OVER-CONVERGENCE ON THE CIRCLE OF CONVERGENCE

By Paul Erdös and George Piranian

1. Introduction and summary. M. Riesz has proved [7] that if $\lim _{n \rightarrow \infty} a_{n}=$ 0 and the function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is regular at each point of the arc $C\left(z=e^{i \alpha}\right.$, $\left.\alpha_{1} \leq \alpha \leq \alpha_{2}\right)$, the series $\sum a_{n} z^{n}$ converges to $f(z)$ uniformly on the arc C. If the sequence a_{n} fails to converge to zero, the series $\sum a_{n} z^{n}$ cannot possibly converge at any point on the unit circle; but it is still possible that a subsequence of the partial sums $s_{n}(z)=\sum_{k=0}^{n} a_{k} z^{k}$ converges at some points on the unit circle. In fact, Ostrowski's gap theorem [5] and [4; 204-207] asserts that if the function $f(z)=\sum a_{n} z^{n}$ is regular at all points of the arc C (including the end points) and m_{i} and n_{i} are two sequences such that $\lim \inf _{i \rightarrow \infty} n_{i} / m_{i}>1$ and $a_{n}=0$ when $m_{i}<n<n_{i}$, the partial sums $s_{m_{i}}(z)$ converge to $f(z)$ uniformly in some domain that contains the arc C.

If the requirement $\lim \inf _{i \rightarrow \infty} n_{i} / m_{i}>1$ in Ostrowski's theorem is relaxed, convergence of the partial sums $s_{m_{i}}(z)$ to $f(z)$ at points on the unit circle may still occur provided that the function $f(z)$ or its Taylor coefficients satisfy certain conditions [1], [6] - the theorem by M. Riesz may be regarded as providing a special example. The present paper establishes certain general conditions sufficient for uniform convergence of the sequence $s_{m_{i}}(z)$ to the function $f(z)$ on an arc C of the unit circle.
2. The general principle. Riesz's proof of his theorem has been greatly simplified by Landau [3;73]: Let the function $f(z)=\sum a_{n} z^{n}$ be regular on the arc C of the unit circle; then there exists a circular segment Γ (vertex at the origin) containing the arc C and its end points, and such that $f(z)$ is regular at all points of Γ and its boundary. The functions

$$
g_{n}(z)=\left[f(z)-s_{n}(z)\right] z^{-n-1}\left(z-z_{1}\right)\left(z-z_{2}\right)
$$

(where z_{1} and z_{2} are the intersections of the unit circle with the boundary of Γ), are regular in Γ; each therefore takes its maximum modulus on the boundary of Γ. Landau shows that the sequence $g_{n}(z)$ tends to zero uniformly on the boundary of Γ, and it follows that the sequence $f(z)-s_{n}(z)$ tends to zero uniformly on the arc C.

Landau's proof in turn invites certain modifications. The general principle stated below gives the results that can be obtained by these modifications. The results become interesting when the modifications are made specific.

Principle. (i) Let Γ be a region such that the function $f(z)=\sum a_{n} z^{n}$ and its immediate analytic extension are regular in the interior of Γ and continuous on Γ, and let the boundary of Γ meet the unit circle at z_{1} and z_{2}.

Rowned Fehrmay 15. 1947.
(ii) Let the arc C of the unit circle (together with its end points) be interior to Γ, and let $L=\min \left|\left(z-z_{1}\right)\left(z-z_{2}\right)\right|(z$ on $C)$.
(iii) Let m_{i} and n_{i} be increasing sequences of integers ($i=0,1,2, \cdots ; m_{i}<n_{i}$) such that $a_{n}=0$ when $m_{i} \leq n \leq n_{i}$. Then a sufficient condition that $s_{m_{i}}(z) \rightarrow$ $f(z)$ uniformly on C is the existence of a positive sequence p_{i} such that the sequence of functions

$$
g_{i}(z)=\left[f(z)-s_{m_{i}}(z)\right]\left[\left(z-z_{1}\right)\left(z-z_{2}\right) / L\right]^{p_{i} z^{-\left(m_{i}+n_{i}\right) / 2}}
$$

tends to zero uniformly on the boundary of Γ.
The principle is virtually obvious: each function $g_{i}(z)$ is regular in Γ; the principle of the maximum therefore applies; and since on C

$$
\left|f(z)-s_{m_{i}}(z)\right|=\left|g_{i}(z)\right|\left[\left|\left(z-z_{1}\right)\left(z-z_{2}\right)\right| / L\right]^{-p i}
$$

and the quantity in brackets is not less than unity, the proof is complete.
3. Application to Taylor series with bounded coefficients. It seems reasonable to expect that sufficient conditions for over-convergence will generally involve the size of the Taylor coefficients and the lengths and positions of the gaps. Remarkably enough, the following theorem assures over-convergence at an astonishingly rapid rate which is independent of the position of the gaps.

Theorem 1. If
(i) $\left|a_{n}\right|<A(n=0,1,2, \cdots)$;
(ii) $a_{n}=0$ when $m_{i} \leq n \leq n_{i}\left(\lim _{i \rightarrow \infty}\left(n_{i}-m_{i}\right)=\infty\right)$;
(iii) the function $f(z)=\sum a_{n} z^{n}$ is regular on the arc C of the unit circle (including the end points);
then the sequence $s_{m i}(z)$ converges to $f(z)$ uniformly on C; moreover, if k is any constant less than unity, there exists an integer i_{0} such that on C

$$
\left|f(z)-s_{m_{i}}(z)\right|<\left(n_{i}-m_{i}\right)^{-\left(n_{i}-m_{i}\right)^{k}}
$$

when $i>i_{0}$.
To prove that the sequence $s_{m_{i}}(z)$ converges to $f(z)$ uniformly on C, it would be sufficient to apply the general principle with the region Γ chosen as for Landau's proof of Riesz's theorem, and with $p_{i}=2(i=0,1,2, \cdots)$. The proof of the complete theorem is carried out with the same region Γ, but it calls for a more delicate choice of the sequence p_{i}.

For simplicity, the following notation is used:

$$
\begin{aligned}
& \left(n_{i}+m_{i}\right) / 2=N_{i} \\
& \left(n_{i}-m_{i}\right) / 2=M_{i}=N_{i}-m_{i}=n_{i}-N_{i} .
\end{aligned}
$$

A constant h is chosen so that $k<h<1$, and the sequence p_{i} is defined by the relation

$$
p_{i}=M_{i}^{h}+1
$$

It is to be shown that on the boundary of Γ the relation

$$
\left|\left[f(z)-s_{m_{i}}(z)\right]\left[\left(z-z_{1}\right)\left(z-z_{2}\right) / L\right]^{1+M_{i}{ }^{k}} z^{-N_{i}}\right|<\left(2 M_{i}\right)^{-\left(2 M M_{i}\right)^{k}}
$$

holds uniformly provided the index i is sufficiently large.
The proof is carried out in three parts: for the segment $z=r z_{1}(0 \leq r \leq 1)$; for the segment $z=r z_{1}(1 \leq r \leq R)$; and for the arc $|z|=R$. Symmetry permits the suppression of all discussion regarding the segment $z=$ $r z_{2}(0 \leq r \leq R)$.

On the first part the relation

$$
\left|f(z)-s_{m_{i}}(z)\right| \leq \sum_{n=n_{i}}^{\infty}\left|a_{n}\right| r^{n}<A r^{n_{i}} /(1-r)
$$

gives the estimate

$$
\left|g_{i}(z)\right|<A c L^{-1} r^{M i}[(1-r) c / L]^{M_{i}{ }^{h}},
$$

where c denotes the diameter of the region Γ. Since

$$
\max r^{s}(\mathrm{I}-r)^{t}=\left(\frac{s}{s+t}\right)^{s}\left(\frac{t}{s+t}\right)^{t} \quad(0<r<1)
$$

suppression of the subscript i gives the inequalities

$$
\begin{aligned}
|g(z)| & <A c L^{-1}\left(\frac{M}{M+M^{h}}\right)^{M}\left(\frac{M^{h} c / L}{M+M^{h}}\right)^{M^{h}} \\
& <A c L^{-1}\left(1+1 / M^{1-h}\right)^{-M^{1-h} M^{h}}\left(M^{1-h} L / c\right)^{-M^{h}} \\
& <A c L^{-2}\left(2 e M^{1-h} L / c\right)^{-M^{h}}
\end{aligned}
$$

and therefore

$$
|g(z)|<\left(K M^{1-h}\right)^{-M^{n}}
$$

where K is a certain positive constant; this implies that if M_{i} is sufficiently large,

$$
\begin{aligned}
\log |g(z)| & <-M^{h}[\log K+(1-h) \log M] \\
& <-(2 M)^{k} \log (2 M),
\end{aligned}
$$

as was to be shown.
On the segment $z=r z_{1}(1 \leq r \leq R)$,

$$
\left|g_{i}(z)\right|<\left[F+\sum_{n=0}^{m_{i}-1}\left|a_{n}\right| r^{n}\right][(r-1) c / L]^{1+3 i_{i} i^{i}} r^{-N i}
$$

where $F=\max |f(z)|(z$ on $\Gamma)$. This inequality implies that (subscripts suppressed)

$$
|g(z)|<\left[F+A \frac{r^{m}-1}{r-1}\right][(r-1) c / L]^{1+M^{h}} r^{-N}
$$

and, for sufficiently large values of i,

$$
\mid g(z)<2 A c L^{-1} r^{-M}[(r-1) c / L]^{M^{\Lambda}} .
$$

Because

$$
\begin{align*}
& \max r^{-s}(r-1)^{t}=\left(\frac{s}{s-t}\right)^{-s}\left(\frac{t}{s-t}\right)^{t} \tag{r>1}\\
|g(z)|< & 2 A c L^{-1}\left(\frac{M}{M-M^{h}}\right)^{-M}\left(\frac{M^{h} c / L}{M-M^{h}}\right)^{M^{n}} \\
= & 2 A c L^{-1}\left(1-M^{n-1}\right)^{-M^{1-t} M^{h}}\left[\left(M^{1-h}-1\right) L / c\right]^{-M^{h}} \\
< & \left(K M^{1-h}\right)^{-M^{\lambda}}<\left(2 M_{i}\right)^{-\left(2 M_{i}\right)^{k}}
\end{align*}
$$

provided M_{i} is sufficiently large.
On the are $|z|=R$,

$$
\begin{aligned}
\left|g_{i}(z)\right| & <\left[F+A \sum_{n=0}^{m_{i}-1} R^{n}\right](c / L)^{1+M_{i}{ }^{h}} R^{-N_{i}} \\
& <\frac{2 A}{R-1} R^{-M_{i}}(c / L)^{1+M_{i}{ }^{i}} \\
& =[(1-\epsilon) R]^{-M_{i}}
\end{aligned}
$$

$\left(\lim _{i \rightarrow \infty} \epsilon=0\right)$. A simple comparison shows that the last member is less than

$$
\left(2 M_{i}\right)^{-\left(2 M_{i}\right)^{k}}
$$

when M_{i} is sufficiently large, and the proof is complete.
4. Functions of finite order. A function $f(z)=\sum a_{n} z^{n}$ is said to be of finite order on the unit circle provided

$$
\limsup _{n \rightarrow \infty} \log \left|a_{n}\right| / \log n<\infty
$$

[2;171]. For functions of this type, two closely related theorems will be proved simultaneously.

Theorem 2. If a_{n} is a sequence such that
(i) there exists a constant t such that $\left|a_{n}\right|<n^{t}(n=0,1,2, \cdots)$;
(ii) there exist two sequences of integers m_{i}, n_{i} such that $\lim _{i \rightarrow \infty}\left(n_{i}-m_{i}\right) / \log$ $n_{i}=\infty$ and such that $a_{n}=0$ when $m_{i} \leq n \leq n_{i}$;
(iii) the function $f(z)=\sum a_{n} z^{n}$ is regular on the arc C of the unit circle (including its end points);
then the sequence $s_{m_{i}}(z)$ converges to $f(z)$ uniformly on C; moreover, if k is any constant, there exists an integer i_{0} such that on C

$$
\left|f(z)-s_{m_{i}}(z)\right|<n_{i}^{-k}
$$

when $i>i_{0}$
Theorem 3. Let Γ be any region and C an arc on the unit circle interior (together with its end points) to Γ. Corresponding to every constant there exists a second constant $k(t, C, \Gamma)$ such that for every function $f(z)=\sum a_{n} z^{n}$ which is regular in the interior of Γ and continuous on Γ, the sequence $s_{m i}(z)$ converges to $f(z)$ uniformly on C provided
(i) $\left|a_{n}\right|<n^{t}(n=0,1,2, \cdots)$,
(ii) $a_{n}=0$ when $m_{i} \leq n \leq n_{i}(i=0,1,2, \cdots)$, where n_{i} is a sequence such that

$$
\liminf _{i \rightarrow \infty}\left(n_{i}-m_{i}\right) / \log n_{i}>k(t, C, \Gamma)
$$

The following version of the proof, wasteful in its treatment of inequalities, is presented because of its simplicity. Without loss in generality it may be assumed that the region Γ in Theorem 3 is a sector of an annulus: $z=r e^{i \alpha}$; $R_{1} \leq r \leq R_{2}, R_{1}<1<R_{2} ; \alpha_{1} \leq \alpha \leq \alpha_{2}$. The symbols c, M_{i}, N_{i}, and F are used with the same meaning as in the previous section; the symbol θ_{i} denotes the quantity $M_{i} / \log n_{i}$. The sequence p_{i} is defined by the relation

$$
p_{i}=t+1+\log n_{i}
$$

Part 1. On the segment $z=r z_{1}\left(R_{1} \leq r \leq 1\right)$

$$
\begin{aligned}
\left|g_{i}(z)\right| & <\sum_{n=n_{i}}^{\infty} n^{t} r^{n}[(1-r) c / L]^{p^{t}} r^{-N_{i}} \\
& <n_{i}^{t} r^{M_{i}} \sum_{n=0}^{\infty} n^{t} r^{n}[(1-r) c / L]^{\log n_{i}}[(1-r) c / L]^{t+1} \\
& <C_{1}\left[r^{\theta_{i}}(1-r) e^{t} c / L\right]^{\log n_{i}}
\end{aligned}
$$

where C_{1} is a constant depending on c, L, and t.
Part 2. On the segment $z=r z_{1}\left(1 \leq r \leq R_{2}\right)$

$$
\begin{aligned}
\left|g_{i}(z)\right| & <\left|F+\sum_{n=0}^{m_{i}-1} n^{t} r^{n}\right|[(r-1) c / L]^{p_{i}} r^{-N_{i}} \\
& <2 m_{i}^{t+1} r^{-M_{i}}[(r-1) c / L]^{\log m_{i}}[(r-1) c / L]^{t+1} \\
& <C_{2}\left[r^{-\theta_{i}}(r-1) e^{t+1} c / L\right]^{\log n_{i}} .
\end{aligned}
$$

Part 3. On the arc $z=R_{2} e^{i \alpha}\left(\alpha_{1} \leq \alpha \leq \alpha_{2}\right)$

$$
\begin{aligned}
\left|g_{i}(z)\right| & <\left[F+\sum_{n=0}^{m_{i}-1} n^{t} R_{2}^{n}\right]\left(c^{2} / L\right)^{p_{i}} R_{2}^{-N_{i}} \\
& <m_{i}^{t+1}\left[R_{2}^{-\theta_{i}} c^{2} / L\right]^{\log n_{i}}\left(c^{2} / L\right)^{t+1} \\
& <C_{3}\left(R_{2}^{-\theta_{i}} e^{t+1} c^{2} / L\right)^{\log n_{i}}
\end{aligned}
$$

Part 4. On the arc $z=R_{1} e^{i \alpha}\left(\alpha_{1} \leq \alpha \leq \alpha_{2}\right)$

$$
\begin{aligned}
\left|g_{i}(z)\right| & <\sum_{n=n_{i}}^{\infty} n^{t} R_{1}^{n}\left(c^{2} / L\right)^{p_{i}} R_{1}^{-N_{i}} \\
& <n_{i}^{t} R_{1}^{M_{i}} \sum_{n=0}^{\infty} n^{t} R_{1}^{n}\left(c^{2} / L\right)^{p_{i}} \\
& <C_{4}\left[R_{1}^{\theta_{i}} e^{t} c^{2} / L\right]^{\log n_{i}}
\end{aligned}
$$

In Part 1, the quantity $\left|g_{i}(z)\right|$ is dominated by $C_{1}\left[\left(1-R_{1}\right) e^{i} c / L\right]^{\log n_{i}}$, in Part 2 by $C_{2}\left[\left(R_{2}-1\right) e^{t+1} c / L\right]^{\log n_{i}}$. If the contents of the two pairs of brackets are not less than unity, they may be made so by replacing the radii R_{1} and R_{2} by radii R_{1}^{\prime} and R_{2}^{\prime} nearer to unity. The quantities dominating $\left|g_{i}(z)\right|$ in Parts 3 and 4 are then replaced by $C_{3}\left[R_{2}^{\prime-\theta i} e^{t+1} c^{2} / L\right]^{\log n_{i}}, C_{4}\left[R_{1}^{\prime \theta i} e^{t} c^{2} / L\right]^{\log n_{i}}$. The contents of the last two pairs of brackets are less than unity and bounded away from unity provided that

$$
\begin{aligned}
& \quad \log R_{2}^{\prime} \limsup _{i \rightarrow \infty} \theta_{i}>t+1+\log c^{2} / L, \\
& -\log R_{1}^{\prime} \limsup _{i \rightarrow \infty} \theta_{i}>t+\log c^{2} / L .
\end{aligned}
$$

Theorem 3 now follows at once. The conclusion of Theorem 2 follows, for any fixed constant k, if R_{1}^{\prime} and R_{2}^{\prime} are chosen so that

$$
\begin{aligned}
& R_{1}^{\prime}>1-e^{-k-t} L / c \\
& R_{2}^{\prime}<1+e^{-k-t-1} L / c
\end{aligned}
$$

Since nothing hinders this choice, the proof is complete.
The preceding proof of Theorem 3 passes from inequality to inequality with utter disregard of economy, and it finally accomplishes its purpose by heaping most of its burden on the quantity lim $\sup _{i \rightarrow \infty} \theta_{i}$. In other words, the quantity $k(t, C, \Gamma)$ is made unnecessarily large. Whereas a proof constructed to obtain the best possible value for $k(t, C, \Gamma)$ would be so loaded with parameters that all its salient features would be obliterated, it is of interest to mention some of the possible refinements:

The diameter c of the region Γ may be replaced by quantities $c_{i}(j=1,2,3,4)$
where c_{1} and c_{2} represent the maxima of $\left|z-z_{2}\right|$ on Parts 1 and 2 of the boundary of Γ, respectively, and c_{3}^{2} and c_{4}^{2} represent the maxima of $\left|\left(z-z_{1}\right)\left(z-z_{2}\right)\right|$ on Parts 3 and 4, respectively.

The factors $r^{\theta i}$ and $r^{-\theta i}$ in the majorants for $\left|g_{i}(z)\right|$ on Parts 1 and 2 of the boundary of Γ need not be discarded; they can perform useful work, as in the proof of Theorem 1. This approach makes it unnecessary to choose R_{1}^{\prime} and R_{2}^{\prime} near to unity. Further freedom (of value when R_{2} can be chosen quite large) is then obtained if the sequence $p_{i}=t+1+\log n_{i}$ is replaced by the sequence $p_{i}=t+1+s \log n_{i}$, where s is a convenient constant between zero and unity.
5. Two general theorems. In the application of the general method of this paper an essential step consists of estimating the quantity $\left|f(z)-s_{m_{i}}(z)\right|$ by means of the Taylor series $\sum_{n=n_{i}}^{\infty}\left|a_{n}\right| r^{n}$. The previous two sections deal with cases in which the sequence $\left|a_{n}\right|$ is dominated by the special sequence n^{t}; the present section deals with a more general dominating sequence.

If a sequence a_{n} has the property $\left|a_{n}\right| \leq e^{\rho(n)}(n=0,1,2, \cdots)$, where the function $\varphi(x)$ is continuous and has a right-hand derivative $\varphi^{\prime}(x)$ tending to zero monotonically as $x \rightarrow \infty$, it follows at once (since $\left.\log \left|a_{n}\right|^{1 / n} \leq \varphi(n) / n\right)$ that $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq 1$. If on the other hand the sequence a_{n} has the property $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq 1$, it is graphically obvious that there exists a continuous function $\varphi(x)$ with a right-hand derivative tending monotonically to zero as $x \rightarrow \infty$ and such that $\log \left|a_{n}\right| \leq \varphi(n)(n=0,1,2, \cdots)$; in fact, in any case in which the inequality $\left|a_{m}\right| \leq \lim \sup _{n \rightarrow \infty}\left|a_{n}\right|$ holds for all non-negative integers m, there exists a least function $\varphi(x)$ with these properties. The concave sequences $\varphi(n)$ dominating the sequences $\log \left|a_{n}\right|$ will be used in estimating the quantities $\left|f(z)-s_{m_{i}}(z)\right|$.

Theorem 4. If
(i) the function $f(z)=\sum a_{n} z^{n}$ is regular on the arc C of the unit circle (including its end points);
(ii) $\varphi(x)$ is a function such that $\varphi^{\prime}(x) \searrow 0$ as $x \rightarrow \infty$ and such that $\left|a_{n}\right| \leq e^{\varphi(x)}$ ($n=0,1,2, \cdots$);
(iii) N_{i} and θ_{i} are sequences such that

$$
\begin{aligned}
\liminf _{i \rightarrow \infty} \frac{\varphi\left(N_{i}\right) \log \theta_{i}}{\log N_{i}} & >1 \\
\lim _{i \rightarrow \infty} \theta_{i} & =\infty, \\
a_{n} & =0 \text { when }\left|n-N_{i}\right| \leq \theta_{i} \varphi\left(N_{i}\right) ;
\end{aligned}
$$

then the sequence $s_{N_{i}}(z)$ converges to $f(z)$ uniformly on the arc C.
The proof follows the pattern that produced Theorem 1. The same region is used; but the consideration of the function

$$
g_{i}(z)=\left[f(z)-s_{m_{i}}(z)\right]\left[\left(z-z_{1}\right)\left(z-z_{2}\right) / L\right]^{\varphi\left(N_{i}\right)} z^{-N_{i}}
$$

on the segment from the origin to the point z_{1} is carried out separately for the two segments $0 \leq|z| \leq 1-2 \varphi\left(N_{i}\right) / N_{i}, 1-2 \varphi\left(N_{i}\right) / N_{i} \leq|z| \leq 1$. The symbols F and c shall have the same meaning as in §2. The symbols m_{i} and n_{i} represent the quantities $N_{i}-\theta_{i} \varphi\left(N_{i}\right), N_{i}+\theta_{i} \varphi\left(N_{i}\right)$.

Part 1. When $z=r z_{1}\left(0 \leq r \leq 1-2 \varphi\left(N_{i}\right) / N_{i}\right)$,

$$
\begin{aligned}
\left|f(\boldsymbol{z})-s_{m_{i}}(z)\right| & <\sum_{n=n_{i}}^{\infty} r^{n} e^{\varphi(n)} \\
& <r^{n_{i}} e^{\varphi\left(n_{i}\right)} \sum_{n=0}^{\infty} r^{n} e^{n^{\prime}\left(n_{i}\right)} \\
& <r^{n_{i}} e^{\varphi\left(n_{i}\right)} /\left[1-r e^{\varphi^{\prime}\left(N_{i}\right)}\right] .
\end{aligned}
$$

Since $(1-2 x) e^{x}<1-x(x>0)$ and $\varphi^{\prime}\left(N_{i}\right)<\varphi\left(N_{i}\right) / N_{i}$ (the assumption that $\varphi(0) \geq 0$ entails no loss in generality), the following relations exist:

$$
\begin{aligned}
\left|f(z)-s_{m_{i}}(z)\right| & <r^{n_{i}} e^{\varphi\left(n_{i}\right)}\left[1-\left(1-2 \varphi\left(N_{i}\right) / N_{i}\right) e^{\varphi\left(N_{i}\right) / N_{i}}\right] \\
& <r^{n_{i}} e^{\varphi\left(n_{i}\right)} N_{i} / \varphi\left(N_{i}\right), \\
\left|g_{i}(z)\right| & <\frac{N_{i}}{\varphi\left(N_{i}\right)} r^{n_{i}-N_{i}} e^{\varphi\left(n_{i}\right)}[(1-r) c / L]^{\varphi\left(N_{i}\right)} \\
& <N_{i}\left[r^{\theta_{i}}(1-r)(1+\epsilon) e c / L\right]^{\varphi\left(N_{i}\right)}
\end{aligned}
$$

(the assumption that $e^{\varphi\left(n_{i}\right)}=\left[(1+\epsilon) e^{\varphi\left(N_{i j}\right)}\right)$ is justified if $\lim \sup n_{i} / N_{i}<\infty$; if this relation does not hold, the gaps can be divided into two classes so that the relation holds for one of the classes and Ostrowski's theorem fills the breach for the other class).
Since

$$
\begin{aligned}
\max _{0<r<1} r^{\theta_{i}}(1-r) & =\left(\frac{\theta_{i}}{\theta_{i}+1}\right)^{\theta_{i}+1} \frac{1}{\theta_{i}} \sim 1 /\left(e \theta_{i}\right), \\
\left|g_{i}(z)\right|<N_{i}\left(k \theta_{i}\right)^{-\varphi\left(N_{i}\right)} & =\exp \left\{\log N_{i}-\varphi\left(N_{i}\right) \log k \theta_{i}\right\},
\end{aligned}
$$

where k is an appropriate constant. The hypotheses on $\varphi\left(N_{i}\right) \log \theta_{i} / \log N_{i}$ and on θ_{i} imply that $g_{i}(z) \rightarrow 0$ uniformly on Part 1 .

Part 2. When $z=r z_{1}\left(1-2 \varphi\left(N_{i}\right) / N_{i} \leq r \leq 1\right)$,

$$
\left|f(z)-s_{m_{i}}(z)\right|<F \sum_{n=0}^{m_{i}-1} e^{\varphi(n)}<N_{i} e^{\varphi\left(N_{i}\right)}
$$

and (subscripts suppressed)

$$
\begin{aligned}
|g(z)| & <N e^{\varphi(N)} r^{-N}[(1-r) c / L]^{\varphi(N)} \\
& <N e^{\varphi(N)}[1-2 \varphi(N) / N]^{-N}[2 \varphi(N) c /(N L)]^{\varphi(N)} \\
& =N\left\{[1-2 \varphi(N) / N]^{-N / \varphi(N)}(2 e c / L) \varphi(N) / N\right\}^{\varphi(N)} \\
& =N[(1+\epsilon) k \varphi(N) / N]^{\varphi(N)},
\end{aligned}
$$

where $k=2 e^{3} c / L$ and $\epsilon \rightarrow 0$ as $i \rightarrow \infty$. With the notation $\varphi\left(N_{i}\right)=e^{a x}, N_{i}=$ $e^{z_{i+t}}$, the last member becomes

$$
\exp \left\{s_{i}+t_{i}-e^{s i}\left[t_{i}-\log (1+\epsilon) k\right]\right\}
$$

and since $\lim s_{i}=\lim t_{i}=\infty$, this tends to zero as $i \rightarrow \infty$.
Part 3. When $z=r z_{1}(1 \leq r \leq R)$

$$
\begin{aligned}
\left|f(z)-s_{m_{i}}(z)\right| & <F+\sum_{n=0}^{m_{i}} r^{n} e^{\varphi(n)}<N_{i} e^{\varphi\left(m_{i}\right)} r^{m_{i}} \\
\left|g_{i}(z)\right| & <N_{i} e^{\varphi\left(m_{i}\right)}\left[r^{-\theta_{i}}(r-1) c / L\right]^{\varphi\left(N_{i}\right)} \\
& <N_{i}\left[r^{-\theta i}(r-1) k\right]^{\varphi\left(N_{i}\right)}
\end{aligned}
$$

where $k=e c / L$. Since

$$
\max _{1<r} r^{-\theta_{i}}(r-1)=\left(\frac{\theta_{i}}{\theta_{i}-1}\right)^{\theta_{i}+1} \frac{1}{\theta_{i}} \sim e / \theta_{i}
$$

the conclusion is again obvious.
Part 4. When $|z|=R$,

$$
\left|g_{i}(z)\right|<N_{i}\left[R^{-\theta i} e c^{2} / L\right]^{\varphi\left(N_{i}\right)}
$$

and the proof of Theorem 4 is complete.
It should be pointed out that the condition $\lim \theta_{i}=\infty$ in Theorem 4 is strictly analogous to the condition $\lim \left(n_{i}-m_{i}\right) / \log n_{i}=\infty$ in Theorem 2. In both theorems it is required that the length of the gap beginning at $n=m_{i}$ be large compared with $\varphi\left(m_{i}\right)$, where the sequence $\varphi(n)$ is a concave majorant of the sequence $\log \left|a_{n}\right|$. If in Theorem 1 the constant majorant A of the bounded sequence $\left|a_{n}\right|$ is taken greater than unity (so that its logarithm is positive), Theorem 1 immediately falls into one pattern with Theorems 2 and 4.

Now Theorem 4 is of interest only in those cases in which lim sup \log $\left|a_{n}\right| / \log n>0$ (all other cases are covered better by Theorems 1 and 2). There remains the case of functions whose Taylor coefficients a_{n} are unbounded but are ultimately less than n^{α} in absolute value, where α is an arbitrarily small positive constant. This case is covered by Theorem 2, but in a way that requires the lengths of the gaps to be very much greater than the least possible concave majorant of the sequence $\log \left|a_{n}\right|$. Theorem 5 abolishes this state of discrimination; more generally, it improves the status of all Taylor series of finite order with unbounded coefficients; it includes Theorem 2.

Theorem 5. If

(i) the function $f(z)=\sum a_{n} z^{n}$ is regular on the arc C of the unit circle (end points included);
(ii) $\varphi(x)$ is a function such that

$$
\varphi(x) \rightarrow \infty, \quad \varphi^{\prime}(x) \searrow 0 \quad(x \rightarrow \infty)
$$

$\lim \sup _{x \rightarrow \infty} \varphi(x) / \log x<\infty$,

$$
\left|a_{n}\right|<e^{\varphi(n)} \quad(n=0,1, \cdots)
$$

(iii) N_{i} and θ_{i} are sequences such that

$$
\begin{gathered}
\lim \theta_{i}=\infty \\
a_{n}=0 \text { when }\left|n-N_{i}\right| \leq \theta_{i} \varphi\left(N_{i}\right)
\end{gathered}
$$

then the sequence $s_{N_{i}}(z)$ converges to $f(z)$ uniformly on the arc C; moreover, if ϵ is any positive constant, there exists an integer i_{0} such that $\left|f(z)-s_{N_{i}}(z)\right|<$ $\epsilon^{\varphi(N i)}$ when $i>i_{0}$.

The proof is carried out with the same region Γ (and with the same notation) as the proof of Theorem 4. The exponent p_{i} has the value $\varphi\left(N_{i}\right)+q$, where q is any constant greater than $1+\max \varphi(n) / \log n(n=2,3, \cdots)$. It is to be shown that the function

$$
g_{i}(z)=\left[f(z)-s_{m i}(z)\right]\left[\left(z-z_{1}\right)\left(z-z_{2}\right) / L\right]^{\varphi\left(N_{i}\right)+q_{2}} z^{-N_{i}}
$$

tends to zero uniformly (and with a certain rapidity) on the boundary of Γ, as $i \rightarrow \infty$.

When $z=r z_{1}(0 \leq r \leq 1)$,

$$
\begin{aligned}
\left|f(z)-s_{m_{i}}(z)\right| & \leq \sum_{n=n_{i}}^{\infty} r^{n} e^{\varphi(n)} \\
& \leq \sum_{n=0}^{\infty} r^{n_{i}+n^{\varphi}} e^{\varphi\left(n_{i}\right)+\varphi(n)} \\
& <r^{n_{i}} e^{\varphi\left(n_{i}\right)}\left(\left|a_{0}\right|+\left|a_{1}\right|+\sum_{n=2}^{\infty} r^{n} n^{\alpha-1}\right) \\
& <C_{1} r^{n_{i}}[(1+\eta)]^{\varphi\left(N_{i}\right)}(1-r)^{-\alpha}, \\
\left|g_{i}(z)\right| & <\left[C_{2} r^{\left.r_{i}(1-r)\right]^{\varphi\left(N_{i}\right)}} .\right.
\end{aligned}
$$

Since the maximum value of $r^{\theta \cdot}(1-r)$ on the interval $0 \leq r \leq 1$ tends to zero as θ_{i} becomes large, the required result follows for the segment from the origin to the point z_{1}.

When $z=r z_{1}(1 \leq r \leq R)$,

$$
\begin{aligned}
\left|f(z)-s_{m_{i}}(z)\right| & \leq F+\sum_{n=0}^{m_{i}-1} r^{n} e^{\varphi(n)} \\
& <F+e^{\varphi\left(m_{i}\right)} \sum_{n=0}^{m_{i}-1} r^{n} \\
& <2 e^{\varphi\left(m_{i}\right)} r^{m_{i}} /(r-1), \\
\left|g_{i}(z)\right| & <\left[C_{3} r^{-\theta i}(r-1)\right]^{\varphi\left(N_{i}\right)}
\end{aligned}
$$

and again the required result follows immediately.
Finally, on the are $|z|=R$,

$$
\left|g_{i}(z)\right|<\left[C_{4} R^{-\theta_{i}}\right]^{\varphi\left(N_{i}\right)}
$$

and the proof is complete.
6. A theorem on double gaps. A Taylor series $\sum a_{n} z^{n}$ shall be said to have double gaps with partitions of thickness k if there exist infinite sequences m_{i}, n_{i}, n_{i}^{\prime} with the property that

$$
\begin{aligned}
& \qquad \lim _{i \rightarrow \infty}\left(n_{i}-m_{i}\right)=\lim _{i \rightarrow \infty}\left(n_{i}^{\prime}-n_{i}\right)=\infty, \\
& a_{n}=0 \text { when } m_{i}<n \leq n_{i} \text { or } n_{i}+k<n \leq n_{i}^{\prime}, \\
& a_{n} \neq 0 \text { for at least one of the values } n=n_{i}+j \quad(j=1,2, \cdots, k) .
\end{aligned}
$$

Theorem 6. If
(i) the Taylor series $\sum a_{n} z^{n}$ has double gaps with partitions of thickness k;
(ii) the coefficients a_{n} are bounded;
(iii) one of the k sequences $a_{n_{i}+i}(j=1,2, \cdots, k)$ fails to converge to zero as $i \rightarrow \infty$;
then the function $f(z)=\sum a_{n} z^{n}$ cannot be extended analytically beyond the unit circle.

It follows from Theorem 1 that if the function $f(z)$ is regular on any arc C of the unit circle, the sequences $s_{n i}(z)$ and $s_{n i+k}(z)$ must converge to $f(z)$ uniformly on the are C. Now

$$
s_{n i+k}(z)-s_{n i}(z)=z_{n i} \sum_{i=1}^{k} a_{n i+i} z^{i}
$$

and

$$
\left|\sum_{i=1}^{k} a_{n_{i}+i} z^{i}\right|=A_{i}\left|\sum_{i=1}^{k}\left(a_{n_{i}+i} / A_{i}\right) z^{i}\right|
$$

where $A_{i}=\max \left|a_{n_{i}+i}\right|(j=1,2, \cdots, k)$. Since the polynomial in the last member has at least one coefficient of modulus unity, its maximum modulus on the arc C is bounded away from zero; and since $\lim \sup A_{i}>0$, the overconvergence guaranteed by Theorem 1 cannot take place. Therefore the unit circle has no arcs of regularity for the function $f(z)$, and the theorem is proved.

It is clear that Theorems 2, 4 and 5 induce theorems analogous to Theorem 6. Moreover, it is easily seen that condition (iii) in Theorem 6 can be weakened: it is not necessary that the sequence $a_{n_{i}}+j$ does not tend to zero, merely that, for some constant k less than unity and for infinitely many values of the integer i, the two inequalities

$$
\begin{aligned}
& \left|a_{n_{i}}+j\right|>\left(n_{i}-m_{i}\right)^{-\left(n_{i}-m_{i}\right)^{k}}, \\
& \left|a_{n_{i}}+j\right|>\left(n_{i}^{\prime}-n_{i}\right)^{-\left(n^{\prime} i-n_{i}\right)^{k}}
\end{aligned}
$$

are satisfied.

References

1. R. P. Boas, Jr., Some gap theorems for power series, this Journal, vol. 4(1938), pp. 176188.
2. J. Hadamard, Essai sur l'étude des fonctions, données par leur développement de Taylor. Journal de Mathématiques pures et appliquées, (4), vol. 8(1892), pp. 101-186.
3. E. Landau, Darstellung und Begründung einiger neuever Ergebnisse der Funktionentheorie, Berlin, 1929.
4. P. Montel, Legons sut les familles normales des fonctions analytiques et leur applications, Paris, 1927.
5. A. Ostrowskr, Über eine Eigenschaft gewisser Potenzreihen mit unendlichvielen verschwindenden Koeffizienten, Sitzungsberichte der Kgl. Preussischen Akademie der Wissenschaften zu Berlin, vol. 34(1921), pp. 557-565.
6. G. Piranian, On the convergence of certain partial sums of a Taylor series with gaps, Bulletin of the American Mathematical Society, vol. 49(1943), pp. 881-885.
7. M. Riesz, Über einen Satz des Herrn. Fatou, Journal für die reine und angewandte Mathematik, vol. 140(1911), pp. 89-99.

Syracuse University and
University of Michigan.

