SOME REMARKS ON DIOPHANTINE APPROXIMATIONS

BY
P. ERDÖS, University of Syracuse.
[Received 27 July, 1948.]

1. The present note contains some disconnected remarks on diophatine approximations.

First we collect a few well-known results about continued fractions, which we shall use later ${ }^{1}$. Let α be an irrational number, $q_{1}<q_{2}<\ldots$ be the sequence of the denominators of its convergents. For almost all α we have for $k>k_{0}(\alpha), q_{k+1}<q_{k}\left(\log q_{k}\right)^{1+e}$. Thus if n is large and $\quad q_{r} \leqslant n<q_{r+1}$ we have $q_{r}>\frac{n}{(\log n)^{1+e}}$. Further for almost all α

$$
\begin{equation*}
\frac{1}{q_{k}^{2}\left(\log q_{k}\right)^{1+\varepsilon}}<\left|\alpha-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{2}}, \tag{I}
\end{equation*}
$$

the second inequality is true for all α.
Also if $|\alpha-a / b|<\frac{1}{2} \quad b^{2}$ and $q_{k} \leqslant b<q_{k+1}$, then $b \equiv$ $0\left(\bmod q_{k}\right)$. Hence if

$$
\begin{equation*}
\frac{1}{\left\{m_{\alpha}\right\}}>2 n, m<n \text { then } m \equiv 0\left(\bmod q_{r}\right), \tag{2}
\end{equation*}
$$

where $q_{r} \leqslant n<q_{r+1}$, and we denote by $\{u\}$ the distance of u from the nearest integer. It is easy to obtain from (I) that for almost all α and $m \geqslant m_{0}(\alpha)$

$$
\begin{equation*}
\frac{1}{\left\{m_{\alpha}\right\}}<m(\log m)^{1+\varepsilon} . \tag{3}
\end{equation*}
$$

A theorem of Behnke ${ }^{2}$ states that for almost all α $\left(q_{r} \leqslant n<q_{r+1}\right)$

1. The results in question can all be found in Koksma, Diophantische Approximation, Ergebnisse der Math. 4 (4).
2. Hamburgische Abhandlengen, 3 (1924), p. 289.

$$
\begin{equation*}
\sum_{\substack{m=1 \\ c_{r} \neq m}}^{n} \frac{1}{\left\{m_{\alpha}\right\}}<c_{1} n \log n \tag{4}
\end{equation*}
$$

Denote by $\mathcal{N}_{n}(a, b)$ the number of integers $m \leqslant n$ for which $a \leqslant n_{\alpha}-\left[n_{\alpha}\right] \leqslant b$. A theorem of KhintchineOstrowsky ${ }^{1}$ states that
$(b-a) n-c_{2}(\log n)^{1+\varepsilon}<\mathcal{N}_{n}(a, b)<(b-a) n+c_{3}(\log n)^{1+\varepsilon}$,
where c_{2} and c_{3} are independent of a, b and n and depend only on α and ϵ.
2. Denote by $d(n)$ the number of divisors of n, by $r_{2}(n)$ the number of representations of n as the sum of two squares and by $r_{4}(n)$ the number of representations o ℓn as the sum of four squares. Walfisz ${ }^{2}$ proved, sharpening previous results of Chowla3, that for almost all α

$$
\begin{align*}
& \sum_{m=1}^{n} d(m) e^{2 \pi i m a}=O\left(n^{1 / 2}(\log n)^{1+\varepsilon}\right) \tag{6}\\
& \sum_{m=1}^{n} r_{2}(m) e^{2 \pi i m a}=O\left(n^{1 / 2}(\log n)^{1+\varepsilon}\right) \tag{7}\\
& \sum_{m=1}^{n} r_{4}(m) e^{2 \pi i m a}=O\left(n^{\frac{1}{2}}(\log n)^{2+\varepsilon}\right) \tag{8}
\end{align*}
$$

By a slight modification of their argument we obtain that for almost all α

$$
\begin{equation*}
\sum_{m=1}^{n} d(m) e^{2 \pi i m a}=O\left(n^{\frac{1}{2}} \log n\right) \tag{9}
\end{equation*}
$$

1. Khintchine, Math. Zeitschrift, 18 (1923), p. 297-300. See also Ostrowsky, Hamburgische Abhandlungen, I (1922), p. 95.
2. Math. Zeitschrift, 35 ($\mathbf{4 9 3 5) , ~ p . ~} 774778$.
3. Ibid., 33 (1935), p. 544-563.

$$
\begin{align*}
& \sum_{m=1}^{n} r_{2}(m) e^{2 \pi i m a}=O\left(n^{\frac{1}{2}} \log n\right) \tag{10}\\
& \sum_{m=1}^{n} r_{4}(m) e^{2 \pi i m a}=O\left(n^{\frac{1}{2}}(\log n)^{2}\right) \tag{II}
\end{align*}
$$

(9), (Io) and (II) were proved by Chowla ${ }^{1}$ in case α has bounded partial fractions in its continued fraction development. But it is well known that these α 's have measure o.

It will suffice to prove (9), the proof of (10) and (iI) follows the samé pattern.

$$
\begin{align*}
\sum_{m=1}^{n} d(m) e^{2 \pi i m a} & =\sum_{a b \leqslant n} e^{2 \pi i a b a} \\
& =2 \sum_{n=1}^{n^{\frac{1}{2}}} \sum_{a<b \leqslant n / a} e^{2 \pi i a b a}-\sum_{a=1}^{n^{\frac{2}{2}}} e^{2 \pi i a^{2} a} . \tag{12}
\end{align*}
$$

Now clearly for every irrational number α

$$
\begin{equation*}
\left|\sum_{a \leqslant b<m / a} e^{2 \pi i a b a}\right|<\frac{c_{4}}{\sin a_{\pi \alpha}}<\frac{c_{5}}{\left\{a_{\alpha}\right\}} . \tag{13}
\end{equation*}
$$

Also trivially

$$
\begin{equation*}
\left|\sum_{a \leqslant b<n / a} e^{2 \pi i a b a}\right|<\frac{n}{a} . \tag{14}
\end{equation*}
$$

Put $q_{r} \leqslant n^{1 / 2}<q_{r+1}$. We have from (12), (13), (14) and (3)

$$
\begin{array}{r}
\left|\sum_{m=1}^{n} d(m) e^{2 \pi i m \alpha}\right|<\sum_{\substack{a=1 \\
a_{r}+\cdots}}^{n^{\frac{1}{2}}} \frac{1}{\left\{a_{\alpha}\right\}}+\sum^{\prime} \min \left(\frac{r_{5}}{\left\{a_{\alpha}\right\}}, \frac{n}{a}\right)+O\left(n^{\frac{1}{2}}\right) \\
<c_{6} n^{\frac{1}{2}} \log n+\sum^{\prime} \cdot(15)
\end{array}
$$

The dash indicates that the summation is extended over the $a \equiv \mathrm{o}\left(\bmod q_{r}\right)$.

1. Ibid., 33 (1935), p. 544-563.

Now we estimate Σ^{\prime}. As stated in the introduction $\left.q_{r}>n^{\frac{1}{2}} / \log n\right)^{1+\varepsilon}$. We distinguish two cases. In case I we have

$$
\begin{equation*}
n^{\frac{1}{2}} /(\log n)^{1+\varepsilon}<q_{r}<(n / \log n)^{\frac{1}{2}} . \tag{16}
\end{equation*}
$$

From (1) we evidently have that for $k<(\log n)^{2}$, $\left\{k q_{r} \alpha\right\}=k\left\{q_{r} \alpha.\right\} \quad$ Thus from (15), (16) and (2)

$$
\begin{align*}
\sum^{\prime}< & \sum_{k<(\log n)^{2}} \frac{1}{\left\{k q_{r^{\alpha}}\right\}}=\sum_{k<(\log n)^{2}} \frac{1}{k\left\{q_{r} \alpha\right\}}<q_{r}\left(\log q_{r}\right)^{1+\varepsilon} \\
& \times \sum_{k<(\log n)^{2}} \frac{1}{k}<n^{\frac{1}{2}}(\log n)^{\frac{1}{2}+\varepsilon} \sum_{k<(\log n)^{2}} \frac{1}{k}=o\left(n^{\frac{1}{2}} \log n\right) . \tag{17}
\end{align*}
$$

In case $1 \mathrm{I}, q_{r}>\left(\frac{n}{\log n}\right)^{\frac{1}{2}}$. We evidently have from (14)

$$
\begin{equation*}
\sum^{\prime}<\sum_{k<(\log n)^{\frac{1}{2}}} \frac{n}{k q_{r}}<(n \log n)^{1 / 2} \sum_{k<(\log n)} \frac{1}{k}=o\left(n^{1 / 2} \log n\right) \tag{ı8}
\end{equation*}
$$

(9) clearly follows from (15), (17) and (18).
3. Spencer ${ }^{\text {p }}$ proved that for almost all α

$$
\begin{equation*}
\sum_{m=1}^{n} \frac{\mathrm{I}}{m\left\{m_{\alpha}\right\}}=O\left((\log n)^{2}\right) \tag{19}
\end{equation*}
$$

He remarks that (19) is in a sense best possible since by a theorem of Hardy-Littlewood ${ }^{2}$ we have for all irrational α

1. Proc. Cambridge Phil. Suc., 35 (1939), p. $5^{21-547 .}$. In fact Spencer considers $\sum_{m=1}^{n} \frac{\operatorname{cosec} m \pi \alpha}{m}$ but it is easy to see that asymptotically, this is the same as $\sum_{m=1}^{n} \frac{1}{m\{m \alpha\}}$.
2. Bull. Calcutta Math. Soc., 20 (1930), p. 251-266.

$$
\sum_{m=1}^{n} \frac{1}{m\{m \alpha\}}>c_{7}(\log n)^{2}
$$

Spencer conjectured ${ }^{1}$ that for almost all α

$$
\begin{equation*}
\sum_{m=1}^{n} \frac{\mathrm{I}}{m\left\{m_{\alpha}\right\}}=(\mathrm{I}+o(\mathbf{I}))(\log n)^{2} \tag{20}
\end{equation*}
$$

We shall prove (20) and a few related results.
First we prove the following
Lemma. For almest all a we have

$$
\begin{equation*}
\sum^{\prime} \frac{\mathrm{I}}{\left\{m_{\alpha}\right\}}=(\mathrm{I}+\mathrm{o}(\mathrm{I})) 2 n \log n, \tag{2I}
\end{equation*}
$$

where in Σ^{\prime} the summation is extended over the m for which $m \leqslant n$ and $\frac{\mathrm{I}}{\left\{m_{\alpha}\right\}} \leqslant 2 n$.

We write

$$
\begin{equation*}
\sum^{\prime} \frac{1}{\left\{m_{\alpha}\right\}}=\sum_{1}+\sum_{2} \tag{22}
\end{equation*}
$$

where in \sum_{1}, the summation is over all such m for which

$$
\frac{1}{\left\{m_{\alpha}\right\}} \leqslant \frac{n}{(\log n)^{10 / 9}}
$$

and in \sum_{2},

$$
2 n \geqslant \frac{1}{\left\{m_{\alpha}\right\}}>\frac{n}{(\log n)^{10 / \sigma}} .
$$

We obtain by (5) by a simple argument (re-ordering the terms in the summation) that

$$
\begin{array}{r}
\sum_{1} \rightleftharpoons(\mathrm{I}+o(\mathrm{I})) \sum_{k<n /(\log n)^{10 / 9}}\left(\mathcal{N}_{n}\left(\mathrm{o}, \frac{\mathrm{I}}{k}\right)+\mathcal{N}_{n}\left(\mathrm{I}-\frac{\mathrm{I}}{k}, \mathrm{I}\right)\right)= \\
(\mathrm{I}+o(\mathrm{I})) \sum_{k<n /(\log n)^{10 / 9}}^{2} \frac{n}{k}=(\mathrm{I}+o(\mathrm{I})) n \log n .(23)
\end{array}
$$

1. Oral communication,

Next we estimate \sum_{2} Put $A=\frac{(\log n)^{1 / 8}}{n}-$. We evidently have from (5) and the fact that each summand in Σ_{2} is less than $2 n$
$\sum_{2}<2 n\left(\mathcal{N}_{n}(\mathrm{o}, A)+\mathcal{N}_{n}(\mathrm{I}-A, \mathrm{I})\right)+3(\log n)^{10 / 9} \frac{n}{(\log n)^{1 / 8}}$
(by (5) the number of terms in Σ_{2} is less then $\left.3(\log n)^{10 / 9}\right)$.
Now we have to estimate $\mathcal{N}_{n}(0, A)+\mathcal{N}_{n}(1-A, 1)$. Let $0<x<1$ be arbitrary. Denote by $v_{1}<v_{2}<\ldots<v_{k}$ the integers $\leqslant n$ for which $x \leqslant v_{i} \alpha-\left[v_{i} \alpha\right] \leqslant x+\mathrm{I} / 2 . n$. Clearly the numbers $\left(v_{i}-v_{1}\right) \alpha-\left[\left(v_{i}-v_{1}\right)_{\alpha}\right]$ all are either in ($01 / 2 . n$) or in ($1-1 / 2 . n, \mathrm{I}$). Thus

$$
\mathcal{N}_{n}(x, x+\mathrm{I} / 2 . n)<\mathcal{N}_{n}(\mathrm{o}, \mathrm{I} / 2 . n)+\mathcal{N}_{n}(\mathrm{I}-\mathrm{I} / 2 . n, \mathrm{I})+\mathrm{I}
$$

or splitting (o, A) and ($\mathrm{I}-A, \mathrm{r}$) into intervals of length

$$
\begin{align*}
& \frac{\mathrm{I}}{2 n} \text { we have } \mathcal{N}_{n}(\mathrm{o}, A)+\mathcal{N}_{n}(\mathrm{I}-A, \mathrm{I})< \\
& \quad 2(\log n)^{1 / 8}\left[\mathcal{N}_{n}(\mathrm{o}, \mathrm{I} / 2 . n)+\mathcal{N}_{n}(\mathrm{I}-\mathrm{I} / 2 . n, \mathrm{I})\right]+2(\log n)^{1 / 8} . \tag{25}
\end{align*}
$$

By what has been said in the introduction all the integers m, for which $\frac{1}{\left\{m_{\alpha}\right\}} \geqslant 2 n$ satisfy $m \equiv o\left(\bmod q_{r}\right)$, where $q_{r} \leqslant n<q_{r+1}$. We distinguish two cases.

Case I. $\quad q_{r} \geqslant n /(\log n)^{1 / 2}$.
Then clearly

$$
\begin{equation*}
\mathcal{N}_{n}(\mathrm{o}, \mathrm{I} / 2 . n)+\mathcal{N}_{n}(\mathrm{I}-\mathrm{I} / 2 . n, \mathrm{I})<(\log n)^{1 / 2} . \tag{26}
\end{equation*}
$$

Case II. $\quad q_{r}<n /(\log n)^{1 / 2}$.
But then by (3)

$$
\frac{1}{\left\{q_{r} \alpha\right\}}<q_{r}\left(\log q_{r}\right)^{1+\varepsilon}<u(\log n)^{1 / 2+\varepsilon}
$$

Thus if $k . q_{r} \cdot \alpha-\left[k . q_{r} \cdot \alpha\right]$ is in ($0,1 / 2 . n$) or in ($1-1 / 2 . n, 1$) we have $k<(\log n)^{1 / 2+e}$. Thus in case II

SOME REMARKS ON DIOPHANTINE APPROXIMATIONS

$$
\begin{equation*}
\mathcal{N}_{n}(\mathrm{o}, \mathrm{I} / 2 . n)+\mathcal{N}_{n}(\mathrm{I}-\mathrm{I} / 2 . n, \mathrm{I})<(\log n)^{1 / 2+e} . \tag{27}
\end{equation*}
$$

Hence from (26), (27) and ($/ 4$) we obtain

$$
\begin{equation*}
\mathrm{\Sigma}_{2}=o(n \log n) \tag{28}
\end{equation*}
$$

The lemma now follows from (23) and (28).
Now we prove (20). We have

$$
\begin{equation*}
\sum_{m=1}^{n} \frac{1}{\left.m_{i} m_{\alpha}\right\}}=\sum_{3}+\sum_{+} \tag{29}
\end{equation*}
$$

where in $\sum_{3}, \quad \frac{1}{(m \alpha)} \leqslant 2 . n$
and in $\sum_{4}, \quad \frac{1}{(m \alpha)}>2 . n$.
We obtain from (21) by partial summation that

$$
\sum_{3}=(\mathrm{I}+o(\mathrm{I})) \quad \sum_{m \leqslant n} \frac{2 \log m}{m}=(\mathrm{I}+o(\mathrm{I}))(\log n)^{2} . \text { (30) }
$$

For the m in Σ_{4} we have as belore that $m=\mathrm{o}\left(\bmod q_{r}\right)$, hence from $q_{r}>n /(\log n)^{1+\varepsilon}$ we have

$$
\begin{align*}
\sum_{4} \leqslant \sum_{k<n / q_{r}} \frac{1}{k q_{r}\left\{k q_{r} \alpha\right.} \leqslant & \sum_{k<(\log n)^{2}} \frac{1}{k^{2} q_{r}\left\{q_{r} \alpha\right\}}< \\
& (\log n)^{1+\varepsilon} \sum_{k=1}^{\infty} \frac{1}{k^{2}} o(\log n)^{2} . \tag{31}
\end{align*}
$$

(20) follows from (30) and (31).

Similarly we can prove that for almost all α and $0<a<\mathrm{I}$

Before concluding the paper we state a few results without proof:
I. For almost all α

$$
\begin{equation*}
\sum_{n=1}^{x} \frac{1}{\sum_{m=1}^{n}}\left\{m_{\alpha}\right\}^{-1}=(\mathbf{I}+o(\mathbf{1})) \frac{\log \log x}{2} . \tag{32}
\end{equation*}
$$

P. ERDÖS

Thus in particular for almost all α,

$$
\sum_{n=1}^{\infty} \frac{1}{\sum_{n=1}^{n}\left\{m_{\alpha}\right\}^{-1}}=
$$

diverges.
The proof of (32) is not difficult, it follows from (21) without much difficulty.
II. Let $f(n)$ be an increasing function of n for which $f(n)>(2+c) \cdot n \cdot \log n$ and $\sum_{n=1}^{\infty} \frac{1}{f(\bar{n})}$ converges. Then for almost all α and $n>n_{0}(\alpha)$

$$
\sum_{m=1}^{\infty} \frac{1}{\left\{m_{\alpha}\right\}}<f(n) .
$$

The proof of (II) is not quite simple and is not given here. (I) and (II) were suggested to me by the beautiful work of Khintchine ${ }^{1}$ and Paul Levy ${ }^{2}$ on continued fractions.

1. Compositio Math., 1 (1935), p. $38 \mathbf{1}$.
2. Ibid., 3 (1936), p. 302.
