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1 . The present note contains some disconnected
remarks on diophatine approximations .

First we collect a few well-known results about
continued fractions, which we shall use later' . Let a be
an irrational number, q, < q2 < . . . be the sequence of
the denominators of its convergents . For almost all a we
have fork > k,,(a), qk+, < q k (log qk)'+ , . Thus if n is large

and q, < n < q,+ , we have q, > (log
n)1

	

Further for

almost all a
I

~I)
qk (log qk)'t

P
< a qk I < qk

the second inequality is true for all a .

Also if I a--alb j < I b 2 and qk < b < qk+1, then b
o (mod q.) . Hence if

I

i

	

fma >
2n,m < n then m-o(mod q,), (2)

where q, < n < q,+ „ and we denote by { u I the distance
of u from the nearest integer. It is easy to obtain from
(i) that for almost all a and m > mo (a)

I

	

< m (tog m) '+E .

	

(3){ ma }

A theorem of Behnke2 states that for almost all a

(qr < n < qr+1)

i . The results in question can all be

Diophantische Approximation, Ergebnisse der Math . 4 (4) .
2 . Hamburgische Abhandlengen, 3 ( 1924), p. 289.

found in Koksma,
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n
I

< cl n log n .

	

(4)
{ ma }

n1= ]yT,r.

Denote by N„ (a, b) the number of integers m < n for
which a C n a-[na] < b. A theorem of Khintchine-
Ostrowsky , states that
(b-a) n-c2 (log n)'+'< Nn (a, b) < (b-a) n+c, (log n) 1+E,

(5)
where c, and c, are independent of a, b and n and depend
only on a and e .

2 . Denote by d(n) the number of divisors of n, by
r2 (n) the number of representations of n as the sum of two
squares and by r 4 (n) the number of representations
of n as the sum of four squares . Walfisz 2 proved,
sharpening previous results of Chowla3, that for almost all a

91

d(m) e 27rima = 0(n 112 (log n) '+E)

	

(6 )
M=1

I r2(m) e2,7 in,a = 0(n1/? (log n)'+E)
m=1

n

I r4 (m) e27rema
= 0(ná (log n)

2+E )

	

( 8)
m=1

By a slight modification of their argument we obtain that
for almost all a

n

d(m) e""' = 0(n, log n)
.=1

(7)

(9)

1 . Khintchine, Math. .Zeitschrift, 18 ( 1923), P- 297'300 . See also
Ostrowsky, Hamburgische Abhandlungen, 1 (1922), p . 95-

2 . Math . Zeitschrift, 35 ( 1 935), P • 774. 778 .
3 . Ibid., 33 11 935), P• 544 -563 •
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SOME REMARKS ON DIOPHANTINE APPROXIMATIONS 69

4

Also trivially

I a<,b$n/a

Put q, < n 112 < q,+, • We have

and (3)
9e

d(m) e2riMa

I»=t

r, (m) e2mima = 0 (0 log n)

	

(10)

m= 1
9E

r4 (m) e2rinaa= 0(n2 (log n) 2 ) .

	

(I I)

99a=1

(9), (I o) and (I I) were proved by Chowla , in case a has
bounded partial fractions in its continued fraction develop-
ment . But it is well known that these a's have measure o.

I t will suffice to prove (9), the proof of (I o) and ( i I )

follows the sarcé pattern .

In= 1

	

ab<x
it.

= 2

	

e2ríab«
_ X e2ria2«~

	

(12)

a=1 asb<n/a

	

a=1

Now clearly for every irrational number a

a~, b<m/a

ezri«ba < _.___ea
sin a,1«

e?rirtba I `

a~

from

c5

1aa}

(12), (13), (14)

a
9a s

1 + Z'miri ( rs , n > + 0
(n')

a=x

~aa,

	

~aa1 a

q,-,', a

< C n 2 log n+ 1'. (15)

The dash indicates that the summation is extended
over the a-o(mod q,.) .

1 . Ibid., 33 ( 1 935) P. 544 -563 .



In case 11, q,,>

from (tq.)

n

m=1
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Now we estimate Y,' . As stated in the introduction
q, > nil log n)'+n We distinguish two cases . In case
I we have

n2/(log n)'+ , < q, < (n/log n)á•

	

(I6)

From (i) we evidently have that for k < (log n) 2 ,

{ k q,« ( = k{ q,a . ( Thus from (i5), (i6) and (2)

I

	

k ! q,a ( <
q, (log qr) I+E

kgra ( =
k < ( log n) 2

	

k < (log n)2

X

	

< n2 (log n)'+`

	

k
=o(n21og n) .

k < ( log n) 2

	

k < (log n) 2

in
log-n

I
tally, this is the same as

m{ ma (
m='

2 . Bull. Calcutta Math . Soc., 2o (1930), p . 251-266 .

(I7)

We evidently have

rc < (n log n)'12

	

k
= o(n' 1 2 log n) .

kq~.
k < uog 0-12"

	

k < (log n)

(r8)
(g) clearly follows from (15), ( 1 7) and (18) .

:i . Spencer- proved that for almost all a
n

I

	

-- 0 ( (log n)2 >

	

(I9)
M1 ma lim=1

He remarks that (19) is in a sense best possible since
by a theorem of Hardy-Littlewood 2 we have for all
irrational a

i . Proc. Cambridge Phil. Sac., 35 1 939), P • 521-517 . In fact

cosec m7ra
Spencer considers

	

-m

	

but it ii easy to see that asymptoti-
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n
1

	 } > c, (lo; n) 2 .
rI m ~. m«

Spencer conjectured , that for almost all «

I

	

- ( i+o(I )) (log n) 2 .L In ; m«in _ 1
We shall prove (20) and a few related
First we prove the following
LEMMA . For almost all « we have

m« ~,

where in ' the summation is
I

and -,- -- C 2n .
l m« }

We write

'

I

z M« 1 - '--" 1+ z2

where in

	

the summation is over all such m for which
v

(I -1 -0(I)) 2 n log n,

extended over the m for which m C n

results .

(20)

(22)

I

	

n

y ma

	

(log '010/9

and in
z1

I

	

n
2n >

m« 4- > (log n),o9 •

We obtain by (5) by a simple argument (re-ordering
the terms in the summation) that

11=(1+0(1))

	

1

	

(N.(o'k)+Nn~I k

k < n/(log ")10/9

(I+0(,)) 2 1
k < "// (log n) 10/ 9

1 . Oral communication,

k= (i+o(i» nlog n. (23)
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Next we estimate . Put A --= (log ?°)'/"We evi-
z

	

n
dently have from (5) and the fact that each summand in
v 2 is less than 2 n

<2nCN,, (o, A) +JV,, (i -AI, )) -i-3 (tog n)'0/n

	

n

(lcg n) 'I"
(24)

(by (5) the number of terms in 542 is less then 3(log n) 101')

Now we have to estimate N„ (o, A) -}-N„ (i -A, i) .
Let o < x < i be arbitrary. Denote by v l < V2 < . . . < of?
the integers < n for which x < vi a- [vi,] < x-{- 1/2 .n . Clearly
the numbers (V --a,) a-[(ar-V,)a] all are eitherin (o i/2.n)

or in (I-I/2.n, i) . Thus
N„ (x, X+I/2 .n) <N1,(o, I/2 . n) +N„(i-i/2 .n.

	

I)+i,

or splitting (o, A) and (i -A, i) into intervals of length

Iwe have N„(o, A)+N„(i-A, i) <
2n

2 (log n)'l$[.N„(o, i/2 .n)+N„(I-i/`2 .n, i)]-}-2 (logn)'/g .

(25)
By what has been said in the introduction all the integers

m, for which I-- >2n satisfy zn -~ o(mod q,), where
Jmaj

q,, < n < q, + , . We distinguish two cases .
CASE I .

	

q,., n/(log n) 112 .

Then clearly
N„(O, i/2 .n)+N„(i-I/2 .n, i) < (log n) I /' .

	

(26)
CASE II . qr < n/(log n)'l 2 .
But then by (3)

	1
I

1 < q,(log q,,)'+'< n(log n)112 -,., .
4ra

"Thus if k .q, .a-[k .gr .a] is in (o, 1/ 2.n) or in (i-I,/2.n, i)
we have k < (log n) 112+' Thus in case II
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,/V,,(0, I/2. n) +N„ (I-I/2.n, I) < (lo,,, n)i/'+Y .

	

( 27)
Hence from (26), (27) and ('4 we obtain

= o(n. log n) .

	

X28)

The lemma now follows from (23) and (28) .
Now we prove (20 ;1 . We have

to

1
n=1

I

m;m«M=I

	

4

where in	 I		2 .n(m a)

and in

	

I

	

> 2 .11 .
4

	

(m«)
We obtain from (2 ) by partial summation that

'' _ ( 1+0(I :) I 2 10g m = (i+o(i)) (log n)` • (30)

For the M in Y, we have as before that m= o(mod q,),
hence. from q, > n/ (log n)'+F we have

I

	

2

	

I

	

<

QG

(log n)1+2

	

I
~ kz o (log n) a •

	

(3 1 )
k = i

(20) follows from (30) and (3I) .
Similarly we can prove that fór almost all « and

o<a<t

I

	

I
_

	

2n i-- J log n.
-

na`~ f, ma 1 -

	

a
is =1

	

'

	

(i - 0 ( ))

Before concluding the paper we state a few
without proof

1 . For almost all
Y

-1

~2 9)

results

14 C

k <
n/qr kqr ,~ kg ra $ < k <

(log
n) s k qr

q,,,

I

	

= (I+o1I)) log
	 log x

	

(0)3
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Thus in particular for almost all «,

I
( Ma

diverges .
The proof of (32) is not difficult, it .follows from (21)

without much difficulty .
11 . Letf(n) be an increasing function of n for which

f(n) > (2+c) .n.log n and

	

f(n)
converges . Then for

almost all « and n > no («)
QC

{ m«
<J(n) .

rn-1

The proof of (II) is not quite simple and is not given
here. (I) and (II) were suggested to me by the beautiful
work of Khintchine , and Paul Levy2 on continued
fractions .

i . Compositio Moth., 1 (1933), P- 38 1 -
2 . Ibid., 3 (i qfi), P . 302 .
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