) lim ing A48 7)
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e

TuaeorexM 11, 4 necessary and sufficieni condition thal o power series have
infinile Ostrowski paps p is that

) A, 1
(3) et A g forall r < — -
LET H P
Theorem 1 is not new. It has been proved by Bourion(*), but his proof is
quite different from ours, The proof of Theorem I will be based on the follow-
ing lemma, which seems interesting in itself.

Pl:eaenﬂed to the Seciety, September 12, 1943; received by the editors September 25, 1946,

{t) Deceased December 23, 1945.

*) Lrulltra comvergence dons les séries de Taylor, Actualités Scientifique et Industriel, no, 472,
Paris, 1937,

53




54 F. ERD{OS AND H. FRIED [Tuly

Levma L If 0<p <1 and 1/p>r>1, then there exists a constant ¢>0 (de-
tending only on v and p) such that every equation fulz) =14ax+ - « - Fa.a
={, itn which
(4) |az| < o* (m=k=mn),
fias ai least c{n—m=1) roots ouistde the circle of radous r.

Proof. Without lose of generality we can assume > /2. Since the prod-
uct of the moduli of the roots of our equation is | 1 ,J’a.,,[ =p~ ", at least one of
the roots exceeds r. Therefore NV /(n—m 1) >0, where N denotes the number
of roots outside the circle of radius r. 1f the lemma were false there would
exist a sequence of polynomials

(5) St =1+met o aux™+ o0 daam (=m0 =)

{here and in the future we shall omit the index » where there is no danger of
confusion) in which | a| <p*, for m =k =n, and such that

(6) c=N/{n—m+1)—0

(c=¢y, N=WN,, and so on, p—= .
We are going to show that these assumptions lead to a contradiction. We
choase

1+r 1
{7 .‘a}mm( ' —)
L—pgr p

We write the polynomials (5) in the following form

®)  fa) =]l (= = 9 I (2 — 20 I (5 — %) = aX()Z(x)U(2)

where ¥; denotes the roots [or which [j-'i| =r, z; the roots for which
r<ss30, D= i, i

and 1, the roots for which 2D <, Further we denote by [, 5, ¢ the number
of roots vy 2, u; respectively. From (6) we have

41
— = 10; hence
o=+ 1
f I
fi T W g et sl e
(9) #-——m=1 n—41 s
Pts= 1 t
]Jm-—-—-——-s o wljm( —_ )=:
#—#+1 o= 41
I - :
n—m—+1 nw—m-1
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From the d&ﬁnitiqn.nf the #'s it follows that
r<|z)| = 2

or

' rein < | Z(0) |tin 2 2einDetn,
Henece from (%)
(10) lim | Z(0) |1r = 1 (v — o),
From

1 =|a, ¥(0)-Z0)U(0)|

and (10) it follows that
(11}, lim | @, ¥(0)U(0) [1im = 1.

If x is any point within the ecircle of radius I we obtain from the definition
of the uy's that

1/2 <| (s = #)/m| < 3/2
or
(/2 < | U(x)- (@) | < G/
Hence from (9)
(12) lim (| U(a) (U(0)2 ]| )1i» = 1 (U(2) = Ux), n = m).

Let now £ be the point on the circle of radius D' where the product | Yix)Z {x}!
assumes its maximum, It follows from Cauchy's formula that this maximum
is greater than D', We obtain from

| £08) | = | 6a:F(B-2()-U(2) | = | aul(8) | DH
and from (11) and (12) that
(13) | 78| = D1 = 0| () |,

for all sufficiently large », where € is an arbitrarily small positive number.
Now we shall show that this is impossible, namely that the maximum of
] j‘,:{:r}[ on the cirele of radius D is not as large as that.
Put
max | -::1-| = B,
ksn
The index of the largest coefficient is clearly less than m (since p <1), Now we
estimate B,. Let w be the point on the unit circle where ] j'.{x}l assumes its
maximum, It follows from Cauchy’s formula that
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(14) B, | filw) |.
From (11) and (12) it follows that
(15) lim | 6.¥(0)- U(w) [V* = 1.

(Observe that k>1 so that w is in the interior of the circle of radius D.)
From the definition of the z; we have

r—=1=|s—w|s2D41<3D,

(r— 1) =|Z(w) | < (3D)".

Hence from (9)

(16) lim (Z{ea))V ™ = 1,
From ]f.[w}l =@, Viw) - Z(w)- Ulw)| we obtain by (16) and (15) that
(17) | /@) = A+ 0"+ ¢*/F(©) (=1, and soon)

for all sufficiently large v, where ¢ is an arbitrarily small positive number.
From (14) and (17) it follows that

B, £ (14 n)'(1 4 */¥(0).
If we denate by M, the maximum of |f,(x)| on the circle of radius D, we have
1+ i1+ a*

M,sm, YO Dt +£{p-m‘

or, because of pD>1,
QARG B
V0] -Db Ve (= m 4 1) (p- D)™

From (13) and (18) it follows that

Dive (1491 + o
ot~ 2T ro)
for sufficiently large » and arbitrarily small positive e Hence we obtain from
| 3| Sr, (9), the definition of D, m>n/2, and (T)
15 [m{i +n(1+egr  (B—m+ 11#"-!"]”‘
DHe=mHI(] — g)® Di+n(] — )"
w14 )V (1 +¢)  (n—m+ 1)Hnorll= = 14r
Dibte—mtllin(] — 4) Dite=slin(] — ¢) k

D=+ (n — m + 1)p"D"

(19)

+pr+a<1
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for every 7 if e is sufficiently small and » sufficiently large. This contradiction
establishes the lemma,

Proof of Theorem I First we show that (2) is necessary. If the power
series has Ostrowski gaps there exists a p<{1 and a pair of infinite sequences
my and ny with sty <me and lim sa/my=0 (0>1) such that |a,| <p" for
mr=n=# By Lemma I, corresponding to any 1 <r <1/p there exists a posi-
tive constant ¢ such that

ne — Alng, r) > clne — mp + 1).
Hence for sufficiently large &
tig— Alne, ) > ene(l — 1/6)

or
ny — Alng, r) ( 1)
S~ alie—
1Y i)
and therefore
Aln,
T et (U
H

which shows the necessity of condition (2).
Assume now that (2) is satisfied. Then there exists a sequence #; such that

(20) S oy

k= i
‘We denote by f.,(x) the polynomial consisting of the first #;+1 terms of f(x),
and by x™ its roots. (To simplify notations we shall omit the index k where
there is no danger of confusion.) We choose € so that 0 <e<r—1. It is well
known that for any >0, only a bounded number of roots of fy,(x),
k=1, 2, + -+, are within the circle of radius 1—+. It follows easily from
(20) that positive numbers ¢ and ¢' exist, both less than 1 and such that

| H’#E“” o (i (n = n)

for sufficiently large &, where |J]'=™| is the product of at least ¢'nu roots of
Juplx). Thus we obtain

ﬂ'n; < E'r oy i,

Hence if we choose § such that (r—el™<p<1, we can conclude that
lmﬁ,,] < p"¥, Now we choose § such that

0<d<plr—e)—1.
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By Stirling’s formula it is casy to see that Cyn < (1 + 3)* for sufficiently
small . Now for

1=p=in and p<(1 =¢)n (P = pu, = my)

| 8es | ﬁﬂ-.p]gh]/ E "

where £, - - ., ﬁ" are the roots with the greatest absolute values. There-
fore we have \

we obtain

|a..,|~c(

which completes the proof of Theorem 1.
Far the proof of Theorem I1 we need the following lemma:

Lesuma I1. Let f(s)=1+ai=s+ - - - +a.5°+ - - - be a power series with
Ostrowsks gaps p and radius of convergence 1, and let €>0; then for each

2D " =
) <<

1\ mg
(21} r< (—-*) where k= with g = lim inf —
Il -3 [3 My
we have
A,
(22) th i A PR 8
k== Y k=w  Hy

I this lemma were [alse there would exist an

(23) < (/o)

such that

(24) ki A S Ll
e rby b=a 11

(We consider if necessary a subsequence of my and n,.) We choose », so
that

(25) 1 <rn<ife and <
Thus r; <rs. Denote by M, () the maximum of f,,(x) on the circle of radius r.

From Jensen's formula we have
(26) M(rs) & T—————+ up= A r),  n=m,
| @yras e+ e ay
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where ag, + + + , @y are the roots of fu(x) within the circle of radius ry. Hence

ﬁ'l

(27) Malrs) & e P = (;i)mr = Aln, r).

Fa

Since |a;| <p* for m <t <n we obtain
(28) Mulr) £ (14 m) " mers + (0 — m 4 D(ors)”

where 3 is-arbitrarily emall. From (27) and (24} we obtain
ulin rde
{Hﬂ{rzh}lll g (Ii) g (f_ﬂ)
T1 r1

(M)} " < ra

and [rom (28)

for sufficiently large k. Hence

or

3 =n

which eontradiets (25). Thus Lemma IT is proved.

Proor of Tacorem I1. Cendition (3) is necessary. This [ollows immedi-
ately from Lemma 11; here we have lim m/n.=0.

Condition (3} iz sufficient. If a power series has no infinite Ostrowski gaps p,
there exists a p’ (p<p’<1) so that we have for every sequence #y a corre-
sponding sequence g such that |a.m§ = {(p"i™ and my>ong for some ¢ > 0. If
we choose r so that 1/p" <r<1/p we have

(29) Myy(r) > ('r)= > (p'r)ems

> for some ¢ >0 where p'r > 1.
On the other hand if we choose r' so that » <r' <1/p and if (3) holds, there

exists 4 sequence n; so that fi,(x) has only e(n) roots W‘lﬂlll‘l the circle of
radius 7. We write

Sulx) = gala) hal ) (1 = ny)

ex(e) = T0 (1 2), w@=I(1-2)

and v; are the roots inside, 5; the roots outside the circle of radius #'. Therefore

where
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the degree of k.(x) is e(n). There clearly exists an <1 such that

ful=) =0 for |x| =1
(since f0) =1). Thus
(30) lim (faa))¥e = 1 for |2| =1
where that determination of f.(x) is taken which is 1 when x=0. Also
(31) lim (hy(2))tm = 1 for | 2| <L
Therefore from (30) and (31)
Gy . Tim (ga(z))im = 1 N for 2| <k
We have
(33) (o) < TT(1+ i)g(wl—jl—)"s 2 for | 2| v
Thus by Vitali's theorem (by (32) and (33))
(34) lim (ga(2))1/" = 1 for | o | v <,
From

max k() < (1 + -%)M

we obtain from (34)
| fu=) | = | gal) [ | hula) | < (1 + 8)2m for % | =7
for arbitrarily small 60 and sufficiently large k. Therefore we have
lim sup (| Ma(r) | )m = 1,

which contradicts (29), This completes the proof of Theorem LI,

Let 3 2 aux* (ag=1) be a power series of radius of convergence 1 which
has Ostrowski gaps. Let fu(x}=14 - -+ +a,x™ and lim |a.|Y~=1/I
Bourion(*) remarks that every boundary point of the region of overconver-
gence of fu,(x) has a distance from the origin which is less than a constant
depending on I In fact by using the concept of transfinite diameter(¥) it is
easy to see that this constant is less than 44, We are going to show that this
constant is greater than [

Let Tu{x) be the nth Tschebicheff polynomial belonging to the interval
(0, 4). It is well known that the maximum of T.(z) in (0, 4) equals 2. We de-

{*) For the definition and properties of the transfinite diameter see M. Fekete, Math. Zeit.
val, 17 (1923} pp. 2258-249, The result we need is that the transfnite diameter of an interval
of length 7 is J/4.
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note by A, the largest coefficient (in absolute value) of T'.(x). It is easy to see
that lim |A4.|Y*<4. Let m; tend to infinity sufficiently fast and consider the
power series

f(x) = i o Ty (x)
=) A.._

] my o= omeg - w4 1,

L] Tuilx
Sarmi() = 25 2= i
[ ] A-{
It is easy to see that if the ny tend to infinity sufficiently fast the circle of con-
vergence of f(x) is 1, lim (1/4,)" w2 >1/4 and every interior point of

Let us denote by ¢(l) the maximum distance of a boundary point of the
region of overconvergence from the origin. We have

<o) <4,

The question of the exact value of $(I) remains open.

Added in proaf. P. Turdn recently pointed out that Lemma 1 is a conse-
quence of the following theorem of Van Vieck (see, for example, Dieudonné,
La théorie analytique des polymomes d'une variable & coefficients quelconques
(Mémorial des Sciences Mathématiques, vol. 93), Paris, Gauthier-Villars,
1939). Let h{s) =bg+4 - - - 4-b,s" and a be the unique positive root of

Cotpa | bo| 4 Catos| | 24 -+ + Coio| by | #7 = | 8] 2 = 0.

Then k(s) has at lcast p roots in |3] Sa.
More precisely, Turén obtains the following result: Let p>p'>1,
0<@< 1/10, and

20 9 P
Blog = < —logir-
8% "0 2y

and » sufficiently large. Then if f(z) =14 - - - 4-a.2", la,| <p=for m<»<n,
f(5) has for |5| >p” at least #(n —m) roots.
~ Turfin obtains this Yesult by a simple computation, by applying Van
Vieck’s theorem with p=[8(n —m)]+1 to sf(1/s).
USIVERSITY 0F PENNSYLVANIA AND
Swartnuore COLLEGE
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