THE SET ON WHICH AN ENTIRE FUNCTION IS SMALL.*

By R. P. Boas, Jr., R. C. Buck, and P. Erdös.

Let $f(z)$ be an entire function and $M(r)$ the maximum of $|f(z)|$ on $|z|=r$. We give some results on the density of the set of points at which $|f(z)|$ is small in comparison with $M(r)$; although simple, these results seem not to have been noticed before.

If E is a measurable set in the z-plane, we denote by $D_{R}(E)$ the ratio $m(z \varepsilon E,|z| \leq R) / \pi R^{2}$ and by $\bar{D}(E)$ and $D(E)$ the upper and lower densities of E, that is the superior and inferior limits of $D_{R}(E)$ as $R \rightarrow \infty$. For a fixed function $f(z)$, let $E_{\mathrm{\lambda}}$ be the set of points z for which $\log |f(z)|$ $\leq(1-\lambda) \log M(|z|)$. Our results may be stated as follows.

Theorem 1. For any $\lambda>1$, there is a number K, the same for all functions $f(z)$, such that $\bar{D}\left(E_{\lambda}\right) \leq K$. Moreover, $0<K \leq \lambda^{-1}$.

In particular, for $\lambda=2$, the upper density of the set where $|f(z)|$ $\leq 1 / M(|z|)$ is at most $1 / 2$. Much stronger results are known for entire functions of small finite order. The interest of Theorem 1 is that it holds for all entire functions and that, contrary to what might be expected, K is strictly positive. We shall show that a lower bound on K is given by $\delta^{2} /(1+\delta)^{2}$ where δ is the positive root of $\delta(2+\delta)^{\lambda-1}=1$. For $\lambda=2$, this can be improved to .1925 ; the same method will yield better values for other choices of λ. For lower density, the following is true.

Theorem 2. As $\lambda \rightarrow \infty, \underline{D}\left(E_{\lambda}\right)=o\left(\lambda^{-1}\right)$.
It might be conjectured that this also holds for the upper density, and for the numbers $K=K(\lambda)$.

We first prove that λ^{-1} is an upper bound for $\bar{D}\left(E_{\lambda}\right)$. Consider the integral

$$
I=(1 / 2 \pi) \int_{0}^{2 \pi}\left\{\log M(r)-\log \left|f\left(r e^{i \theta}\right)\right|\right\} d \theta
$$

Let $f(z)=z^{p} g(z), g(0) \neq 0$. Then, by Jensen's theorem

[^0]\[

$$
\begin{aligned}
I= & \log M(r)-p \log r-(1 / 2 \pi) \int_{0}^{2 \pi} \log \left|g\left(r e^{i \theta}\right)\right| d \theta \\
& \leq \log M(r)-p \log r-\log |g(0)|
\end{aligned}
$$
\]

Let $H_{r, \lambda}$ be the set of values of θ for which $\log \left|f\left(r e^{i \theta}\right)\right|$ is less than $(1-\lambda) \log M(r)$. By applying to the integral I the identity $\int \phi(x) d x$ $=\int_{0}^{\infty} \psi(r) d r$ where $\phi(x) \geq 0$ and $\psi(r)$ is the measure of the set on which $\phi(x) \geq r$, the integral I may also be expressed as

$$
I=(2 \pi)^{-1} \log M(r) \int_{0}^{\infty} m\left(H_{r, \lambda}\right) d \lambda
$$

Hence, writing $C=\log |g(0)|$, we have

$$
\begin{equation*}
(1 / 2 \pi) \int_{0}^{\infty} m\left(H_{r, \lambda}\right) d \lambda \leq 1-\frac{p \log r+C}{\log M(r)} \tag{1}
\end{equation*}
$$

Choose R_{0} so that $M(r)>1$ for $r \geq R_{0}$; then

$$
m\left(z \varepsilon E, R_{0} \leq|z| \leq R\right)=\int_{R_{0}}^{R} m\left(H_{r, \lambda}\right) r d r
$$

Integrating this with respect to λ and using (1), we have

$$
\begin{equation*}
\int_{0}^{\infty} \stackrel{D}{D}_{R}\left(E_{\lambda}^{*}\right) d \lambda \leqq 1-R_{0}{ }^{2} / R^{2}-\left(2 / R^{2}\right) \int_{R_{0}}^{R} \frac{(p \log r+C) r d r}{\log M(r)} \tag{2}
\end{equation*}
$$

where $E_{\lambda}{ }^{*}$ is E_{λ} with the circle $|z| \leq R_{0}$ deleted.
We may suppose that $f(z)$ is not a polynomial. (In this case, it is easily seen that $\bar{D}\left(E_{\lambda}\right)=0$ for all $\lambda>0$.) Since $\log M(r)$ is convex in $\log r$, it follows that $\log r=o(\log M(r))$ as r tends to infinity, and hence that the right side of (2) is $1+o(1)$ as $R \rightarrow \infty$. As λ increases, the sets $E_{\lambda}{ }^{*}$ decrease and $D_{R}\left(E_{\lambda}{ }^{*}\right)$ is monotone for fixed R. Thus, $\lambda D_{R}\left(E_{\lambda}{ }^{*}\right)$ $\leq \int_{0}^{\infty} D_{R}\left(E_{\lambda}{ }^{*}\right) d \lambda$ and letting R increase, we have $\lambda \bar{D}\left(E_{\lambda}\right)=\lambda \bar{D}\left(E_{\lambda^{*}}{ }^{*}\right) \leq 1$.

The proof of Theorem 2 also falls out of the inequality (2). Letting R tend to infinity, we have

$$
\int_{0}^{\infty} D\left(E_{\lambda}\right) d \lambda \leq 1
$$

and since the integrand is monotonic, $\lim _{\lambda \rightarrow \infty} \lambda \underline{D}\left(E_{\lambda}\right)=0$.
To obtain a lower bound on K, the least upper bound of $\bar{D}\left(E_{\lambda}\right)$ for all functions $f(z)$, we investigate a special function. Consider the product

$$
f(z)=\prod_{n=1}^{\infty}\left(1-z / a^{n}\right)^{b^{n}}, \quad a>b>1
$$

which defines an entire function of order $\log b / \log a$. Put

$$
\phi(z)=|f(z)| M(r)^{\lambda-1}=\prod_{k=1}^{\infty}\left\{\left|1-z / a^{k}\right|\left(1+r / a^{k}\right)^{\lambda-1}\right\}^{b^{k}} .
$$

Suppose that z lies in the region S described by

$$
\begin{equation*}
\left|1-z / a^{n}\right|\left(1+r / a^{n}\right)^{\lambda-1} \leq \beta<1 . \tag{3}
\end{equation*}
$$

Let r / a^{n} be less than γ for all z in S. Then,

$$
\begin{aligned}
\phi(z) & \leq \prod_{k<n}\left(1+r / a^{k}\right)^{\lambda b^{k}} \beta^{b^{n}} \prod_{k>n}\left(1+r / a^{k}\right)^{\lambda 0^{k}} \\
& \leq\left(\lambda \gamma a^{n-1}\right)^{\lambda b}\left(\lambda \gamma a^{n-2}\right)^{\lambda b^{2}} \cdots(\lambda \gamma a)^{\lambda b^{n-1}} \beta^{b n} \exp \left\{\lambda \gamma a^{n} \sum_{k>n}(b / a)^{k}\right\}
\end{aligned}
$$

and

$$
\log \phi(z) \leq b^{n}\left\{\frac{\lambda \log \lambda \gamma}{b-1}+\frac{\lambda b \log a}{(b-1)^{2}}+\frac{\lambda b \gamma}{a-b}+\log \beta\right\}
$$

As b and a tend to infinity in such a manner that $b^{-1} \log a$ and b / a approach zero (e.g., $a=b^{2}$), the bracket approaches $\log \beta$ which is negative. Thus, for any $\beta<1$ and for suitable a and $b, \phi(z)<1$ for all z in S, and for the special function that we have constructed, $S \subseteq E_{\lambda}$.

There is a set of type S enclosing each of the points $z=a^{n}$. We now estimate the upper density of the union of these sets, and hence the upper density of E_{λ}. We may take $\beta=1$. Put $w=z / a^{n}=\rho e^{i \phi}$; the set S corresponds to the set S^{*} bounded by the curve $|1-w|(1+\rho)^{\lambda-1}=1$. The circle $|w-1|<\delta$ where $\delta(2+\delta)^{\lambda-1}=1$ lies in S^{*}. The ratio $D_{1+\delta}\left(S^{*}\right)$ is at least $\delta^{2} /(1+\delta)^{2}$ and since this is independent of n, this number is a lower bound for $K(\lambda)$. A better bound can be obtained by computing the radius ρ_{0} for which $D_{\rho_{0}}\left(S^{*}\right)=m\left(w \varepsilon S^{*},|w| \leq \rho_{0}\right) / \pi \rho_{0}{ }^{2}$ is greatest. This number is then the desired lower bound. In the special case $\lambda=2$, numerical integration gives the value .1925 for this ratio.

With reference to generalizations, we observe that the relations (1) and (2) hold with $p=0$ with any subharmonic function $v(z)$ replacing the function $\log |f(z)|$, and with $\mu(r)=\max _{\theta} v\left(r e^{i \theta}\right)$ replacing $\log M(r)$, provided that $C=v(0)$ is finite. In addition, there is equality instead of inequality in (1) and (2) if $v(z)$ is a harmonic function without singularities.

[^1]
[^0]: * Received July 28, 1947.

[^1]: Brown University.
 Society of Fellows, Harvard University.
 Syracuse University.

