
N. G. DE BRUIJN and P. ERD~S: On a combinatioral problem. 

(Communicated at the meeting of November 27, 1948.) 

Let there be given n elements a,, a2, . . . . an. By Al, A,, . . . . Am we shall 
denote combinations of the a’s. We assume that we have given a system 
of m > 1 combinations Al, A*, . . . . Am so that each pair (ai, al) is con- 

tained in one and only one A. Then we prove 

Theorem 1. We have m 1 n I), with equality occurring only if either 

the system is of the type A, = (al, a2, . . . . an-~), AZ = (alPan), 

As = (az. an ) .., A, = (an-l, an), or if II is of the form n = k(k--1) f 1 

and all the A’s have k elements, and each a occurs in exactly k of the d’s. 

Corollary: If the elements aj are points in the real projective plane the 
theorem can be stated as follows: Let there be given n points in the plane, 
not all on a line, Connect any two of these points. Then the number of lines 

in this system is 2 n. In this case equality occurs only if n - 1 of the 
points are on a line. 

This corollary can be proved independently of Theorem 1 by aid of the 
following theorem of GALLAI (= GRUNWALD) 2): 

Let there be given n points in the plane, not all on a line, Then there 

exists a iine which goes through two and only two of the points. 

Remark: The points of inflexion of the cubic show that it is essential 
that the points should all be real, thus GALLAI’S theorem permits no pro- 
jective and a fortiori no combinatorial formulation. Also the result clearly 
fails for infinitely many points. 

We now give GALLAI’S ingenious proof: Assume the theorem false. Then 
any line through two of the points also goes through a third. Project one 
of the points, say al to infinity, and connect it with the other points. Thus 
we get a set of parallel lines each containing two or more points ai (in 

the finite part of the plane). Consider the system of lines connecting any 
two of these points, and assume that the line (ai aj ak) forms the smallest 
angle with the parallel lines. (This line again contains at least three 
points). But the line connecting a, with al (at infinity) contains at least 
another (Finite) point ar, and clearly (see figure) either the line (ai ar ) 

‘) This was also proved by G. SZEKERES but his proof was more complicated. 
*) This theorem was first conjectured by SYLVESTER, CALLUS proof appeared in 

the Amer. Math. Montly as a solution to a problem b,y P. ERD&. The corollary to 
Theorem 1 also appeared as a problem in the Monthly. 

See also H. S. M. COXETER, Amer. Math. Monthly 55, 26-28 (1948), where very 
simple proofs due to KELLY and STEINBERG are given, 
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or the line (ar, ak) forms a smaller angle with the parallei lines then 

(ai ai ak). This contradiction establishes the result, 

Remark: Denote by f(n) th e minimum number of lines which go 
through exactly two points. It is not known whether lim f(n) = co. All 
that we can show is that f(n) Z 3. 

J 
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Fig. 1. 

Now we prove the corollary as follows: We use induction. Assume that 
the number of lines determined by n- 1 points, not all on a line, is 
Ln - 1, Then we shall prove that n points, not all on a line, determine at 

least n lines. 

Let (al, az) be a line going through two points only. Consider the points 

a2, 33, . . . . an. If they are all on a line, then (a,, ai), i = 2,3, . . ., n and 

(a2, a3, . . . . an) clearly determine n lines, If they do not all lie on a line, 

then they determine at least n - 1 lines, and (a,, a2) is clearly not one of 
these lines. Thus together with (a,, a2) we again get at least n lines. The 
same induction argument shows that we get exactly n lines only if n - 1 
of the points lie on a line, q.e,d, 

Proof of theorem 1, Ror simplicity we shall call the elements 

al, a 2, . . . . a, points and the sets A,, A,, . . . . A, lines. Denote by ki the 
number of lines passing through the point ai, and by sj the number of 

points on the line Aj. We evidently find (by counting the number of 
incidences in two ways) 

j#,sj=.$ki . a e e , . . . 
i=l 

* (1) 

Further if Aj does not pass through ai, then 

(2) follows from the fact that ai can be connected by a line (i.e. an A) 
to all the sj points of,Aj, and any two of these lines are different, since 
otherwise they would have two points in common. 

Assume now that kn is the smallest ki and that A,, A2, . .., Ak,, are the 

lines through an. We may suppose that each line contains at least two 
points, since otherwise it could be omitted. Also k, > 1, for otherwise all 
the points are on a line. Thus we can find points ai on Ai, al + an, 

i= 1,2, . . . . kn. Also if i $ j, i 5 k,, j I k, then ai is not on Aj (for 

3 



(1279) 423 

otherwise Ar and Aj would have two points in common). Hence by (2) 
(putting kn = Y) 

~2 G kl s s3 < kz, . . . , sv< kv-1, sl < kv: sj < k, for, j $ Y. (3) 

From (1). (3) and the minimum property of kn we obtain m 2 n, which 

proves the first part of Theorem 1. 

We now determine the cases where m = n. If m = n, then all the 
inequalities of (3) have to be equalities. Consequently we can renumerate 
the points so that s1 = k,, s2 = k2, . . ., sn 1 k,. We may suppose that 

k, 2 k2 2 ..a - > kn > 1. There are two cases: 

a) k,>kz. Hence by sl=kl>ki(25iIn), (2) shows that all 

the ai (i > 2) lie on Al, Of course a, does not lie on Al and we have the 
first case of Theorem 1. 

b) kl= k2. If no ki is less than kl then clearly ki = sj (1 Si, j(n). 

We shall show that this is the only possibility. If kj < kl, then we have 
by (2) that a/ lies on both A, and A2. Hence kn is the only k which can 

be less than kl. Now sn = kn different lines contain an. Any line through 
ati contains one further point and all but one contain two further points, 

since kl = k2 = . . . = L-1 > k, Z 2. Thus there are at least two lines 
which do not contain an; for both of these lines we have by (2) sj 5 kn- 
This contradicts s1 = s2 = . . . = sn-l > km. 

Apart from case a) we only have the case where si = ki = k, 

(1 Ii, jl n). It is easily seen that then n = k (k- 1) + 1, and also 
that any pair of lines has exactly one intersection point. For if Ai does 
not intersect Aj; and if ar lies on Ai then we infer from (2) that kz 3 sj + 1 
which is not possible since kr = sj = k. The two dimensional projective 
finite geometries with k - 1 z pa, p prime, are known to be systems of this 

type, but F. W. LEVI 3) constructed a non-projective example with k = 9. 

3) F. W. LEVI, Finite geometrical systems, Calcutta 1942. 


