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1. Let X1 , X2 , • • • , Xn . . . be independent random variables and let Sn =
X, . In the so-called law of the iterated logarithm, completely solved

by Feller recently, the upper limit of S n as n -4 co is considered and its true
order of magnitude is found with probability one . A counterpart to that
problem is to consider the lower limit of Sn as n --> oo and to make a statement
about its order of magnitude with probability one .
THEOREM 1 . Let XI , • • •, Xn , • - • be independent random variables with the

common distribution : Pr(X,b = 1) = p, Pr(X,,, = 0) = 1 - p = q. Let ¢(n) I oo

and

n.i nk(n)
Then we have
(1 .2)

	

Pr (lim n"',P(n) I Sn - np I = 0) = 1
n_.

(1 .1.)

Theorem 1 is a best possible theorem . In fact we shall prove the following
THEOREM 2 . Let Xn be as in Theorem 1 but let p be a quadratic irrational .

Let ip(n) T oo and

(1 .3)

	

- 1

	

< ao .
n-1 n (n)

Then we, have
(1.4)

	

Pr (lim n 1í2 4)(n) I Sn - np I = 0) = 0 .

By making use of results on uniform distribution mod 1 we can prove (1.4)
for almost all p, however the proof is omitted here .

In order to extend the theorem to more general sequences of random variables,
we need a theorem about the limiting distribution of S n with an estimate of
the accuracy of approximation . Cramér's asymptotic expansion is suitable for
this purpose . The conditions on F(x) in the following Theorem 3 are those
under which the desired expansion holds .
THEOREM 3 . Let X 1 , • • •, Xn , • • • be independent random variables having

the same distribution function F(x) . Suppose that the absolutely continuous part
of F(x) does not vanish identically and that its first moment is zero, the second is
one, and the absolute fifth is finite . Let 4,(n) be as in Theorem 1, then

(1 .5)

	

Pr (lim n"' ip(n) I Sn I = 0) = 1 .
n - W
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On the other hand, let 0(n) be as in Theorem 2 ; then

(1 .6)

	

Pr (lim n112 0(n) I & I = 0) = 0 .
W _W

It seems clear that the result can be extended to other cases, however we
shall at present content ourselves with this statement .

2 . For x > 0 let I (x) denote the integer nearest to x if x is not equal to [x]
} z ; in the latter case, let I (x) _ [x .1 ; let { x } = x - I(x) . We have then for
any x > 0, y > 0, the inequality

{x - y} I S I {x} - {y} I .

We are now going to state and prove some lemmas . The first two lemmas
are number-theoretic in nature ; the third one supplies the main probability
argument ; and the fourth one is a form of zero-or-one law .
LEMMA 1 . Let p > 0 be a real number . Let V/(n) T o o . Arrange all the

positive integers n for which we have,

(2.1)

	

1 (np} I < cn1í24,(n)-1

in an increasing sequence ni, i = 1, 2,

	

Then for any pair of positive integers
i and k we have

ni+2k >= ni + nk .

PROOF : Suppose the contrary :

ni+2k < ni -{- nk .

CASE (i) : k <- i . Consider the 2k -}- 1 numbers

ni , ni+, , . . .' ni+2k
and the corresponding

(2.2)

	

{nip}, {ni +lp},

	

{ni+2kp} .

There are at least k -}- 1 numbers among (2.2) which are of the same sign ;
without loss of generality we may assume that they are non-negative . Let the
corresponding ni be

nil < ní2 < . . . < n ik+1

Then we have

0 <_ {ni ; p} <

	

S cnk112 ,. / nk)-1 ,

	

= 1, . . . , k -}- 1 ;

sine i; Z i >_ k; an

	

1

d

{n ik+1 p - ni; p} I < Cnk1120(nk)-I,

	

j = 1, . .-

	

k;

0 < n ik +, - ni ; < ni+2k - ni < nk .
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Thus there would be k different positive integers nik+1 - nü , j = 1,

	

k
all < nk , for which

I {npl I < cnk112 (nk) -1

This is a contradiction to the definition of nk .
CASE (ü) k > i . Consider the i + k + 1 numbers

nk , nk+, , . . . , ni+2k

and the corresponding
{nkp], {nk+lpl, . . ., {na+2kp1 .

Since i + k + 1 > 2i + 1, there are at least i + 1 of the numbers above which
are of the same sign, say non-negative . Let the corresponding ni be

nki < nk2 < . . . < nk i+i .

By an argument similar to that in Case (i) we should have i numbers
nk , +i - n7,; , j = 1,

	

, i, all < n i for which

I {np} I < cn-j 1124/(ní) -1

This leads to a contradiction as before .
LEMMA 2. Let n i be defined as in Lemma 1 . Then if

(2.3)

	

„=1 n (n) -

	

,
we have

(24)

	

n-1/2 = Cc
i=1

PROOF. Consider the points

hcnz 112 P(n.) -1

	

h = f1, . . . ,

	

[2-1c-1n 11 24,(n )]

They divide the interval (-2, 2) into at most [c1n112VI(n)] + 2 parts . Hence
at least one subinterval contains

n

d - [C1n112q/(n)] + 2
members of the n numbers { mp 1, m = 1, 2, • • , n . Let the corresponding n i be

nl < n 2 < . . . < n z .

Then

0 < I {nip - nipl I < cri112,P(n) -1 < c(n, - ni)-112¢(n, - ni)-1 ,

i=1, • • , l-1 .
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Hence if g(n) denote the number of numbers among 1,

	

, n for which

I {np} I < en-1/24,(n) - ',

we have, for n sufficiently large

g(n) > 2-'cn1/24,(n)-' .

Now

Hence

(2.5)

and

CHUNG AND ERDÖS

n-1,2 > g(2k) - g(2x-')
ti

	

-

	

k»k-1 G ~+ 52k

n-112 >

	

g(2k)	- g(2k-1)

k-l 2k-1 < r ~ 52k

	

k=1
~/2k

aog
1 i

	

g(2 k)
(N/2k

- ~2k+1>-\/2

	

~1

g(1)

	

-~2k

	

1

	

1
+ ka, 2 -G(2x) (-v/2k - -\/2k+'

2(

	

1
)~ 2

- 1

	

- 1 -
~2 x=1 +G( k)~

It is well-known' that if (2.3) holds then

`°

	

1
k-1 1 (2k )

Thus (2.4) is proved .
LEMMA 3 . Let ng , i = 1, 2,

	

be a monotone increasing sequence such that
for any pair of positive integers i and k we have

ny+2k ? ni -}- nk

z nfl i12 = °° .

i-1

Then if a and # are two integers, we have for any integer h > 0,

(2.7)

	

Pr(S.n ; = I(pni + pa) + Oat least once for i >_ h) >- 2 .

'See e. g. Theory and Application of Infinite Series, London-Glasgow, Blackie and
Son, 1928, p . 120 .



Summing from h to na we get

(2 .8)

(2.11)
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PROOF . Denoting the joint probability of E, , E2 , . . . by Pr(E, ; E2 ;

	

)
we have

Pr(Sn i = I(pn i + pa) + ,0) = Pr(S.,, = I(pnh + pa) + 0;

Sni-nh = I(pni + pa) - I(pnh + pa))

+ Pr(S.,, 0 I(p 7Lh +pa) +,3 ; Snh+, = I(pnh+i + pa) + ~ ;

Sni-n,, +,

	

I(pni + pa) - I(pnh+i + pa))

+ Pr(Snh 0 I(p?a,, -i- pa) + 13 ; . . . ; Sn,_, 0 I(pni_, ..{_ pa) + 0 ;
Sni = I(pni + pa) + a) .

Writing

pi = Pr(Sni = I(p',c i + pa) -i- A

wk = Pr(S., 7-` I(pn; + pa) + 0 for h <_ j < k ; Sn k = I(pnk + pa) +3)*

pk,i =Pr(Sn i-n k = I(pni + pa) - I(pnk + pa)),

	

pk,k = 1 ;

and using the assumption of independence, we have
i

pi =

	

wkpk,ik=h

m

	

m ti

	

ne

Z pi = Z Z wk pk,i -< Z Wk Z pk,i .
i-h

	

i=h kml

	

kml

	

i-k

1
p= r.

-%,/2apgni

m

Now for any positive x and y, I (x) - I (y) = I (x - y) or I (x - y) f 1 ; and
it is well-known that for the random variables we have, given any e > 0, if
n > no(e), and 0 = -4- 1,

Pr(S. = I(np) + 0) S (1 + E)Pr(Sn = I(np))

hence we have, if i - k >= m,(e),

(2.9)

	

pk,i < (1 { e/4)Pr(Sn:-nk - I(pni - pnk)) •

From (2.5) if i > k, we have

(2.10)

	

ni ? nk + n[(i-k)/2]

Also it is well-known that as i
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Hence from (2.9), (2.10) and (2 .11) .we have if i - k >_ m2 (e) where m 2 is a posi-
tive constant,

Pk .i

	

(1 -}- E /2 )Pr (SnI(+-k)/21 - I(PnI(a-k)/21)) •

Since a and 0 are fixed, to any e > 0 there exists an integer mo = mo (e) > m2

such that if i - k >= mo(e),

(2.12)

	

Pr(S,[(i-k)/al = I(pnj(i-k)/21))

	

( 1 + e)PI(i-k)/21-

Thus for i - k >= mo(e),

Pk .i

	

(1 -i- e)P[(i-k)/21

Using (2 .12) in (2.9), we obtain
na

	

m

	

k+mo-1

	

m

	

\
pi - f w;

	

pj,i -i- (1 -{- e) E P[(i- k)/21 /
i=h

	

k=1

	

( i=k

	

i=ktmo
m

	

[m/21

wi (mo + 2(1 + e)

	

pi)
k=1

	

i=mo

Therefore
ET~m w	 i=h pi

L..~9=1 i -

		

~[m121 *mo -{- 2(1 -I- e) G ai=mo Pi
Since by (2 .11) and (2 .6) the series E'j-1 pi is divergent, we get, letting n

1
i=1

	

- 2(1 + e)

Since e is arbitrary and the left-hand side does not depend on e this proves (2 .7) .
LEMMA 4. If for any integers a, 0 and k > 0, there exists a number 11 > 0 not

depending on a, 0 and an integer l = l(k, 77) such that, n i being any sequence T 00,

(2.13)

	

Pr(Sni = I(pn i + pa) + 0 at least once for k, < i _<- l)

then

(2.14)

	

Pr(Sni = I(pni + pa) + 0 infinitely often) = 1 .

PROOF. Take a sequence k1 , k 2 , . . . and the corresponding 1 1

	

such
that

k1 < 1, < k2 < 12 < • • •

00,

Consider the event
E, :

	

Sni = I(pni -I- pa) + 0 at least once for k, <- i < l, ,

and let the probability that E, occurs under the hypothesis that none of E1 ;
E,-, occurs, be denoted by Pr(E, I El . . . ET-1) . Then the latter is a prob-

ability mean of the conditional probabilities of E, under the various hypotheses :
H:

	

Sn i = Uni ,

	

kc <_= i _ h ,

	

1 <_ t <= r - 1 ;
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where the a-„ i 's"are such that for all i, v,,, ;

	

I(pn i + pa) + a but are otherwise
arbitrary . Now under 1-1, E, will occur if the following event F occurs :

F : S. j; l ,_ i = I(pni + pa) + Q - o-, ,-i at least once for k,

Hence

Pr(E, j Ei . . . ET- i ) ? min Pr(E,. 1 H) >_ Pr(F 1 H) = Pr(F) .

Writing the equality in F as
I(p(n i - nl,-i) + p(nl,-i + a)) I

= I (p(nc - n lp-,) + p«) -i-

and consider the random variables X,,,l,+i , X.,, + , +,

	

as X, , X2 ,
see from (2 .13) that

1'r(E,. I El . . . E'-,) >_ Pr(F) >_ -q •

Therefore the probability that none of the events E,, 7• = 1,

	

, s occurs is
Pr(Ej . . . E') = Pr(E,)Pr(E2 ED . . . Pr(E' El . . . E8_i) <__

Hence

Pr(Sn' I (pni + pa) + 0 for all l,. :5 i <= k, , r = 1, 2, . . . ) = 0

Since h can be taken arbitrarily large, (2 .14) is proved .
REMARK. Lemma 3 and 4 imply an interesting improvement of the well-

known fact that Pr(S„ - np = infinitely often) = 1 for a rational p. Let ni be
any monotone increasing sequence such that (2.6) holds; in addition if for a
contain integer m'> 0 and any pair of integers i and k we have

(2.15)

	

ni+.k ? ni + nk

then
Pr(&i - nip = Of or infinitely many i) = 1 .

That the condition (2 .6) alone is not sufficient can be shown by a counter-
example . On the other hand, it is trivial that (2.6) is a necessary condition .
The condition (2 .15) can be replaced e .g. by the following condition :

ni+1 - ni > llnii/a ,

	

%1 > 0.

The proof is different and will be omitted here .
PROOF of THEOREM 1 . Let the sequence ni be defined as in Lemma 1 . Then

by Lemma 1 and 2 this sequence satisfies the conditions (2.5) and (2.6) in
Lemma 3 . Hence by Lemma 3 the condition (2 .13) in Lemma 4 is satisfied
with any 17 < 2 . Thus byLemma 4 we have (2.14) . Taking a = /3 = 0 therein
we obtain

Pr(S., - nip = {nip} infinitely often) = 1 .

we
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Hence by the definition (2 .2)

Pr(I S„ - np i < en
-1/2~(n) -1 infinitely often) = 1 .

Since c is arbitrarily small (1.2) is proved .
REMARK . It is clear that (2.14) yields more than Theorem 1 since a and (3

are arbitrary . It is easily seen that we may even make a and 0 vary with n;
in a certain way, but we shall omit these considerations here .
PROOF of THEOREM 2 . Arrange all the positive integers n for which we have

I
{np}

I
< An1/2q5(n)

-1 ,
in an ascending sequence ni, i = 1, 2,

	

. Since
(nip} I < An-j ' 12

we have

(2.16)

	

I {ni+lp - nip} I <_ 2Ani1120(n i)_
1

On the other hand, since p is a quadratic irrational, it is well-known' that there
exists a number M > 0 such that

(2.17)

	

I
{ni+ , p - nip}

I >M

ni,i - ni
From (2.16) and (2.17) we get with A, = M/2A,

(2.18)

	

ni+1 - ni > Alni 20(ní)
Without loss of generality we may assume that 0(ni)

replace 0(n) by ¢ 1 (n) defined as follows :
< n, /2

A > 0.

For we may

~1(n) _ 0(n)
if 0(n) <

	

2
n1/2

	

if (,(n) > n1/z

After this replacement (1 .3) remains convergent, while if (1 .4) holds for 01(n),
it holds a fortiori for q5(n) .

Now if 0(ni) <_ ni /2 , and the constant A 2 is such that 2A 2 + A2 < A, , we
have from (2 .18)

Hence by iterating,

Therefore by (1 .3)

ni+, > ni /2
T A2<~(ni) •

i
n~+i > A2 E ,~(nk) > A 2 Z ~(nk) > A2 -

k-1

	

k-[i/2]

	

- 2 C ` 1)2

(2.19)

	

n21/2 < 00 .
i=1

2 See e . g. HARDY AND WRIGHT, Introduction to the Theory of Numbers, Oxford 1938, p .
157 .
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As in (2.11) we have

Hence from (2.18)
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pi = Pr(Sni = I(pni» .

1
pi
-

-,/27rpgni .

i=1

By the classical Borel-Cantelli lemma it follows that

Pr(S„ i = I (pni) infinitely often) = 0.

By the definition of ni this is equivalent to (1 .4) .

3. LEMMA 5 . Let X, , • • •, X n , • • - be independent random variables hating
the same distribution function F(x) which satisfies the conditions in Theorem 3 .
Then if x, < x2 and x, = 0(1), x 2 = 0(1) as n -> oo, we have

(3.1)

	

Pr(xi <_ n -tr2S ~ < x2) _ ( 27r) 1t2 (x 2 - X1)+ o(x2 - X0 + 0(narz)

PROOF. By Cramér's asymptotic expansion' we have, if we denote the rth

moment of F(x) by a,,

	 f x

Pr Can <_ x =1
2~

é ó2r2 dy - 6~2~r 1~n (x
2 - 1) CZ 2 12

2

	

2a4 - 3a2 ( - x' + 3x)ez212 +	a3

	

( - xb -}- 102 - 15x)e X212 -i- R(x)
241/27rn

	

721/2,r n

where

R(x) 5 Qn-3r2

and Q is a constant depending only on F(x),
It follows, using elementary estimates, that

n

	

f x2
Pr xl <_

	

- < x2
= -\/ 2~r JZa

e X212 dy
~ )n

} 0 ((X2 - xl) (Ix
l	
-Vn

	 X2
I f

n))
+ 0

ln3)

Since xl = 0(1), x2 =o(l) this reduces immediately to (3 .1) .

3 CRAMÉR, Random Variables and Probability Distributions, Cambridge 1937, Ch . 7 .
For a simplified proof see P . L . Hsu, The Approximate Distribution of the Mean and Var-
iance of a Sample of Independent Variables, Ann. Math . Statistics, 16 (1945), pp . 1-29 .
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LEMMA 6 . Let zn be any real number such, that, zn = 0(n'i2), e any positive
number, and h any positive integer . Let 1k(n) T oo and

nik(n) = oO

Then if the random variables X n satisfy the conditions of Theorem 3, we have

(3.3)

	

Pr( I Sn - zn 1 < en-1/24, (n)-' at least once for n > h) = L

PROOF . Write

Pn = Pr (~ Sn - zn < cn 'i2 p(n) -' ) ;

Wk = Pr (ISi - z i I > cj 112
%k(j) ' for h=< j < k ;

	

I Sk - zk I < clti 1'2 V1(k)
.1 )

Pk,n= Pr (IS,, - zn I <_ cn112
I(n)

1 I I Si -zi I > cj 1/2,p(j) -1 for h <= j < k;

I Isk - zk I < ck-1l2 gk)-1)
Then by a similar argument as in Lemma 3, we have

(3.4)

	

E Pn < E Wk E Pk,n .
nsh

	

k_h

	

n-k

Our next step is to show that to any e > 0 there exists a constant A (E) such
that for n - k > A, we have

(3.5)

	

Pk,n

	

0 + E) Pn-k .

To prove this we divide the x-interval I x - zk I < clc1í2¢(k) - ' into disjoint
subintervals Ii ; of lengths < E'cn'i2V/(n)-' where c' > 0 is arbitrary . If we write

Pk'V = Pr ( I & - zn I < cn '~2 ¢(7z) - ' I S k - zk C Ii)

we have

Pk n -< Pr(S n - Sk C I ;)

where If is an interval of lengths <_ (2 + E')cn1i2< (2 + E')c(n - W"'
>G(n - k)-' lying within the interval I x - zn +Zk J 5 cn '~ 2~(n)- ' + ek-112~(k)-1
From Lemma 5 it is seen that if n - k

	

A, (-E'),

~i~ c

	

2(1 + E')c
Pk,n

	

(n - If)+G(n - k) '

Since Pk, n is a probability mean of Pk,'„ , we have
'

(3 .6)

	

Pk,n < Max Pk,', <	
21 +E )c

i

	

-V/27r (n - k)>G(n - k) .

On the other hand, we have again from Lemma 5, if n - k _>_ A2(E'),

P

	

_2(1 É)
n-k

-,,r (n - k)>5(n - k)

M

	

m

	

m



From (3 .6) and (3 .7) follows (3.5) .
Using (3 .5) in (3 .4) we get

(3.9)

m

	

m

	

k+A-1

	

m

Z Pn ~< Z Wk Z Pk,n + ( 1 + e)

	

P-k
n-h

	

k=h

	

n=k

	

n-k}A
m

	

m
S E Wk(A + (1 -E 5) 57- Pn)
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k=h

	

n=A
m

m

	

Pn
Wk

>

	

—h
mk=h

A + (1 + E) Z Pn—A

Now ~n=,x P,, = by (3.7) and (3.1) . It follows from (3.8) by letting n - >
that

Wk >	
k-h

	

I + E

Since e is arbitrary and the left-hand side does not depend on e we have

Z Wk >= 1 .
k=h

Thus (3.3) follows .
PROOF OF THEOREM 3 . Taking z = 0 in (3 .9) and denoting by El, the event

& I < cn "q/(n) -1 '

we can write (3 .9) as follows

	

Y

:

Pr

	

En
)

= 1,
h4

where the sign Z denotes disjunction of events . Now the event which consists
.n the realization of an infinite number of the En 's can be written as
I

n= Enh

where the sign 11 denotes conjunction of events . Hence

Pr
(
~ (Z En

	

lim ~1: En = 1 .
h=1 n=h

	

h-+oo n-h

Thus (1.5) is proved. The proof of (1 .6) follows immediately from Lemma 5
and Borel-Cantelli lemma .
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