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Denote by rk(n) the number of integers not exceeding 7~ having exactly k 
prime factors (multiple factors are counted only once). Hardy and Ramanu- 
jati’ proved that 

(1) T&b) < c(n/log n) * (loglog n + c):)“-l/(k - l)! < c(n/(loglog n>f>. 

(c denotes constants not necessarily the same.) Put x = [loglog n] Hardy* con- 
jectured that 

(2) r&) > c(n/(loglog n)“) = c(n/log n) Q?/(h: - 1) !. 

Piilai and I proved this conjecture (independently).* In fact we both proved 
that for x - cz* I X: S z + CX* (the interval (z - KC*, x + cx”) will be denoted 
by 1). 

(3) 7k(n> > c(n/(loglog n);), 

and Pillai proved that for L < cx 

m(n) > c(n/log n) &‘/(k - 1) !. 

In the present paper we shall prove that for k in I 

(4) ‘IT&z) = (1 + O(l)). (n/log n) .z”-‘/(k - l)!. 

I believe that a formula like (4) holds for k < CX, but the proof presents diffi- 
culties which I have not yet been able t 3 overcome. 

In the proof of (4) we will have to use the prime number theorem. It will be 
relatively easy to prove (3) (Lemma 3), and the prime number theorem will not 
be required for the proof of (3). 

Throughout this paper k and 9’ will denote integers in 1. ajk’, i = 1, 2 ‘ -1 
denotes the integers S n having exact,ly li prime factors (multiple factors are 
counted only once). C (l/c$‘) will indicate that the summation is extended 
over i. 

LEMMA 1. 

1 Collected papers of S. Ramanujan, p. 262-275. 
2 “Ramanujan” by G. H. Hardy, p. 56. 
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Hardy and Ramanujan3 prove that for large c the number of integers 6 n, 
for which the number of prime factors is in I, is > (1 - ~)n. Let n* $ m 6 n, 
clearly loglog m = loglog n + 0 (1). Thus it easily follows that the number of 
integers 5 m for which the number of prime factors is in (.r - c.r’, x f I%‘) is 
> (1 - e)m. Thus 

which proves the lemma. 
LEMMA 2. 

It follows from Lemma 1 that. for some r 

(5) 

Furthei 

Hence 

We obtain from (5) and (6) by a simple computat.ion that for every ksr 

The prime indicates that the summation is extended over the primes p with 
p” 6 n/@), p ,f’ c$). Hence 

0) (r + 1)X l/C$+” > c l/a~“(lOg1Og (n/a;“) - c log z) 

since, as is well known, 

c 1 <clog.z. 
pIa pa , 
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where the two primes indicate that. t’he summation is extended over the 
(p < n1--1/2~ 

(hence ,nn/mir) > ~a~“~). Also 

Hence from (ij, (8) and (9) 

ir+I)+- 1 
&(f+l) > (2 - 

i 

c log x) c pj - 0 ; log n . 

‘I ( > 

Thus from (5) 

We obtain from (5) and (10) by a simple computation tb2tt for k 2 I 

which completes the proof of the lemma. 
LnMMA 3. 

We eyitlent(ly have for y < nd 

where ni(n/y) denotes the number of primes and poxers of primes s n/y \F+ith 
p f’ Y, (mb/2~) d enotes the number of primes and t#heir powers S (n/Zy). 
Thus from Lemma 2 

(11) 2(x: (&) - 70 (2+J) > c$, 

where in 6’ , us’-” < $n”. Butj it. is easy to see tha.t the sum (11) is not greater 
t.han ~~(72) (i.e. every n:“’ > n/Z can be v\-ritt,en in,at most one way in the form 
ajk-l) .p, where ayi-” < $I$, r~/ai~~” > p > ~~,QL~~“, i.e. p > n’, p 4 c$‘)), 
(and t,he a!” s rr,/2 do not, occur at, all) whic.h prows t,he lemma. 

c$ =(I +o($))c*+b 
This follows from (6) and (10). 
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LEMMA 5. 

P. ERDijS 

Suppose that Lemma 5 is false. We can assume without loss of generality 
that, for infinitely many n, there exists a k and a fixed E > 0 such that 

c$ > (l+F)$* 
(It fill be clear from the proof that if t < 0, the argument remains unchanged.) 
It follows from Lemma 1 by a simple calculation t,hat there exists a c = c(c) 
such that for every k 5 r 5 k + czct 

c$ >(l+;);>(l+;);, 

Thus 

Put, 

Thus we have 

!12> *g'c $ > (1 + ;)cllog'*. 

On the other hand, it follows from a result of Kac and myself4 that for every 
M > na (6 > 0 an arbitrary number) 

k+czt 
5 d?n> = (1 + o(l)hm* 

Thus a simple calculation shows that 

+ 0 = (1 + o(l))q Iog n 

which contradicts (12), and completes the proof of the lemma. 
Now we introduce some notations. y = y(n), yl = yl(n> . . . denote function, 

of n tending to infinity together with n in a manner which will be specified later 

L/(qn> = *II6 P” 

where p” 11 m means that p” 1 m, p”+l { m and the dash indicates that the product 

1 Amer. Journal of Math., Vol. 62 (1940) p. 738-742. 
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is extended over the p 5 n’lw. By V,(m) we shall denote the number of prime 
factors p > n’lv of m (multiple factors counted only once). Now we prove 

LEMMA. 6. The number of integers ay) 6 n which do not satisfy 

(13) 0 - E) log y S V,(ay)) 5 (1 + e) log y 

is o(n/d>. {i.e. is 0(7rh(n)) by Lemma 3). 
We denote the a$’ not satisfying (13) by b!“‘. To prove Lemma 6 we need 

several lemmas. 
LEMMA 7. The number N, of integers a:k) S n for which 

f,(ai”‘) > nul’* 

is o(n/z’>* 
We evidently have 

04) q f&p) 5 g (p~)*~--l(~‘p”) = j-p .p 

whereinm,p 5 ,I” in IT”, p” 5 nl and inn”’ p” > nt. 
Thus from (1) 

II” < g’ (pa)C(n’Puz’) < esp (cn log n/y& 

since by a well known result 

c log (p”)/p” < c log 2. 
9cr.a 

For y = o(log n) 

1111”’ < ‘n nl’a*l’v:log n < exp (cn log n/y& 

(the number of integers p”, with 

p < diu’, rag < p” 5 n 

is~n *U log n) . Thus finally 

n f,(ai”‘) < exp (on log n/ylt*). 

Hence 

exp [(N~yl/y) log n] < exp (m log n/y 2”) 

since the contribution of each of the a?’ with 

f,(af) > nY1” 

to the product (14) is > n”““. Thus 

Nl < ma/y1 5’ = o(n/z’). 

LEMMA 8. Let u s ~a’~‘~ where y~/y + 0. Then the number of integers m 5 n 
with f,,(m) = u does not exceed cny,/u log n. 
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Lemma 8 follows immediately from Brun’s method.5 
LEMVA 9. Let 6 = 6(e) be sqficiently small. Then 

T l/hi(k) < c log n/y’r’ 

(the bi” are the ai not satisfying (13). 
Clearly 

T l/by’ < c(( c’ l/pa)“/u!) ((~Nljp”)k-“/(k - v)I) 
D 

tyhere in c’, p runs in the interval 1~~” 5 p 5 1~ and in x”, 1, 5 nllvand tl satisfies 

0 5 v 6 (1 - E) logy or (1 $ E) log y I 2’. 

We obtain by a simple calculation (using Stirling’s formula) that 

E;’ ““y k-e 
v ! 

< c log .Tl/yx’(since C” l/p= = loglog n - log y + o(l), 

if y does not, tend to infinity too fast (y < (log n)‘-‘). Thus 

F l/b?’ < (c log n/y& F ( (c’ l/p”) “,‘v !) . 

Now it is easy to see by a simple computation that 

C ((C’ l/p”)v/v!) < qxd6, S = S(e) (since C’ l/p* = log y + o(l)). 
II 

Thus finally 

c l/by’ < c log n/y%’ 
i 

which proves Lemma 9. 
Now we can prove Lemma 6. We split the integers not satisfying (13) into 

two classes. In class I. are t,he integers with 

f,,,,(b:“‘) > nvavr’u 

where y3y4/y -+ 0 and y/y3 = o(log y). In the second class are the other by’. 
By Lemma 7 (replacing y by y/y3 , y1 by ya), the number of integers of the first 

class is o(n/&. Lot bj”’ bc any integer of the sxond class. Put 

B = fvdbl”‘) , 

and consider the set of all B’s. These integers sat’isfy the following conditions: 
1) B I nzlSU4’y; 2) k - y/y3 5 v(B) 6 k(v(B) denotes the number of prime 
factorsof B, multiple factors counted only once) ; v,(B) does not lie in the interval 
LO - e) log y, (1 + E) log y - y/yJ. 1) is clearly sat,isfied, 2) and 3) hold since 
the number of prime factors $ 7~‘~” of a.ny int,eger 5 n is < y/y3 , 

5 Ibid., lemma 2, p. 739. 



IXTEGERS WITH EXACTLY K PRIME FACTORS 59 

Since q//?/a = o(log g) 3) means that u,(B) does not lie in [(l - e/2) log y, 
(1 + e/2) log y] and since by 2) V)(B) can assume only y/y3 = o(log y) values 
we obtain from Lemma 9 that 

05) 

From Lemma 8 (with y = y/y3 , y2 = y4) and (15) tTe obtain that the number 
of integers m 5 n for which fUly,(nt) is one of the B’s does not exceed 

Y-n t: l/l? < cn* = o(n/z”). 

Thus the number of integers of the second class is also o(n/a;‘), which completes 
the proof of the lemma. 

LEMMA 10. 

ct l/a?’ = (1 + o(l))zK/k!. 

The dash indicates that the summation is extended over the ajkf satisfying (13) ; 
in other words, the by’ are omitted. 

Lemma 10 follows immediately from Lemmas 5 and 9 since 

zk/k! > ((c log n(/&>. 

Now we can prove 
THEOREM I. 

Consider 

(16) AM = C’ (*;(n/ay)) - 7rl (n”“)) 

where P: (n/t) denotes the number of primes and powers of primes p” 5 n/t 
with p f t in c’, ai(s-l’ 5 n’-“’ and a~‘-” satisfies (13). 

We have by the prime number theorem, if g tends to infinity sufficiently slowly 
(this is the only place where the prime number theorem is used) 

(17) 2 24 &) = (1 + 4)) c'a,(&M1) l;g A) 

i 
C&i' 

= c: + c: + *. * c:-1 
where in xi, r$‘-li satisfies (13) and 

n+-lJv 5 $--lj 5 nilus 
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Wehavefory -j+ co 
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08) c; = (1 + 00)) cy -;;log n cr($L. 
Further 

where in cU, a?-‘) s njlY and a,jkP1’ satisfies (13), in x9, ojk-‘) S n’l”, and 
u!~-‘) satisfies (13). * We have from Lemmas 5 and 10 if y tends to infinity suffi- 

Gently slowly (replace x by loglog njl” = z + 

and similarly 

logj/y) and note k = (1 <0(1)x) 

= (1 + o(O) ; &, 
. 

1 xk-’ co = (1 + O(l)) J+ @ _ 1), * 
Thus if y tends to infinity sufficiently slowly 

(19) c; l/a:“” = (1 + o(1)) y(;rl), . 

Further if y - j = O(1) and y tends to infinity sufficiently slowly 

by Lemma 5, in z', n'-"' 5 ujk-*) s n'-"', 
Thus from (17), (18), (19) and (20) 

(21) C’ nlw@-lY = (1 + o(l)) gyn (kxy), g y+j * 1 
+()n x ( 

k-l 
log n (k - 1) ! > 

= (1 + 00)) ny@& &,‘ 

AlSO 

C’?rl(TP) < c l$n = 0 (2) 

if y = o((log n)/~>. Thus finally 

(2% M = (1 + o(1)) n$ @Z_bJ,. 

Clearly M equals the number of integers not exceeding n of the form 

(23) aikml) .p”, with nr’r < p, p ,f a?-‘), aike’) 6 n’-‘Y, 



INTEGERS WITH EX4CTLY IX PRIME F.4CTORS 61 

md ql”+ satisfies (13). Every integer u of (23) has exactly k prime factors and 
satisfies (13), thus u = a:“‘. Further every a?) satisfying (13) can be written in 
exactly VJa,(“‘) ways in the form (23). Thus by (13) we obtain that the number 
of a!k) < n satisfying (13) is )r - 

(1 + o(l)) l--& (kxI;) ( - 

Thus finally from (24) and Lemma 6 we obtain 
k-l 

a.&> = (1 + 41)) 1en 6, 

which proves Theorem 1. 
By the same argument we can prove the following results: 
THEOREM II. Denote by r;(n) the nzdmber of integers =( n having exactly k 

prime factors multiple factors counted multiply. Then 

d.(n) = (1 + O(l)) gn ,,xyl), . 
TISEOREM III. Denote by r:‘(n) the number of square-free integers 5 n hauing 

exactly k prime factors. Then 

It would be interesting to investigate that for what values of Z(Z depending on n) is 
lim ~~~@)/‘IT:(YA) = 1 and lim sl(n)/s’:(n) = 3r2/6. 

We obtain from Theorem 1 (confirming a conjecture of Hardy)2 that 

r*(n) = (1 + o(l)) & ’ 

From (25) and a theorem of Behrend” we deduce 
T-~E~REM IV. Let al < a2 - . . < a, d n be a sequence of integers no one of 

which divides the other, then for n suficiently large 

(26) 

and for a suitable sequence CL: 

Theorem IV means that 

.S London Math. Sot. Journal, Vol. X (1935) p. 4244. 
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We are going to give only the outline of the proof. 
Behrend proved that 

and it is not difficult to show that we can take l/(a) + r: for Behrend’s c, 
(we omit the details). This proves (26). Further if we consider the integers 
having exactly 2 prime factors, we obtain (24) from (25) by a simple computa- 
tion, this proves Theorem IV. 

We can raise several problems: 
1). For which k is rk(n) maximal? It immediately follows from (1) and (4) 

that k = z f 0(x’), t,he same holds for t,he k which maximizes xi(n) and r:(n). 
It, seems likely that k = x + O(1). 

2). Does there exist a ko such that for kl $ k2 < k. 6 ka < k4 

ml(n) < m&); a&4 > m,bY 

So far, I could not make any progress with 2). But we will solve an analogous 
question for 

AI=+. 
. 

First of all it follows from (6) that for 1 + c < 1, < 1: 

cm AZ, -c A,, . 

Thus it sufEces to consider the values 2 $ 2 + C. First we show that for every 
1s;s-fc 

cm Al > cx’l’l!. 

Suppose that (28) is not true. Then for some 1 5 r + c 

Al < &l! 

But then from (6) for all 21 > I 

but, this clearly contradicts Lemma 2 for Z1 < x + Z* say (if e is sufficiently small), 
thus (29) is proved. 

W& have as in the proof of Lemma 2 

(30) (I + 1) T l/u,(z+1) > T” $ loglog (-$ - c log I F l/in!!’ 
1 

1 An analogous conjecture had been made by Auluck, Chowla and Gupta for pk(n) the 
number of partition of TZ into k summands. (Indian Journal of Math. 1942.) 
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where the two dashes indicate that the su~ration is extended over 
the c$’ < Y&‘-*‘~. Let ,w~-*‘~ < tit < 7t,. Then Tve have from (1) 

Thus we obtain from (29) and Lemma 5 by a simple calculation 

log n 

(31) F” l/hi”’ = c l/a;” - C”’ l/a;” > c l/ajJ’ - c s’/l! l--& 

where in c”’ 

> (1 - c/z) c l/a:” 

n l-Yr < = ai = CZ) < n. 

Thus from (30) and (31) 

c 1ja.j”“’ > (1 - c/x) x l-. z c l/o;” _ 

Hence 

(32) Art1 > A’ 

for 1 < x - c log z. Thus me only have to consider the interval x - c log 
z < I S x + c. The method which we will now use applies to all 1 satisfying 
x - cx” < 1 s x + c. 

We have as in the proof of Lemma 2. 

(2 + 1) c l/a:‘+l) = c l/a:” C’ -j = c + C” -$ 

(33) 
- c $ C”’ ; = Cl - cz 

the ptie indicates that p” S *n/u~” and p” j’ a!“, the two primes that p” 6 n/a:“, 
the three primes that p” 6 n/o!” and p” 1 a!“. We evidently have 

and in x4 

(1-1) n ai S-i;;, 
P 

aj’-*) SIE 0 (mod p), 

*!‘) < n 1 a!‘) = 0 (mod p). 
=p2a> ’ 
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From Lemma 5, we obtain by a simple calculation that for p S ~2’ 

(35) 

and 

c3a+ = (1 + O(l)) 6, (1 - t> 

(36) 

We have 

c*$ = (1 +owp~~. 

(37) 
*ge $ (cs& + c.$) 

SE-G 
.:.. .d t.L.3 : 

Thus, finally from (341, (35), (36), and (37) 

(3% 

Further 

x2 = (1 + 41)) E’i( 7 -$ = Al G f + 44. 

n - 
a!‘) < P” S n. I 

Thus it is easy to see that 

NJ) 

x1 = Al (loglog n + 0’261 . * . + gI -+) 

Ioglog n 

Now we obtain by a simple calculation 

c = c $0 (lo&g n - wag 5) = g Izt $0 (-1% ;) * 
W) 

+ c:$ (Ww - Ww$ + o@c), e , 
where in x1 

n l--l’y $ .i(*, s ni’g’. 

We have by (1) for n’-“’ < m 5 n 
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Thus by a simple calculation 

< c $ l+n (l’;$. (loglog n - log k) = 0 ($) = O(AI). 

Hence from (19) by a simple computation 

(404 c = AI + o(AJ. 

Thus from (39) and (40) 

(41) cr = Ai (loglog n + 0’261 . . . + z1 ; - 1) + o(Al). 

Hence from (33), (38) and (41) 

(42) 
log log n + 0’261 + z p&l - 1 + o(l) 

AZ+I = AZ z+i 
Put 

C=o.261+5&-1, -1 <c <o. 

Thus if n is sufficiently large 

(43) Al+1 > Al for loglog n + C - c: > 1 + 1 

and 

(44) AI+1 < Alforloglogti + C + c < 1 + 1. 

To complete our proof, we shall show that 

(45) A 1+1 = AZ, I? = loglog 72 + O(1) 

is impossible for large n. Assume that 

c$l =c$m. 

Denote by P the greatest prime 5 n/2.3. * . . ~2-1. It follows from a theorem 
of Chebichev that (the theorem in question states that there always is a prime 
between t and 2t) 

(46) 
n n 

2.2.3 .* - .p1-1 ’ ’ < 2.3.. . .pr-1’ 

Thus clearly none of the ui(‘*l) are multiples of P. Write 

Al = A: + A:’ 
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where Ai is the sum of the reciprocals of the a:” with aj” 3 0 (mod P) and Ai 
is the sum of the other l/ui(“. WTe must have 

A: = AI.+1 - A;. 

The smallest common denominator of the fractions on the left side is not a mul- 
tiple of P. On the right side all the denominators are multiples of P. Write 

It follows from (46) that all the xi are square-free integers composed of primes 
S&L1 . Thus the number of x:i is s22pz-1. Their common denominator is 
not greater than 

pJ&-l p < 42p’-1‘ 

Thus from (45), if we write 

A; = u 
TV’ 

(u, u) = 1 

u < 82p1-1 < (log ?Qc < P. Thus (45) is impossible, since P appears in the 
denominator of one side and not of the other. Thus we can state 

TT~EOREMV. Denote by Al, the greatest A. Then for su$kiently large n 

lrJ = [loglog .n + Cl, c = 0’261 * * ’ + z -& - 1, -l<C<O 
Pa p 

except if loglog ‘)1. + C = J + e, G’ integer, E small) in which case lo can be J op 
J - 1. Also if L < 12 < lo < l2 < 14 

AI, < A, -C AI, and AI, < AZ, =C Alo . 

Denote 

where bi” denotes the integers s;n having exactly 2 prime factors, multiple 
factors counted multiply, and ci (I) denotes the square-free integers =<n having 
exactly 1 prime factors. An analogous theorem holds for A: and Ai of course 
with different values of 10 . 

ADDED IN PROOF: Recently I learned that about the same time as I, Sathe also 
obtained these results, Sathe’s results have not yet been published, 
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