N. G. de Bruijn and P. Erdös: On a combinatioral problem.
(Communicated at the meeting of November 27, 1948.)
Let there be given n elements $a_{1}, a_{2}, \ldots, a_{n}$. By $A_{1}, A_{2}, \ldots, A_{m}$ we shall denote combinations of the a's. We assume that we have given a system of $m>1$ combinations $A_{1}, A_{2}, \ldots, A_{m}$ so that each pair (a_{i}, a_{j}) is contained in one and only one A. Then we prove

Theorem 1. We have $m \geq n^{1}$), with equality occurring only if either the system is of the type $A_{1}=\left(a_{1}, a_{2}, \ldots, a_{n-1}\right), \quad A_{2}=\left(a_{1}, a_{n}\right)$, $A_{3}=\left(a_{2}, a_{n}\right) \ldots A_{n}=\left(a_{n-1}, a_{n}\right)$, or if n is of the form $n=k(k-1)+1$ and all the A 's have k elements, and each a occurs in exactly k of the A 's.

Corollary: If the elements a_{i} are points in the real projective plane the theorem can be stated as follows: Let there be given n points in the plane, not all on a line. Connect any two of these points. Then the number of lines in this system is $\geq n$. In this case equality occurs only if $n-1$ of the points are on a line.

This corollary can be proved independently of Theorem 1 by aid of the following theorem of Gallai (= Grünwald) ${ }^{2}$):

Let there be given n points in the plane, not all on a line. Then there exists a line which goes through two and only two of the points.

Remark: The points of inflexion of the cubic show that it is essential that the points should all be real, thus Gallai's theorem permits no projective and a fortiori no combinatorial formulation. Also the result clearly fails for infinitely many points.

We now give Gallai's ingenious proof: Assume the theorem false. Then any line through two of the points also goes through a third. Project one of the points, say a_{1} to infinity, and connect it with the other points. Thus we get a set of parallel lines each containing two or more points a_{i} (in the finite part of the plane). Consider the system of lines connecting any two of these points, and assume that the line ($a_{i} a_{j} a_{k}$) forms the smallest angle with the parallel lines. (This line again contains at least three points). But the line connecting a_{j} with a_{1} (at infinity) contains at least another (finite) point a_{r}, and clearly (see figure) either the line ($a_{i} a_{r}$)

[^0]or the line $\left(a_{r}, a_{k}\right)$ forms a smaller angle with the parallei lines then ($a_{i} a_{j} a_{k}$). This contradiction establishes the result,

Remark: Denote by $f(n)$ the minimum number of lines which go through exactly two points. It is not known whether $\lim f(n)=\infty$. All that we can show is that $f(n) \geq 3$.

Fig. 1.
Now we prove the corollary as follows: We use induction. Assume that the number of lines determined by $n-1$ points, not all on a line, is $\geq n-1$. Then we shall prove that n points, not all on a line, determine at least n lines.

Let (a_{1}, a_{2}) be a line going through two points only. Consider the points $a_{2}, a_{3}, \ldots, a_{n}$. If they are all on a line, then $\left(a_{1}, a_{i}\right), i=2,3, \ldots, n$ and $\left(a_{2}, a_{3}, \ldots, a_{n}\right)$ clearly determine n lines. If they do not all lie on a line, then they determine at least $n-1$ lines, and (a_{1}, a_{2}) is clearly not one of these lines. Thus together with $\left(a_{1}, a_{2}\right)$ we again get at least n lines. The same induction argument shows that we get exactly n lines only if $n-1$ of the points lie on a line, q.e.d.

Proof of theorem 1. For simplicity we shall call the elements $a_{1}, a_{2}, \ldots, a_{n}$ points and the sets $A_{1}, A_{2}, \ldots, A_{m}$ lines. Denote by k_{i} the number of lines passing through the point a_{i}, and by s_{j} the number of points on the line A_{j}. We evidently find (by counting the number of incidences in two ways)

$$
\begin{equation*}
\sum_{j=1}^{m} s_{j}=\sum_{i=1}^{n} k_{i} \tag{1}
\end{equation*}
$$

Further if A_{j} does not pass through a_{i}, then

$$
\begin{equation*}
s_{j} \leqslant k_{i} \tag{2}
\end{equation*}
$$

(2) follows from the fact that a_{i} can be connected by a line (i.e. an A) to all the s_{j} points of, A_{j}, and any two of these lines are different, since otherwise they would have two points in common.

Assume now that k_{n} is the smallest k_{i} and that $A_{1}, A_{2}, \ldots, A_{k_{n}}$ are the lines through a_{n}. We may suppose that each line contains at least two points, since otherwise it could be omitted. Also $k_{n}>1$, for otherwise all the points are on a line. Thus we can find points a_{i} on $A_{i}, a_{i} \neq a_{n}$, $i=1,2, \ldots, k_{n}$. Also if $i \neq j, i \leq k_{n}, j \leq k_{n}$ then a_{i} is not on A_{j} (for
otherwise A_{i} and A_{j} would have two points in common). Hence by (2) (putting $k_{n}=v$)
$s_{2} \leqslant k_{1}, \quad s_{3} \leqslant k_{2}, \ldots, \quad s_{v} \leqslant k_{v-1}, \quad s_{1} \leqslant k_{v} ; \quad s_{j} \leqslant k_{n}$ for $j>\nu$.
From (1), (3) and the minimum property of k_{n} we obtain $m \geq n$, which proves the first part of Theorem 1.

We now determine the cases where $m=n$. If $m=n$, then all the inequalities of (3) have to be equalities. Consequently we can renumerate the points so that $s_{1}=k_{1}, s_{2}=k_{2}, \ldots, s_{n} \neq k_{n}$. We may suppose that $k_{1} \geq k_{2} \geq \ldots \geq k_{n}>1$. There are two cases:
a) $k_{1}>k_{2}$. Hence by $s_{1}=k_{1}>k_{i}(2 \leq i \leq n)$. (2) shows that all the $a_{i}(i \geq 2)$ lie on A_{1}. Of course a_{1} does not lie on A_{1} and we have the first case of Theorem 1.
b) $k_{1}=k_{2}$. If no k_{i} is less than k_{1} then clearly $k_{i}=s_{j}(1 \leq i, j \leq n)$. We shall show that this is the only possibility. If $k_{j}<k_{1}$, then we have by (2) that a_{j} lies on both A_{1} and A_{2}. Hence k_{n} is the only k which can be less than k_{1}. Now $s_{n}=k_{n}$ different lines contain a_{n}. Any line through a_{n} contains one further point and all but one contain two further points, since $k_{1}=k_{2}=\ldots=k_{n_{-1}}>k_{n} \geq 2$. Thus there are at least two lines which do not contain a_{n}; for both of these lines we have by (2) $s_{j} \leq k_{n}$. This contradicts $s_{1}=s_{2}=\ldots=s_{n-1}>k_{n}$.

Apart from case a) we only have the case where $s_{i}=k_{j}=k$, ($1 \leq i, j \leq n$). It is easily seen that then $n=k(k-1)+1$, and also that any pair of lines has exactly one intersection point. For if A_{i} does not intersect A_{j}; and if a_{l} lies on A_{i} then we infer from (2) that $k_{l} \geq s_{j}+1$ which is not possible since $k_{l}=s_{j}=k$. The two dimensional projective finite geometries with $k-1=p^{a}, p$ prime, are known to be systems of this type, but $\mathrm{F} . \mathrm{W} . \mathrm{Levi}^{3}$) constructed a non-projective example with $k=9$.

[^1]
[^0]: ${ }^{1}$) This was also proved by G. Szekeres but his proof was more complicated.
 ${ }^{2}$) This theorem was first conjectured by Sylvester, Gallai's proof appeared in the Amer. Math. Montly as a solution to a problem by P. Erdös. The corollary to Theorem 1 also appeared as a problem in the Monthly.

 See also H. S. M. Coxeter, Amer. Math. Monthly 55, 26-28 (1948), where very simple proofs due to Kelly and Steinberg are given.

[^1]: ${ }^{3}$) F. W. Levi, Finite geometrical systems, Calcutta 1942.

