ON THE LOWER LIMIT OF SUMS OF INDEPENDENT RANDOM VARIABLES

By Kat-Lar Chung and Paul Erdös

(Received October 30, 1946)

1. Let $X_{1}, X_{2}, \cdots, X_{n} \cdots$ be independent random variables and let $S_{n}=$ $\sum_{m=1}^{n} X$. . In the so-called law of the iterated logarithm, completely solved by Feller recently, the upper limit of S_{n} as $n \rightarrow \infty$ is considered and its true order of magnitude is found with probability one. A counterpart to that problem is to consider the lower limit of S_{n} as $n \rightarrow \infty$ and to make a statement about its order of magnitude with probability one.

Theorem 1. Let $X_{1}, \cdots, X_{n}, \cdots$ be independent random variables with the common distribution: $\operatorname{Pr}\left(X_{n}=1\right)=p, \operatorname{Pr}\left(X_{n}=0\right)=1-p=q$. Let $\psi(n) \downarrow \infty$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \psi(n)}=\infty . \tag{1.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} n^{1 / 2} \psi(n)\left|S_{n}-n p\right|=0\right)=1 . \tag{1.2}
\end{equation*}
$$

Theorem 1 is a best possible theorem. In fact we shall prove the following
Theorem 2. Let X_{n} be as in Theorem 1 but let p be a quadratic irrational. Let $\phi(n) \uparrow \infty$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \phi(n)}<\infty . \tag{1.3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} n^{1 / 2} \phi(n)\left|S_{n}-n p\right|=0\right)=0 . \tag{1.4}
\end{equation*}
$$

By making use of results on uniform distribution mod 1 we can prove (1.4) for almost all p, however the proof is omitted here.

In order to extend the theorem to more general sequences of random variables, we need a theorem about the limiting distribution of S_{n} with an estimate of the accuracy of approximation. Cramer's asymptotic expansion is suitable for this purpose. The conditions on $F(x)$ in the following Theorem 3 are those under which the desired expansion holds.

Theorem 3. Let $X_{1}, \cdots, X_{n}, \cdots$ be independent random variables having the same distribution function $F(x)$. Suppose that the absolutely continuous part of $F(x)$ does not vanish identically and that its first moment is zero, the second is one, and the absolute fifth is finite. Let $\psi(n)$ be as in Theorem 1 , then

$$
\begin{equation*}
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} n^{1 / 2} \psi(n)\left|S_{n}\right|=0\right)=1 . \tag{1.5}
\end{equation*}
$$

On the other hand, let $\phi(n)$ be as in Theorem 2 ; then

$$
\begin{equation*}
\operatorname{Pr}\left(\lim _{n \rightarrow \infty} n^{1 / 2} \phi(n)\left|S_{n}\right|=0\right)=0 . \tag{1.6}
\end{equation*}
$$

It seems clear that the result can be extended to other cases, however we shall at present content ourselves with this statement.
2. For $x>0$ let $I(x)$ denote the integer nearest to x if x is not equal to $[x]$ $+\frac{1}{2}$; in the latter case, let $I(x)=[x]$; let $\{x\}=x-I(x)$. We have then for any $x>0, y>0$, the inequality

$$
|\{x-y\}| \leqq|\{x\}-\{y\}|
$$

We are now going to state and prove some lemmas. The first two lemmas are number-theoretic in nature; the third one supplies the main probability argument; and the fourth one is a form of zero-or-one law.

Lemma 1. Let $p>0$ be a real number. Let $\psi(n) \uparrow \infty$. Arrange all the positive integers n for which we have,

$$
\begin{equation*}
|\{n p\}|<c n^{-1 / 2} \psi(n)^{-1} \tag{2.1}
\end{equation*}
$$

in an increasing sequence $n_{i}, i=1,2, \cdots$. Then for any pair of positive integers i and k we have

$$
n_{i+2 k} \geqq n_{i}+n_{k}
$$

Proof. Suppose the contrary:

$$
n_{i+2 k}<n_{i}+n_{k}
$$

Case (i): $k \leqq i$. Consider the $2 k+1$ numbers

$$
n_{i}, n_{i+1}, \cdots, n_{i+2 k}
$$

and the corresponding

$$
\begin{equation*}
\left\{n_{i p} p\right\},\left\{n_{i+1} p\right\}, \cdots,\left\{n_{i+2 k} p\right\} \tag{2.2}
\end{equation*}
$$

There are at least $k+1$ numbers among (2.2) which are of the same sign; without loss of generality we may assume that they are non-negative. Let the corresponding n_{i} be

$$
n_{i_{1}}<n_{i_{2}}<\cdots<n_{i_{k+1}}
$$

Then we have

$$
0 \leqq\left\{n_{i j} p\right\}<c n_{i_{j}}^{-1 / 2} \psi\left(n_{j}\right)^{-1} \leqq c n_{k}^{-1 / 2} \psi\left(n_{k}\right)^{-1}, \quad j=1, \cdots, k+1 ;
$$

since $i_{j} \geqq i \geqq k$; and

$$
\begin{gathered}
\left|\left\{n_{i_{k+1}} p-n_{i j} p\right\}\right|<c n_{k}^{-1 / 2} \psi\left(n_{k}\right)^{-1}, \quad j=1, \cdots, k ; \\
0<n_{i_{k+1}}-n_{i_{j}} \leqq n_{i+2 k}-n_{i}<n_{k}
\end{gathered}
$$

Thus there would be k different positive integers $n_{i_{k+1}}-n_{i_{j}}, j=1, \cdots, k$ all $<n_{k}$, for which

$$
|\{n p\}|<c n_{k}^{-1 / 2} \psi\left(n_{k}\right)^{-1} .
$$

This is a contradiction to the definition of n_{k}.
Case (ii) $k>i$. Consider the $i+k+1$ numbers

$$
n_{k}, n_{k+1}, \cdots, n_{i+2 k}
$$

and the corresponding

$$
\left\{n_{k} p\right\},\left\{n_{k+1} p\right\}, \cdots,\left\{n_{j+2 k} p\right\} .
$$

Since $i+k+1>2 i+1$, there are at least $i+1$ of the numbers above which are of the same sign, say non-negative. Let the corresponding n_{i} be

$$
n_{k_{1}}<n_{k_{1}}<\cdots<n_{n_{i+1}} .
$$

By an argument similar to that in Case (i) we should have i numbers $n_{k_{i}+1}-n_{k_{j}}, j=1, \cdots, i$, all $<n_{i}$ for which

$$
|\{n p\}|<m_{i}^{-1 / 2} \psi\left(n_{i}\right)^{-1} .
$$

This leads to a contradiction as before.
Lemma 2. Let n_{s} be defined as in Lemma 1. Then if

$$
\begin{equation*}
\sum_{v=1}^{\infty} \frac{1}{n \psi(n)}=\infty, \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} n_{i}^{-1 / 2}=\infty . \tag{2.4}
\end{equation*}
$$

Proof. Consider the points

$$
\text { hen }^{-1 / 2} \psi(n)^{-1} \quad h= \pm 1, \cdots, \pm\left[2^{-1} c^{-1} n^{1 / 2} \psi(n)\right] .
$$

They divide the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ into at most $\left[c^{-1} n^{1 / 2} \psi(n)\right]+2$ parts. Hence at least one subinterval contains

$$
l \geqq \frac{n}{\left[c^{-1} n^{1 / 2} \psi(n)\right]+2}
$$

members of the n numbers $\{m p\}, m=1,2, \cdots, n$. Let the corresponding n_{i} be

$$
n_{1}<n_{2}<\cdots<n_{2} .
$$

Then

$$
\begin{aligned}
& 0<\left|\left\{n_{i} p-n_{i} p\right\}\right|<c n^{-1 / 4} \psi(n)^{-1}<c\left(n_{l}-n_{i}\right)^{-1 / 2} \psi\left(n_{l}-n_{i}\right)^{-1}, \\
& i=1, \cdots, t-1 \text {. }
\end{aligned}
$$

Hence if $g(n)$ denote the number of numbers among $1, \cdots, n$ for which

$$
|\{n p\}|<c n^{-1 / 2} \psi(n)^{-1},
$$

we have, for n sufficiently large

$$
g(n)>2^{-1} c n^{1 / 2} \psi(n)^{-1} .
$$

Now

$$
\sum_{2^{k-1}<n \leq 2^{k}} n_{c}^{-1 / a} \geqq \frac{g\left(2^{k}\right)-g\left(2^{k-1}\right)}{\sqrt{2^{k}}} .
$$

Hence

$$
\begin{aligned}
\sum_{k=1}^{\infty} \sum_{2^{k-1} \sum_{i=k_{i}} \sum^{k^{k}}} n_{i}^{-1 / 2} & \geqq \sum_{k=1}^{\infty} \frac{g\left(2^{k}\right)-g\left(2^{k-1}\right)}{\sqrt{2^{k}}} \\
& =-\frac{g(1)}{\sqrt{2}}+\sum_{k=1}^{\infty} g\left(2^{k}\right)\left(\frac{1}{\sqrt{2^{k}}}-\frac{1}{\sqrt{2^{k+1}}}\right) \\
& \geqq-\frac{g(1)}{\sqrt{2}}+\sum_{k=1}^{\infty} \frac{c}{2} \frac{\sqrt{2^{k}}}{\psi\left(2^{k}\right)}\left(\frac{1}{\sqrt{2^{k}}}-\frac{1}{\sqrt{2^{k+1}}}\right) \\
& \geqq-1+\frac{c}{2}\left(1-\frac{1}{\sqrt{2}}\right) \sum_{k=1}^{\infty} \frac{1}{\psi\left(2^{k}\right)} .
\end{aligned}
$$

It is well-known ${ }^{1}$ that if (2.3) holds then

$$
\sum_{k=1}^{\infty} \frac{1}{\psi\left(2^{k}\right)}=\infty .
$$

Thus (2.4) is proved.
Lemma 3. Let $n_{i}, i=1,2, \cdots$ be a monotone increasing sequence such that for any pair of positive integers i and k we have

$$
\begin{equation*}
n_{i+2 k} \geqq n_{i}+n_{k} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} n_{i}^{-1 / 2}=\infty \tag{2.6}
\end{equation*}
$$

Then if α and β are two integers, we have for any integer $h>0$,

$$
\begin{equation*}
\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}+p \alpha\right)+\beta \text { at least once for } i \geqq h\right) \geqq \frac{1}{2} \text {. } \tag{2.7}
\end{equation*}
$$

[^0]Proor. Denoting the joint probability of E_{1}, E_{2}, \cdots by $\operatorname{Pr}\left(E_{1} ; E_{2} ; \cdots\right)$ we have

$$
\begin{aligned}
& \operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}+p \alpha\right)+\beta\right)=\operatorname{Pr}\left(S_{n_{\lambda}}=I\left(p n_{\lambda}+p \alpha\right)+\beta\right. \\
& \left.\quad S_{n_{i}-n_{\mathrm{A}}}=I\left(p n_{i}+p \alpha\right)-I\left(p m_{\lambda}+p \alpha\right)\right) \\
& +\operatorname{Pr}\left(S_{n_{\lambda}} \neq I\left(p n_{k}+p \alpha\right)+\beta ; S_{n_{h+1}}=I\left(p n_{\lambda+1}+p \alpha\right)+\beta ;\right. \\
& \left.\quad \mathrm{S}_{n_{i}-n_{\lambda}+1}=I\left(p n_{i}+p \alpha\right)-I\left(p n_{h+1}+p \alpha\right)\right)
\end{aligned}
$$

$$
+\cdots
$$

$$
+\operatorname{Pr}\left(S_{n_{\lambda}} \neq I\left(p n_{\lambda}+p \alpha\right)+\beta ; \cdots ; S_{n_{i-1}} \neq I\left(p n_{i-1}+p \alpha\right)+\beta ;\right.
$$

$$
\left.S_{n_{i}}=I\left(p n_{i}+p \alpha\right)+\beta\right)
$$

Writing

$$
\begin{aligned}
p_{i} & =\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}+p \alpha\right)+\beta\right), \\
w_{k} & =\operatorname{Pr}\left(S_{n_{i}} \neq I\left(p n_{j}+p \alpha\right)+\beta \text { for } \quad h \leqq j<k ; S_{n_{k}}=I\left(p n_{k}+p \alpha\right)+\beta\right), \\
p_{k, i} & =\operatorname{Pr}\left(S_{n_{i}-n_{k}}=I\left(p n_{i}+p \alpha\right)-I\left(p n_{k}+p \alpha\right)\right), \quad p_{k, k}=1 ;
\end{aligned}
$$

and using the assumption of independence, we have

$$
p_{i}=\sum_{k=h}^{i} w_{k} p_{k, i}
$$

Summing from h to m we get

$$
\begin{equation*}
\sum_{i=h}^{m} p_{i}=\sum_{i=1}^{m} \sum_{k=1}^{i} w_{k} p_{k, i} \leqq \sum_{k=1}^{m} w_{k} \sum_{i=k}^{m} p_{k, i} . \tag{2.8}
\end{equation*}
$$

Now for any positive x and $y, I(x)-I(y)=I(x-y)$ or $I(x-y) \pm 1$; and it is well-known that for the random variables we have, given any $\epsilon>0$, if $n>n_{0}(\epsilon)$, and $\theta= \pm 1$,

$$
\operatorname{Pr}\left(S_{n}=I(n p)+\theta\right) \leqq(1+\epsilon) \operatorname{Pr}\left(S_{n}=I(n p)\right)
$$

hence we have, if $i-k \geqq m_{1}(\epsilon)$,

$$
\begin{equation*}
p_{k, i} \leqq(1+\epsilon / 4) \operatorname{Pr}\left(S_{n_{i} \rightarrow n_{k}}=I\left(p n_{i}-p n_{k}\right)\right) . \tag{2.9}
\end{equation*}
$$

From (2.5) if $i>k$, we have

$$
\begin{equation*}
n_{i} \geqq n_{k}+n_{[(1-k) / 2]} . \tag{2.10}
\end{equation*}
$$

Also it is well-known that as $i \rightarrow \infty$,

$$
\begin{equation*}
p_{i} \sim \frac{1}{\sqrt{2 \pi p q n_{i}}} \tag{2.11}
\end{equation*}
$$

Hence from (2.9), (2.10) and (2.11) we have if $i-k \geqq m_{2}(\epsilon)$ where m_{2} is a positive constant,

$$
p_{k, i} \leqq(1+\epsilon / 2) \operatorname{Pr}\left(S_{n_{(i-k)} / 2 \mid}=I\left(p n_{((i-k) / 2)}\right)\right) .
$$

Since α and β are fixed, to any $\epsilon>0$ there exists an integer $m_{0}=m_{0}(\epsilon)>m_{2}$ such that if $i-k \geqq m_{0}(\epsilon)$,

$$
\begin{equation*}
\operatorname{Pr}\left(S_{n_{1(i-k) / 2]}}=I\left(p n_{[(i-k) / 2]}\right)\right) \leqq(1+\epsilon) p_{[(i-k) / 2]} . \tag{2.12}
\end{equation*}
$$

Thus for $i-k \geqq m_{0}(\epsilon)$,

$$
p_{k, i} \leqq(1+\epsilon) p_{[(l-k) / 2]}
$$

Using (2.12) in (2.9), we obtain

$$
\begin{aligned}
\sum_{i=h}^{m} p_{i} & \leqq \sum_{k=1}^{m} w_{i}\left(\sum_{i=1}^{k+m-1} p_{i, t}+(1+\epsilon) \sum_{i=k+m_{0}}^{m} p_{t(i-k) / 2]}\right) \\
& \leqq \sum_{k=1}^{m} w_{i}\left(m_{0}+2(1+\epsilon) \sum_{i=m_{0}}^{[m / 2]} p_{i}\right) .
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{m} w_{j} \geqq \frac{\sum_{i=1}^{m} p_{i}}{m_{0}+2(1+\epsilon) \sum_{i=m_{0}}^{[m / 2]} p_{i}},
$$

Since by (2.11) and (2.6) the series $\sum_{i=1}^{\infty} p_{i}$ is divergent, we get, letting $n \rightarrow \infty$,

$$
\sum_{j=1}^{\infty} w_{j} \geqq \frac{1}{2(1+\epsilon)} .
$$

Since ϵ is arbitrary and the left-hand side does not depend on ϵ this proves (2.7).
Lemma 4. If for any integers α, β and $k>0$, there exists a number $\eta>0$ not depending on α, β and an integer $l=l(k, \eta)$ suck that, n_{i} being any sequence $\uparrow \infty$,

$$
\begin{equation*}
\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}+p \alpha\right)+\beta \text { at least once for } k \leqq i \leqq l\right) \geqq \eta ; \tag{2.13}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{s}+p \alpha\right)+\beta \text { infinitely often }\right)=1 . \tag{2.14}
\end{equation*}
$$

Proof. Take a sequence k_{1}, k_{2}, \cdots and the corresponding l_{1}, l_{2}, \cdots such that

$$
k_{1}<l_{1}<k_{2}<l_{2}<\cdots
$$

Consider the event
Er:

$$
S_{n_{i}}=I\left(p_{i}+p \alpha\right)+\beta \text { at least once for } k_{r} \leqq i \leqq l_{r},
$$

and let the probability that E, occurs under the hypothesis that none of E_{1}, \cdots, E_{r-1} occurs, be denoted by $\operatorname{Pr}\left(E_{r} \mid E_{1}^{\prime} \cdots E_{r-1}^{\prime}\right)$. Then the latter is a probability mean of the conditional probabilities of E_{r} under the various hypotheses:
H:

$$
S_{n_{i}}=\sigma_{n_{i}}, \quad k_{t} \leqq i \leqq l_{t}, \quad 1 \leqq t \leqq r-1 ;
$$

where the $\sigma_{n_{i}}$'s ${ }^{\prime}$ are such that for all $i, \sigma_{n_{i}} \neq I\left(p n_{i}+p \alpha\right)+\beta$ but are otherwise arbitrary. Now under H, E, will occur if the following event F occurs:
F: $\quad S_{n_{i-n}-l_{r-1}}=I\left(m_{i}+p \alpha\right)+\beta-\sigma_{n_{r-1}}$ at least once for $k_{r} \leqq i \leqq l_{r}$.
Hence

$$
\operatorname{Pr}\left(E_{\mathrm{r}} \mid E_{1}^{\prime} \cdots E_{r-1}^{\prime}\right) \geqq \min _{z} \operatorname{Pr}\left(E_{\mathrm{r}} \mid H\right) \geqq \operatorname{Pr}(F \mid H)=\operatorname{Pr}(F) .
$$

Writing the equality in F as

$$
\begin{aligned}
S_{n_{i}-n_{i_{r-1}}} & =I\left(p\left(n_{i}-n_{l_{r-1}}\right)+p\left(n_{l_{r-1}}+\alpha\right)\right)+\beta-\sigma_{n_{l_{r-1}}} \\
& =I\left(p\left(n_{i}-n_{l_{r-1}}\right)+p \alpha^{\prime}\right)+\beta^{\prime}
\end{aligned}
$$

and consider the random variables $X_{n_{1}+1}, X_{n_{t_{r+1}+1}}, \cdots$ as $X_{1}^{\prime}, X_{2}^{\prime}, \cdots$ we see from (2.13) that

$$
\operatorname{Pr}\left(E_{r} \mid E_{1}^{\prime} \cdots E_{r-1}^{\prime}\right) \geqq \operatorname{Pr}(F) \geqq \eta .
$$

Therefore the probability that none of the events $E_{\mathrm{r}}, r=1, \cdots, s$ occurs is $\operatorname{Pr}\left(E_{1}^{\prime} \cdots E_{k}^{\prime}\right)=\operatorname{Pr}\left(E_{1}^{\prime}\right) \operatorname{Pr}\left(E_{2}^{\prime} \mid E_{1}^{\prime}\right) \cdots \operatorname{Pr}\left(E_{n}^{\prime} \mid E_{1}^{\prime} \cdots E_{s-1}^{\prime}\right) \leqq(1-\eta)^{2}$. Hence

$$
\operatorname{Pr}\left(S_{n_{i}} \neq I\left(p n_{i}+p \alpha\right)+\beta \text { for all } l_{r} \leqq i \leqq k_{r}, r=1,2, \cdots\right)=0
$$

Since l_{1} can be taken arbitrarily large, (2.14) is proved.
Remark. Lemma 3 and 4 imply an interesting improvement of the wellknown fact that $\operatorname{Pr}\left(S_{u}-n p=\right.$ infinitely often $)=1$ for a rational p. Let n_{i} be any monotone increasing sequence such that (2.6) holds; in addition if for a ce tain integer $m^{\prime}>0$ and any pair of integers i and k we have

$$
\begin{equation*}
n_{i+m k} \geqq n_{i}+n_{k} \tag{2.15}
\end{equation*}
$$

then

$$
\operatorname{Pr}\left(S_{n i}-n_{i} p=0 \text { for infinitely many } i\right)=1 .
$$

That the condition (2.6) alone is not sufficient can be shown by a counterexample. On the other hand, it is trivial that (2.6) is a necessary condition. The condition (2.15) can be replaced e.g. by the following condition:

$$
n_{i+1}-n_{i} \geqq \Delta n_{i}^{1 / 2}, \quad A>0
$$

The proof is different and will be omitted here.
Proof of Theorem 1. Let the sequence n_{i} be defined as in Lemma 1. Then by Lemma 1 and 2 this sequence satisfies the conditions (2.5) and (2.6) in Lemma 3. Hence by Lemma 3 the condition (2.13) in Lemma 4 is satisfied with any $\eta<\frac{1}{2}$. Thus byLemma 4 we have (2.14). Taking $\alpha=\beta=0$ therein we obtain

$$
\operatorname{Pr}\left(S_{n_{i}}-n_{i} p=\left\{n_{i} p\right\} \text { infinitely often }\right)=1
$$

Hence by the definition (2.2)

$$
\operatorname{Pr}\left(\left|S_{n}-n p\right|<c n^{-1 / 2} \psi(n)^{-1} \text { infinitely often }\right)=1 .
$$

Since c is arbitrarily small (1.2) is proved.
Remark. It is clear that (2.14) yields more than Theorem 1 since α anu β are arbitrary. It is easily seen that we may even make α and β vary with n_{i} in a certain way, but we shall omit these considerations here.

Proof of Theorem 2. Arrange all the positive integers n for which we have

$$
|\{n p\}| \leqq A n^{-1 / 2} \phi(n)^{-1}, \quad, \quad A>0 \text {. }
$$

in an ascending sequence $n_{i}, i=1,2, \cdots$. Since

$$
\left|\left\{n_{i} p\right\}\right| \leqq A n_{i}^{-1 / 2} \phi\left(n_{i}\right)^{-1}
$$

we have

$$
\begin{equation*}
\left|\left\{n_{i+1} p-n_{i} p\right\}\right| \leqq 2 A n_{i}^{-1 / 2} \phi\left(n_{i}\right)^{-1} . \tag{2.16}
\end{equation*}
$$

On the other hand, since p is a quadratic irrational, it is well-known ${ }^{2}$ that there exists a number $M>0$ such that

$$
\begin{equation*}
\left|\left|n_{i+1} p-n_{i} p\right|\right|>\frac{M}{n_{i+1}-n_{i}} . \tag{2.17}
\end{equation*}
$$

From (2.16) and (2.17) we get with $A_{1}=M / 2 A$,

$$
\begin{equation*}
n_{i+1}-n_{i}>A_{1} n_{i}^{1 / 2} \phi\left(n_{i}\right) \tag{2.18}
\end{equation*}
$$

Without loss of generality we may assume that $\phi\left(n_{i}\right) \leqq n_{i}^{1 / 2}$. For we may replace $\phi(n)$ by $\phi_{1}(n)$ defined as follows:

$$
\phi_{1}(n)= \begin{cases}\phi(n) & \text { if } \phi(n) \leqq n^{1 / 2} \\ n^{1 / 2} & \text { if } \quad \phi(n)>n^{1 / 2}\end{cases}
$$

After this replacement (1.3) remains convergent, while if (1.4) holds for $\phi_{1}(n)$, it holds a fortiori for $\phi(n)$.

Now if $\phi\left(n_{i}\right) \leqq n_{i}^{1 / 2}$, and the constant A_{2} is such that $2 A_{2}+A_{2}^{2}<A_{1}$, we have from (2.18)

$$
n_{i+1}^{1 / 2}>n_{i}^{1 / 2}+A_{2 \phi}\left(n_{i}\right) .
$$

Hence by iterating,

$$
n_{i+1}^{1 / 2}>A_{2} \sum_{k=1}^{i} \phi\left(n_{k}\right)>A_{2} \sum_{k-[i / 2]}^{i} \phi\left(n_{k}\right)>A_{2} \frac{i}{2} \phi\left(\left[\frac{i}{2}\right]\right) .
$$

Therefore by (1.3)

$$
\begin{equation*}
\sum_{i=1}^{\infty} n_{i}^{-1 / 2}<\infty \tag{2.19}
\end{equation*}
$$

[^1]Define

$$
p_{i}=\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}\right)\right) .
$$

As in (2.11) we have

$$
p_{i} \sim \frac{1}{\sqrt{2 \pi p q n_{i}}} .
$$

Hence from (2.18)

$$
\sum_{i=1}^{\infty} p_{i}<\infty .
$$

By the classical Borel-Cantelli lemma it follows that

$$
\operatorname{Pr}\left(S_{n_{i}}=I\left(p n_{i}\right) \text { infinitely often }\right)=0
$$

By the definition of n_{i} this is equivalent to (1.4).
3. Lemma 5. Let $X_{1}, \cdots, X_{n}, \cdots$ be independent random variables having the same distribution function $F(x)$ which satisfies the conditions in Theorem 3. Then if $x_{1}<x_{2}$ and $x_{1}=o(1), x_{2}=o(1)$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\operatorname{Pr}\left(x_{1} \leqq n^{-1 / 2} S_{n} \leqq x_{2}\right)=(2 \pi)^{-1 / 2}\left(x_{2}-x_{1}\right)+o\left(x_{2}-x_{1}\right)+0\left(n^{-3 / 2}\right) \tag{3.1}
\end{equation*}
$$

Proor. By Cramér's asymptotic expansion ${ }^{3}$ we have, if we denote the $\mathrm{r}^{\text {th }}$ moment of $F(x)$ by α_{r},

$$
\begin{aligned}
& \operatorname{Pr}\left(\frac{S_{n}}{\sqrt{n}} \leqq x\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y-\frac{\alpha_{8}}{6 \sqrt{2 \pi} \sqrt{n}}\left(x^{2}-1\right) e^{-\alpha^{2} / 2} \\
& \quad+\frac{\alpha_{4}-3 \alpha_{2}^{2}}{24 \sqrt{2 \pi} n}\left(-x^{3}+3 x\right) e^{-x^{3} / 2}+\frac{\alpha_{3}^{2}}{72 \sqrt{2 \pi} n}\left(-x^{5}+10 x^{2}-15 x\right) e^{-\alpha^{2} / 2}+R(x)
\end{aligned}
$$

where

$$
|R(x)| \leqq Q n^{-1 / 2},
$$

and Q is a constant depending only on $F(x)$,
It follows, using elementary estimates, that

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{1} \leqq \frac{S_{n}}{\sqrt{n}} \leqq x_{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{x_{1}}^{z_{2}} e^{-y^{2} / 2} d y \\
&+0\left(\left(x_{2}-x_{1}\right)\left(\frac{\left|x_{1}\right|+\left|x_{2}\right|}{\sqrt{n}}+\frac{1}{n}\right)\right)+0\left(\frac{1}{\sqrt{n^{2}}}\right)
\end{aligned}
$$

Since $x_{1}=o(1), x_{t}=o(1)$ this reduces immediately to (3.1).

[^2]Lemma 6. Let z_{n} be any real number such that $z_{n}=0\left(n^{1 / 2}\right), c$ any positive number, and h any positive integer. Let $\psi(n) \uparrow \infty$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \psi(n)}=\infty . \tag{3.2}
\end{equation*}
$$

Then if the random variables X_{n} satisfy the conditions of Theorem 3 , we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left|S_{n}-z_{n}\right| \leqq c n^{-1 / 2} \psi(n)^{-1} \text { at least once for } n \geqq h\right)=1 \text {. } \tag{3.3}
\end{equation*}
$$

Proof. Write

$$
\begin{aligned}
& P_{n}=\operatorname{Pr}\left(\left|S_{n}-z_{n}\right| \leqq c n^{-1 / 2} \psi(n)^{-1}\right) ; \\
& W_{k}=\operatorname{Pr}\left(\left|S_{j}-z_{j}\right|>c j^{-1 / 2} \psi(j)^{-1} \text { for } h \leqq j<k ; \quad\left|S_{k}-z_{k}\right| \leqq c k^{-1 / 2} \psi(k)^{-1}\right) \\
& P_{k, n}=\operatorname{Pr}\left(\left|S_{n}-z_{n}\right| \leqq c n^{-1 / 2} \psi(n)^{-1}| | S_{j}-z_{j} \mid>c j^{-1 / 2} \psi(j)^{-1} \text { for } h \leqq j<k ;\right. \\
& \left.\quad\left|S_{k}-z_{k}\right| \leqq c k^{-1 / 2} \psi(k)^{-1}\right) .
\end{aligned}
$$

Then by a similar argument as in Lemma 3, we have

$$
\begin{equation*}
\sum_{n=\lambda}^{m} P_{n} \leqq \sum_{k=1}^{m} W_{k} \sum_{n=k}^{m} P_{k, n} . \tag{3.4}
\end{equation*}
$$

Our next step is to show that to any $\epsilon>0$ there exists a constant $A(\epsilon)$ such that for $n-k>A$, we have

$$
\begin{equation*}
P_{k, n} \leqq(1+\epsilon) P_{n-k} . \tag{3.5}
\end{equation*}
$$

To prove this we divide the x-interval $\left|x-z_{k}\right| \leqq c k^{-1 / 2} \psi(k)^{-1}$ into disjoint subintervals I_{j}; of lengths $\leqq \epsilon^{\prime} c n^{-1 / 2} \psi(n)^{-1}$ where $\epsilon^{\prime}>0$ is arbitrary. If we write

$$
P_{k,+}^{(j)}=\operatorname{Pr}\left(\left|S_{n}-z_{n}\right| \leqq c n^{-1 / 2} \psi(n)^{-1} \mid S_{k}-z_{k} \subset I_{j}\right)
$$

we have

$$
P_{k, n}^{(i)} \leqq \operatorname{Pr}\left(S_{n}-S_{k} \subset I_{j}^{\prime}\right)
$$

where I_{j}^{\prime} is an interval of lengths $\leqq\left(2+\epsilon^{\prime}\right) c n^{-1 / 2} \psi(n)^{-1} \leqq\left(2+\epsilon^{\prime}\right) c(n-k)^{-1 / 2}$ $\psi(n-k)^{-1}$ lying within the interval $\left|x-z_{n}+z_{k}\right| \leqq c n^{-1 / 2} \psi(n)^{-1}+c k^{-1 / 2} \psi(k)^{-1}$. From Lemma 5 it is seen that if $n-k \geqq A_{1}\left(\epsilon^{\prime}\right)$,

$$
P_{k, n}^{(f)} \leqq \frac{2\left(1+\epsilon^{\prime}\right) c}{\sqrt{2 \pi}(n-k) \psi(n-k)} ;
$$

since $P_{k, n}$ is a probability mean of $P_{k, 4}^{(j)}$, we have

$$
\begin{equation*}
P_{k, n} \leqq \max _{j} P_{k, n}^{(j)} \leqq \frac{2\left(1+\epsilon^{\prime}\right) c}{\sqrt{2 \pi}(n-k) \psi\left(n-k_{i}\right)} . \tag{3.6}
\end{equation*}
$$

On the other hand, we have again from Lemma 5 , if $n-k \geqq A_{2}\left(\epsilon^{\prime}\right)$,

$$
P_{n-b} \geqq \frac{2\left(1-\epsilon^{\prime}\right)}{\sqrt{2 \pi}(n-k) \psi(n-k)} .
$$

From (3.6) and (3.7) follows (3.5).
Using (3.5) in (3.4) we get

$$
\begin{aligned}
\sum_{n=-k}^{m} P_{n} \leqq & \sum_{k=A}^{m} W_{k}\left(\sum_{n=k}^{n+1-1} P_{k, n}+(1+\epsilon) \sum_{n=k+A}^{m} P_{n-k}\right) \\
\leqq & \sum_{k=1}^{m} W_{k}\left(A+(1+\epsilon) \sum_{n=1}^{m} P_{n}\right) \\
& \sum_{n=1}^{m} W_{k} \geqq \frac{\sum_{n=1}^{m} P_{n}}{A+(1+\epsilon) \sum_{n=A}^{m} P_{n}}
\end{aligned}
$$

Now $\sum_{n-4}^{\infty} P_{n}=\infty$ by (3.7) and (3.1). It follows from (3.8) by letting $n \rightarrow \infty$ that

$$
\sum_{k=n}^{\infty} W_{k} \geqq \frac{1}{1+\epsilon} .
$$

Since ϵ is arbitrary and the left-hand side does not depend on ϵ we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} W_{t} \geqq 1 \tag{3.9}
\end{equation*}
$$

Thus (3.3) follows.
Proor of Theorem 3. Taking $z=0$ in (3.9) and denoting by E_{s} the even ${ }_{t}$

$$
\left|S_{n}\right| \leqq c n^{-1 / 2} \psi(n)^{-1},
$$

we can write (3.9) as follows:

$$
\operatorname{Pr}\left(\sum_{n=1}^{\infty} E_{n}\right)=1 \text {, }
$$

where the sign \sum denotes disjunction of events. Now the event which consists i^{n} the realization of an infinite number of the E_{n} 's can be written as

$$
\prod_{n=1}^{\infty}\left(\sum_{n=h}^{\infty} E_{n}\right)
$$

where the sign $I I$ denotes conjunction of events. Hence

$$
\operatorname{Pr}\left(\prod_{n=1}^{\infty}\left(\sum_{n=0}^{\infty} E_{n}\right)\right)=\lim _{n \rightarrow \infty}\left(\sum_{n=h}^{\infty} E_{n}\right)=1 .
$$

Thus (1.5) is proved. The proof of (1.6) follows immediately from Lemma 5 and Borel-Cantelli lemma.

[^0]: ${ }^{1}$ See e. g. Theory and Application of Infinite Series, London-Glasgow, Blackie and Son, 1928, p. 120.

[^1]: ${ }^{4}$ See e. g. Hardy and Whart, Introduction to the Theory of Numbers, Oxford 1938, p. 157.

[^2]: ${ }^{3}$ Cramér, Random Variables and Probability Distributions, Cambridge 1937, Ch. 7. For a simplified proof see P. L. Hsu, The Approximate Distribution of the Mean and Variance of a Sample of Independent Variables, Ann. Math. Statistics, 16 (1945), pp. 1-29.

