SOME ASYMPTOTIC FORMULAS IN NUMBER THEORY

BY
P. ERDÖS, University of Syracuse.
[Received ${ }_{15}$ October, 1948.]

Szele ${ }^{1}$ recently proved that the necessary and sufficient condition that there should be only one abstract group of order m is that $(m, \phi(m))=\mathrm{I}$. In the present note we are going to investigate how many such integers there are up to n. In fact we prove the following

Theorem. Denote by $A(n)$ the number of integers $m<n$ for which $(m, \phi(m))=\mathrm{I}$. Then

$$
A(n)=(\mathrm{I}+o(\mathrm{I}))-\frac{n e^{-\gamma}}{\log \log \log n},
$$

where γ is Euler's constant.
Throughout this paper p, q, r and s will denote primes, the c 's denote absolute constants, $\epsilon>0$ is a number which can be chosen arbitrarily small.

Clearly $(m, \phi(m))=1$ if and only if m is squarefree and m is not divisible by $p . q$, where $q \equiv \mathrm{I}(\bmod p)$.

Denote by $A_{p}(n)$ the number of integers $m \leqslant n$ for which $(m, \phi(m))=1$ and the smallest prime factor of m is p. Clearly

$$
\begin{equation*}
A(n)=\sum_{p \leqslant n} A_{p}(n)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3}, \tag{I}
\end{equation*}
$$

where in $\Sigma_{1}, \quad p<(\log \log n)^{1-\varepsilon}$,
in $\Sigma_{2}, \quad(\log \log n)^{1-} \leqslant p \leqslant(\log \log n)^{1+\varepsilon}$
and in $\Sigma_{3}, \quad(\log \log n)^{1+\varepsilon}<p$.
First we prove three lemmas.
Lemma I. Let $p<(\log \log n)^{1-\varepsilon}$. Then

$$
\sum^{\prime} \frac{1}{q}>c_{1} \frac{\log \log n}{p}>(\log \log n)^{\varepsilon / 2}
$$

where the dash indicates that the summation is extended over the $q \equiv \mathrm{I}(\bmod p)$ which satisfy $q<n^{1 /(\log \log n)^{2}}$.

1. Comment. Math. Helv., 20 (1947), p. 265-7.

A result of Page ${ }^{1}$ states that if $\pi(x, 1, k)$ denotes the number of primes $q \equiv \mathrm{I}(\bmod k)$, then

$$
\pi(x, \mathrm{I}, k)=(\mathrm{I}+o(\mathrm{I})) \frac{x}{\phi(k) \log x}
$$

uniformly for $k<\log x$. Thus if $x>\log n>e^{p}$, we have

$$
\begin{equation*}
\pi(x, 1, p)>\frac{1}{2} \frac{x}{p \log x} . \tag{2}
\end{equation*}
$$

From (2) we obtain

$$
\sum^{\prime} \frac{1}{q}>\sum \frac{1}{4 p l \log l}>c_{1} \frac{\log \log n}{p}
$$

where $\log n<l<n^{1 /(\log \log n)^{3}}$ which proves the lemma.
Lemma II. Let p be any prime. Then

$$
\sum^{\prime} \frac{\mathrm{I}}{q}<c_{2}\left(\frac{\log p+\log \log n}{p}\right)
$$

where the dash indicates that $q \equiv \mathrm{I}(\bmod p), q \leqslant n$.
We have

$$
\begin{equation*}
\sum^{\prime} \frac{1}{q}<\sum_{a=1}^{p} \frac{1}{\mathrm{I}+a p}+\sum^{\prime \prime} \frac{1}{q}<c_{2} \frac{\log p}{p}+\sum^{\prime \prime} \frac{1}{q} \tag{3}
\end{equation*}
$$

where in $\Sigma^{\prime \prime}, q \equiv \mathrm{I}(\bmod p), p^{2}<q \leqslant n$. By a result of Titchmarsh ${ }^{2}$ the number of primes $q \equiv l(\bmod p), q \leqslant x$ is for $x>p^{2}$ less than

$$
\frac{c_{3} x}{p \log x}
$$

Thus a simple argument shows that

$$
\begin{equation*}
\sum^{\prime \prime} \frac{\mathrm{I}}{q}<\frac{c_{3}}{p} \sum \frac{\mathrm{x}}{x \log x}<\frac{c_{2}}{\bar{p}} \log \log n \tag{4}
\end{equation*}
$$

Lemma II follows from (3) and (4).
Lemma III. Let $x \leqslant(\log \log n)^{1+\varepsilon}(x \rightarrow \infty)$. Denote by $B_{x}(n)$ the number of integers $m \leqslant n$ not divisible by any prime $p \leqslant x$. Then uniformly in x

1. Proc. London Math. Soc., (2) (39) (1935), p. 136 equation (36).
2. Rend. di Palermo, 57 (1933), p. 478-9.

$$
B_{x}(n)=(\mathrm{I}+o(\mathrm{I})) c^{-\gamma} \frac{n}{\log \log x}
$$

By the sieve of Eratosthenes we have

$$
\begin{aligned}
B_{*}(n) & =n-\sum_{p \leqslant x}\left[\frac{n}{p}\right]+\sum\left[\frac{n}{p_{1} p_{2}}\right]-\ldots \\
& =\operatorname{m}_{p \leqslant x}\left(1-\frac{1}{p}\right)+O\left(2^{x}\right)=(1+o(1)) \frac{n e^{\gamma}}{\log \log x} .
\end{aligned}
$$

From Lemma III we immediately obtain the following

Cor. Let $p \leqslant(\log \log n)^{1+\varepsilon}$. Denote by $C_{p}(n)$ the number of integers $m \leqslant n$ for which the least prime factor of m is p. Then

$$
C_{p}(n)=B_{p}\left(\frac{n}{p}\right)<c_{3} \frac{n e^{-\gamma}}{p \log \log p}
$$

Now we can prove our theorem. First we estimate Σ_{1}. Let $p<(\log \log n)^{1-\varepsilon} . \quad A_{p}(n)$ is clearly greater than the number of integers $m \leqslant n$ not divisible by any $q \equiv \mathrm{I}(\bmod p)$ satisfying $q<n^{1 /(\log \log n) 2}$. By Brun's method ${ }^{1}$ we thus obtain from Lemma I that

$$
A_{p}(n)<c_{4} n \Pi^{\prime}\left(\mathrm{I}-\frac{1}{q}\right)<c_{5} n e^{-(\log \log) \varepsilon^{2}}=o\left(\frac{n}{(\log \log n)^{2}}\right),
$$

where the dash indicates $q \equiv \mathrm{I}(\bmod p), q<n^{1 /(\log \log n)^{2}}$. Thus

$$
\begin{equation*}
\sum_{1}<\log \log n \max _{p \leqslant(\log \log n)^{-\varepsilon}} A_{p}(n)=o\left(\frac{n}{\log \log n}\right) . \tag{5}
\end{equation*}
$$

Now we estimate $\mathbf{\Sigma}_{2}$. We have by the corollary to Lemma III that

$$
\begin{equation*}
\sum_{2}<\sum^{\prime} c_{p}(n)<c_{6} \frac{n e^{-\gamma}}{\log \log \log n} \sum^{\prime \frac{1}{p}}<c_{7} \frac{\epsilon n}{\log \log \log n} \tag{6}
\end{equation*}
$$

where the dash indicates that

$$
(\log \log n)^{1-\varepsilon} \leqslant p \leqslant(\log \log n)^{1+\varepsilon}
$$

1. P. Erdös, Proc. Cambridge Phil. Soc., 33 (1937), p. 8 Lemma 2. In this case one does not need the full strength of the method and the simpler arguments in Landau, Zahlentheorie, Vol. 1, will suffice.

Finally we estimate $\mathrm{\Sigma}_{3}$. Put $x=(\log \log n)^{1+\varepsilon}$. Clearly by our remark at the beginning of the proof, i.e. $(m, \phi(m))=\mathrm{I}$ if and only if m is squarefree, and is not divisible by any $p \cdot q$ with $q=1(\bmod p)$ we have

$$
B_{x}(n)>\Sigma_{3}>B_{x}(n)-\sum_{r>x} \frac{n}{r^{2}}-\sum^{\prime} \frac{n}{s_{1} s_{2}},
$$

where the dash indicates that $s_{1}>x$ and $s_{2} \equiv \mathrm{I}\left(\bmod s_{1}\right)$. By Lemmas II and III

$$
\begin{align*}
(1+o(\mathrm{I})) \frac{e^{-\gamma} n}{(\mathrm{I}+\varepsilon) \log \log \log n} & > \\
\mathrm{\Sigma}_{3} & >(\mathrm{I}+o(\mathrm{I})) \frac{e^{-\gamma} n}{(\mathrm{I}+\varepsilon) \log \log \log n)} \\
& \quad-\frac{n}{x}-\sum_{s>x} \frac{\log s+\log \log n}{s^{2}}
\end{aligned} \begin{aligned}
&>(\mathrm{I}+o(\mathrm{I})) \frac{e^{-\gamma} n}{(\mathrm{I}+\varepsilon) \log \log \log n}-\frac{n}{x}-\epsilon_{8} \frac{\log x}{x}-\frac{\log \log n}{x} \\
&=(\mathrm{I}+o(\mathrm{I})) \frac{e^{-\gamma} n}{(\mathrm{I}+\varepsilon) \log \log \log n} .
\end{align*}
$$

Since ϵ can be chosen arbitrarily small, we obtain the theorem from (5), (6) and (7).

By more complicated methods we can prove the following result: Denote by $v(x)$ the number of prime factors of x. Then the number of integers $m \leqslant n$ for which $v\{m, \phi(m)\}$ does not satisfy ($\mathrm{I}-\varepsilon$) $\log \log \log \log m<v\{(m, \phi(m))\}$

$$
<(\mathrm{I}+\varepsilon) \log \log \log \log m \text { is } o(n) .
$$

An analogous but much harder prob em was raised by Pillai ${ }^{1}$: Find an asymptotic formula for the number of integers $m \leqslant n$ which have no factor of the form $p(a . p+1)$. I can prove by much more complicated methods that the asymptotic formula for the number of these integers is

$$
\frac{e^{-\gamma}}{\log _{2}} \frac{n}{\log \log n}
$$

I hope to return to this at another occasion.
i. The Journal of Indian Math. Soc., 18 (1929-1930), p. 51-9.

