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1. Introduction and summary. N. Riesz has proved [7] that ij I&,-,, a, = 
0 and the junction j(z) = czS,, a,$ is regular at each point of the arc C(z = e”“, 
aI 5 a i at2), the series c a,$ conneryes to j(z) uniformly on the arc C. If tht> 
sequence a, fails to converge to zero, the series c a,$ cannot possibly converge 
at any point on the unit circle; but it is still possible that a subsequence of 
t’he partial sums s,(x) = C”= li 0 alizk converges at some points on the unit circle. 
In fact’, Ostrowski’s gap theorem [5] and 14; 20&207] asserts that if the junction 
j(z) = c a,.~” is regular at all points of the arc C (inclucling the end points) and 
mi and ni are two sequences such that lim in&,, ni/mi > 1 and a,, = 0 when 
m, < n < ni , the partial sums s,,(z) converge to j(z) unijomzly in some domain 
that contains the arc C. 

If the requirement lim inf,,, nJm, > 1 in Ostromski’s theorem is relaxed, 
convergence of the partial sums s,~(x) to j(z) at points on the unit circle may 
still occur provided t,hnt the function j(z) or its Taylor coefficients satisfy 
certain conditions [l], [6] -- t,he theorem by >I. Riesz may be regarded as pro- 
viding a special example, The present paper establishes certain general con- 
ditions sufficient for unifolln convergence of the sequence s,,(z) to t,he function 
j(z) on an arc C of the unit Grcle. 

2. The general principle. Riesz’s proof of his theorem has been greatl) 
simplified by Landau 13; 731: Let t,he function j(x) = c a$ be regular on 
the arc C of the unit, circle; t,hen there exist#s a circular segment r (vertex at the 
origin) containing t.he arc C and it,s end points, and such that j(z) is regular 
a,t, all point.s of T’ and its boundary. The functions 

g&> = [f(x) - s,(x>]z-“-‘(2 - z,)(z - 2,) 

(where 2, and Z~ are the intersections of t,he unit circle with the boundary of r), 
are regular in I?; each Q~erefore t,akes its maximum modulus on the boundary 
of r. Landau shows t,hat t.he sequence gn(z) tends to zero uniformly on the 
boundary of I’, and it follows that t,he sequence j(z) - s,(z) tends t,o zero uni- 
formly on the arc C. 

La,n&au’s proof in t.urn inrit,ex certain modifications;. The general principle 
stat’cd below gives t,he result’s t,hat, can be obtained by these modificat.ions. 
The results become int:er&ing Tvhen the modifications are made specific. 

PRINCIPLE. (i) Let r & a region such t1ra.t the function j(z) = c a,$ a.& its 
immedia.te analytic cxtensi~n aYe regular in the i.nikrior of r a,nd continftou.7 on 
r: md let the borr~diq of r ~meet the unit circlr al 2, rind z2 . 

l~rvY~iw,I F~4ow~r,v I.5 194;. 
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(ii) Let the arc C oj th.e unit circle (together with its end points) be interior to 
r, and let L = min / (z - z,)(z - 2,) 1 (2 on C). 

(iii) Let mi and ni be increasing sequ.ences of integers (i = 0, 1, 2, * . . ; m, < nJ 
such that a, = 0 wh.en mi < n 5 ni . Then a sz&ient condition that s,,(x) --) 
j(z) uniformly on C is th.e existence of a positive sequence p; such that th.e sequence 
of junctions 

g,(z) = [f(z) - s,,(z)] [(z - z,)(z - Z?)iL]piZ-(nfi+r’i)‘a 

tends to zero uniformly on the bowndary of I?. 

The principle is virt,ually obvious: each function gd(z) in regular in I’; the 
principle of t,he maximum therefore applies; and since on C 

lf(4 - %;(4 I = I m I [I (2 - Zl)(Z - 4 ll-w”’ 

and the quant’it,y in bracket’s is not’ less t’han unity, the proof is complete. 

3. Application to Taylor series with bounded coefficients. It seems reasonable 
to expect t,hat sufficient conditions for oyer-convergence will generally involve 
t.he size of the Taylor coefficient,s and t.he lengths and positions of th’e gaps. 
Remarkably enough, the following theorem assures over-convergence a.t an 
astonishingly rapid rate which ir, independent of the position of the gaps. 

THEOREM 1. 1j 
(i) j a, 1 < A (n = 0, 1, 2, . . .); 

(ii) a, = 0 when m, 5 n 5 n, (lim,, (n‘ - m,) = m); 
(iii) the junction j(z) = C a,$’ is regular on the arc C of the unit circle (including 

the end points) ; 
then the sequence s,,,;(z) converges to j(z) uniformly on C; moreover, if k is any 
constant less than unity, there exists an integer i, such that on C 

/j(z) - s,,,(z) j < (12, - mJ-‘-~)” 

when i > i0 . 
I 

To prove that the sequence s,,(z) convergw to j(z) uniformly on C’, it would 
be sufficient to apply the general principle x&h the region X’ chosen a~ for 
Landau’s proof of Riesz’s theorem, and v&h p, = 2 (i = 0, 1, 2, . . e). The 
proof of the complete theorem is carried out wit,h the same region I?, but it calls 
for a more delicate choice of the sequence pi . 

For simplicit,y, the following notat,ion is used: 

(n, + T&),/2 = N, , 

(n, - m,)/2 = 111, = -V, - m, = n, - N, . 

A constant h is chosen so that k < h < 1: and the sequence p1 is defined by 
t,he relation 

p, = MI” + 1. 
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It. is t,o be shown that> on the boundary of r the relation 

/ [f(z) - s,i(z)] [(z - z,)(z - Z2)/L1’+-V’hz-,y’ / < (2MiyNi)’ 

holds uniformly provided the index i is sufficiently large. 
The proof is carried out in three parts: for the segment z = rzl (0 I T 5 1); 

for the segment’ z = rzl (1 5 T 5 R); and for t,he arc 1 .a 1 = R. Symmet,ry 
permits the suppression of all discussion regarding the segment x = 
PZg (0 5 T < R). 

On the first, part, the rela.tion 

gives the est~imate 

where c denotes t,he diamet’er of t)he region I’. Since 

maxr”(l - r)’ = (--&)‘($--)- 

suppression of the subscript i gives the inequalities 

(0 < .r < I), 

and therefore 

j g(z) / < (KM’-“)-“‘“, 

where K is a certain positive constant,; this implies that, if &Ii is sufficienll? 
large, 

log / g(z) j < -M”[log K $ (1 - It) log M] 

< -(2My log (2M), 

as was to be shown. 
On the segment z = rz, (1 5 r < R), 

/ g&f) j < [F + mg* 1 a, I i],(r - l)c/L]‘+3f’kr-Ni 

where F = max I f(z) I ( z on I?). This inequality implies that (subscripts sup- 
pressed) 
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and, for sufficiently large values of i, 

1 g(z) < 2AcL-‘~-~[(r - l)e/L]? 

Because 

maxr-*(r - 1)’ = (*)-‘(5)” (T > 11, 

= &4&-‘(1 - Mh-l)--M’-hMk[(M1--I - l)L/$-“” 

< (jy&p)--Mh < (2J.fi)-(2M*)k 

provided Mi is sufficient.ly large. 
On the arc ( z ] = R, 

1 g;(z) 1 < [F + A mg’ R.](c,)‘*“~~R-~~ 

= ro - t)R]-“’ 
. 

(llm j+.. C = 0). A simple comparison shows that the last member is less than 

(2&)-(=f4)h 

when Mi is sufficiently large, and the proof is complete. 

4. Functions of finite order. A function f(z) = c a,,.~” is said to be of finite 
order on the unit circle provided 

lim sup log ] uR ]/log n < 0) 
“-+a 

[2; 1711. For functions of this type, t\+o closely related theorems will be proved 
simultaneously. 

THEOREM 2. If a, is a sequence such that 
(i) there exists a constant t such that ) a, 1 < n’ (n = 0, 1, 2, . . e); 

(ii) there exist two sequences of integers mr , n; such that lim+., (ni - mJ/log 
ni = m and such that are = 0 when mi < TL < ni ; 

(iii) the jun49ion j(z) = C a,,.~” is regular on the arc C of the unit circle (in- 
cluding its end points) ; 
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then the sequence s,,,+(z) converges to f(z) unijormly on C; moreover, if k is any con- 
s&d, there exists an integer i,, such that on C 

when i > io 

I f(4 - s,,(z) 1 < 6” 

THEOREM 3. Let I’ be any region and C an arc on the unit circle interior & 
gether with its end points) to I’. Corresponding to evey constant t there exists a 
second constant k(t, C, I’) such that for every junction j(z) = c a,$ which is 
regular in the interior of I? and continuous on I’, the sequence s,,(z) converges 
to j(z) uniformly on C provided 

(i) (a,] < n’(n = 0, 1,2, .a*), 
(ii) a, = 0 when rn; < 7~ < ni (i = 0, 1, 2, . * e), where ni is a sequence sudr 

that 

lim inf (n; - mi)/lognj > k(t, C, r). 
i-m 

The following version of the proof, wasteful in its treatment of inequalities, 
is presented becau,% of its simplicity, Without loss in generality it may be 
assumed that the region I’ in Theorem 3 is a sector of an annulus: x = reia; 
R, 5 r < R, , R, < 1 < R, ; (Y~ 5 Q: 5 a2 . The symbols c, M, , N, , and 
F are used with the same meaning as in the previous section; the symbol 8,. 
denotes the quantity M,/log ni . The sequence p, is defined by the relation 

pi = t + 1 + log ?Zi 

Part 1. On the segment z = rzl (RI 5 r I 1) 

1 g&) 1 < 2 12%*[(l - ~)c/L]Y+~ 
n=ni 

< n:rMi g n’r”[(l - r)c/L]‘Og “‘[(l - r)c/L]‘+* 

< C,[P(l - r)e’c/L]l” “’ , 

where (I, is a constant depending on c, L, and t. 

Part 2. On the segment z = rzl (1 < r I R,) 

1 gi(X) 1 < 1 F + m%’ n’r” 1 [(r - l)~/L]‘~r-~’ 
n=O 

< 2m:+‘y’[(r - l)c/L]‘“’ SJ[(r - l)c/LIL+’ 

< C,[r-“‘(r - l)e”‘c/L]‘“p %I. 
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Part 3. On t#he arc z = R2eiu (aI 5 01 5 aya) 

mi-1 

1 g,(z) 1 < F + 5 n”R,” 1 (c*/L)“‘R? 

< WR; 
e,et+lC2/Ly0~ ni 

Part 4. On the arc I = Rle’IL (cyI < LY < a2) 

1 g&z) 1 < 2 dR;(c’/L)““R;” 
w=ni 

< C4[Rfie*c2/L]“’ ni. 

In Part 1, the quantity / g;(z) j is dominated by C,[(l - Rl)e’c/L]‘og”“, in 
Part 2 by CJ(& - l)e’+lc/L]‘op”“. If the contents of the two pairs of brackets 
are not less than unit’y, Obey may be made so by replacing the radii R1 and 
R, by radii Ri and Ri nearer to unity. The quantities dominating 1 gi(z) 1 in 
Parts 3 and 4 are then replaced by C3[R~-eiet+1~2/L]10g ni, C4[R~B’eLca/L]‘“’ “;. 
The contents of the last t.wo pairs of bracket’s are less t’han unity and bounded 
away from unity provided that 

log R; lim sup 0; > t + 1 + log c2/L, 
i-m 

-log R: lim sup 0; > t + log c’/L,. 
i--rm 

Theorem 3 now follows at once. The conclusion of Theorem 2 follows, for any 
fixed constant L, if R{ and Ri are chosen so that 

R: > 1 - e-‘-“L/c, 

Ri < 1 + e-k-‘-lL/c. 

Since nothing hinders this choice, the proof is complete. 
The preceding proof of Theorem 3 passes from inequality to inequality with 

utter disregard of economy, and it finally accomplishes its purpose by heaping 
most of its burden on the quantity lim sup,,,B, . In other words, the quantity 
k(i, C, I’) is made unnecessarily large. Whereas a proof constructed to obtain 
the best possible value for Ic(t, C, I?) would be so loaded with parameters that 
all its salient features would be obliterated, it is of interest to mention some 
of the possible refinements: 

The diameter c of the region I? may be replaced by quantities ci (j = 1, 2, 3, 4) 
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where c1 and c2 represent t,he maxima of ( z - z2 ( on Parts 1 and 2 of the boundary 
of I?, respectively, and ci and c: represent the maxima, of / (x - x,)(2 - z,) ( 
on Parts 3 and 4, respectively. 

The fact’ors yea and reei in the majorants for j g<(z) ( on Parts 1 and 2 of the 
boundary of P need not’ be discarded; they can perform useful work, as in the 
proof of Theorem 1. This approach makes it unnecessary to choose R! and R: 
near to unity. Further freedom (of value when R, can be chosen quite large) 
is t,hen obtained if t’he sequence pi = t + 1 + log n; is replaced by the sequence 
pi = t + 1 + s log n.; , where s is a convenient, constant between zero and unity. 

5. Two general theorems. In the application of the general method of this 
paper an essential step consists of estimating the quantity / f(z) - s,,(z) 1 
by means of the Taylor series cZ=ni 1 o, / 1. The previous two sections deal 
with cases in which the sequence 1 a, ( is dominated by the special sequence n”; 
the present section deals with a more general dominating sequence. 

If a sequence ara has t,he property / a, ( < e*‘“’ (YZ = 0, 1, 2, . . m), where the 
function (O(X) is continuous and has a right-hand derivative P’(X) tending to 
zero monotonically as 2 -4 co! it follows at once (since log j a, jl’n 5 q(n)/n) 
that lim sup,, ( a, (I’* < 1. If on the other hand the sequence a, has the prop- 
erty lim SUP,~ I a, \I’* I 1, it, is graphically obvious that there exists a con- 
tinuous function P(X) with a right-hand derivative tending monotonically to 
zero as z --f 0~ and such that log 1 a, ( I q(n) (n = 0, 1, 2, . . .) ; in fact., in any 
case in which the inequality ( a, ( _< lim sup,,, ( n, ( holds for all non-negative 
integers m, there exists a least function &) with these properties. The con- 
cave sequences cp(n) dominating the sequences log / a, ( will be used in esti- 
mating the quant,ities I f(z) - s, 1 (2) (. 

THEOREM 4. Ij 

(i) the junction j(z) = c a,.~” is regular on the arc C of the uGt circle (in- 
cluding its end points) ; 

(ii) p(z) is a junction such that P’(Z) I 0 as r --f ~0 and such that / a,, / < f’(‘) 
(n ==o, 1, 2, . . a); 

(iii) iVi and 8; are seq!cences such that 

lim 8, = m , 
r-m 

a, = 0 when I n - N, I 5 f&(N,); 

then the sequence s,,-,(z) converges to j(z) uniformly cm the arc C.. 

The proof follows the pattern that produced Theorem 1. The same region 
is used; but the consideration of the function 

gi(z) = [f(z) - s,,(z)][(z - 21)(x - z*)/L]“‘\“‘z-~-’ 
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on the segment from the origin to the point zt is carried out separately for the 
two segments 0 5 I x 1 I 1 - %(NI)/Ni, 1 - 2(p(iV,)/iV, 5 1 z 1 I 1. The 
symbols F and c shall have the same meaning as in 92. The symbols m, and 
ai represent the quantities Ni - Bc(a(Ni), Ni + O,(p(Nz). 

Part 1. When 2 = rzl (0 5 r 5 1 - 24VJ/NJ, 

Smce (1 - 2s)e” < I - z (CC > 0) and (P’(N$) <. (p(Nd)/Ni (the assumpt,ion 
that q(O) 2 0 entails no loss in generality), bhe following relations exi&: 

1 f(z) - s,,(z) 1 < rncePCni)[l - (1 - 2~(Ni)!Ni)e~“~“““‘] 

< Ni[re’(l - r)(l + +X/L]““” 

(the assumption that e”“” = [(l + e)e]“-v*‘) is justified iflimsupr~,jN~ < m; 
if this relation does not hold, the gaps can he divided into two classes so that 
the relation holds for one of the classes and Ostrowski’s Oheorem fills the breach 
for the other class). 

Since 
e OiA-1 

max ree(l - r) = L 
( > 

1 

O<r<l 8; + 1 - - l/@-Q, ej 

1 g&z) 1 < N&3i)-Q(N’) = exp {log Ni - &NJ log k&j, 

where k is an appropria+e constant. The hypotheses on cp(NJ log B,/log Ni 
and on 8, imply that g<(z) -+ 0 uniformly on Part 1. 

Part 2. When 2 = 7% (1 - 2cp(Ni)/Ni _< r L: l), 

) f(z) - s,,(z) 1 < F c e”“’ < N,ePcNi’> 
n=O 

and (subscripts suppressed) 

1 g(z) 1 < Ne”“‘r-N[(l - T)c/LIYCN) 

< NeQcN)[l - 2~(N)lI\i]-“[2~(N)c/(NL)]~““’ 

= N{[l - 2(p(N)/N]-““‘“’ (Zec/L)p(N)/N} ‘(N) 

= N[(l + ~)IQ,&V)/N]“‘~‘, 
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where k = 2e3c/L and E + 0 as i -+ ~0. With the notat,ion p(Ni) = ear, Ni = 
e *i+t‘, the last member becomes 

exp (si + fi - e”‘[t, - log (1 + e)k]), 

and since lim s, = lim ti = m, this tends to zero as 2’ -+ co. 
Part 3. When z = T.Z~ (1 5 Y < R) 

1 g&z) 1 < N,e”mr)[r-ei(r - ~)c/L]“~” 

< N&-“(r - l)k]“‘-‘, 

where k = et/L. Since 

max T 
1<r 

-yr - 1) = ($J” +, - e/oi ) 
% I 

the conclusion is again obvious. 
Part 4. When ] z [ = R, 

1 gl(z) / < N,[R-e~e&L]r’“~‘, 

and the proof of Theorem 4 is complete. 
It should be pointed out that the condition lim 0i = CD in Theorem 4 is 

strictly analogous to the condition lim (ni - m;)/log ni = 0~ in Theorem 2. 
In both theorems it is required that the length of the gap beginning at n = mi 
be large compared with &Q where the sequence p(n) is a concave majorant 
of the sequence log ) a,, 1. If in Theorem 1 the constant majorant A of the 
bounded sequence 1 a, 1 is taken greater than unity (so that its logarithm is 
positive), Theorem 1 immediately falls into one pattern with Theorems 2 and 4. 

Now Theorem 4 is of interest only in those cases in which lii sup log 
1 a. I/log n > 0 (all other cases are covered better by Theorems 1 and 2). 
There remains the case of functions whose Taylor coefficients u, are unbounded 
but are ultimately less than n”: in absolute value, where cy is an arbitrarily 
small positive constant This case is covered by Theorem 2, but in a way that 
requires the lengths of the gaps to be very much greater than the least possible 
concave majorant of the sequence log 1 a, 1. Theorem 5 abolishes this state 
of discrimination; more generally, it improves the status of all Taylor series 
of finite order with unbounded coefficients; it includes Theorem 2. 

THEOREM 5. If 

(i) the function f(x) = C ad” is regular on the cm C of the unit tircle (end 
points included) ; 
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(ii) p(x) is a junction such. that 

lim sup,,, &J>/loe x < 03, 

lu,l < ePCn) (n = 0, 1, .**); 

(iii) Ni and Oi are sequences such that 

lime; = a, 

U, = 0 when 1 n - Ni 1 5 8&N,); 

then the sequence s,,(z) converges to j(z) uniformly on the arc C; moreover, if a 
is atiy positive constant, there exists un integer iO such that [j(z) - SN~(.Z) 1 < 
ZtNi) when i > i,, . 

The proof is carried out with the same region r (and with the same notation) 
as the proof of Theorem 4. The exponent pi has the value &Vi) + Q, where 
q is any constant greater than 1 + max cp(n)/log n (n = 2, 3, 4 . .). It is to 
be shown that the function 

g&) = [j(z) - s,,,(z)][(z - z,)(z - Zz)/L]“NS)CSZ-Ni 

tends to zero uniformly (and with a certain rapidity) on the boundary of r, 
asi+ a. 

When z = VA (0 I T < 13, 

1 j(z) - s,,(z) 1 5 2 rnePcn) 
n=ni 

< r”‘e”“i’(J a0 1 + 1 aI 1 + nz rnngel) 

< CIP[(l + 7j)e]V’N”(l - r)-a, 

( gi(Z) 1 < [Czrui(l - r)]‘(Ni). 

Since the maximum value of rei(l - r) on the interval 0 2 r 5 1 tends to 
zero as Bi becomes large, the required result follows for the segment from the 
origin to the point z, . 

When z = rzl (1 I r I R), 
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I f(z) - s,,Iz> 1 I F + c r??(n) 
n=O 

< F + euCmc) c vn 
n=O 

< 2e +q-yr - l), 

1 g,(x) 1 < [cp(r - l)]*(N’), 

a.nd again the required result follows immediately. 
Finally, on the arc 1 z ) = R, 

and the proof is complete. 

6. A theorem on double gaps. A Taylor series c a,$’ shall be said to have 
double gaps with partitions of thickness k if there exist infinite sequences mi , n, , 
n{ with the property that 

lim (7~ - m,) = lim (n: - n,) = 03, * 
i-m i-vm 

1 a, = 0 when mi < n < ni or ni + k < n < nl , 

a, # 0 for at least one of the values n = ni + j (j = 1, 2, --- , Is). 

THEOREM 6. If 
(i) the Taylor series c a,,.$ has double gaps with, partitims.of thicliness k; 

(ii) the coegicients a, are bounded; 
(iii) one of the k sequences a,‘,+i (j = 1, 2, * * . , k) fails to converge to zero as 

i-+ 0”; 

then th.e function j(z) = c a,$’ cannot be extended analytically beyorzd the, unit 
circle. 

It follows from Theorem 1 that if the function j(z) is regular on any arc C 
of the unit circle, the sequences s,,(z) and sni+&) must converge to j(z) uni- 
formly on the arc C. Now 

E 
Sni+k(Z) - S,,(Z) = zni C a,,+iz’, 

i=l 

and 
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where A, = max [a,,+, j (j = 1, 2, ... , k). Since t,he polynomial in the last 
member has at least one coefficient of modulus unity, its maZximum modulus 
on the arc C is bounded away from zero; and since lim sup Ai > 0, the over- 
convergence guaranteed by Theorem 1 cannot t,ake place. Therefore the unit 
circle has no arcs of regularity for the funct,ion f(z), and t.he t,heorem is proved. 

It is clear that Theorems 2, 4 and 5 induce theorems analogous to Theorem 
6. Moreover, it is easily seen that condition (iii) in Theorem 6 can be weakened: 
it is not necessary that the sequence a,; + j does not t,end to zero, merely that, 
for some constant k less than unity and for intinitelp many values of the integer 
i, the two inequalities 

1 a,; + j ) > (n, - ?n;)-(n-)L, 

1 ull; + j 1 > (n; - qy-+ 

are satisfied. 
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