
THE SET ON WHICH AN ENTIRE FUNCTION IS SMALL .*

By R. P. BOAS, JR., R . C. Buck, and P . Erdös .

Let f (z) be an entire function and M(r) the maximum of I f (z) on
z = r . We give some results on the density of the set of points at which
f (z) I is small in comparison with M(r) ; although simple, these results seem

not to have been noticed before .
If E is a measurable set in the z-plane, we denote by DR (E) the ratio

m(z c E, I z < R)/1rRZ and by D(E) and D(E) the upper and lower
densities of E, that is the superior and inferior limits of DR (E) as R--> oo .
For a fixed function f (z), let Ex be the set of points z for which log I f (z)

(1 - A) log M ( I z I) . Our results may be stated as follows .

THEOREM 1 . For any x > 1, there is a number K, the same for all
functions f (z), such that D (Ex) C K. Moreover, 0 < K < A'1 .

In particular, for A = 2, the upper density of the set where I f(z)
1/M (I z j) is at most 1/2 . Much stronger results are known for entire

functions of small finite order . The interest of Theorem 1 is that it holds for
all entire functions and that, contrary to what might be expected, K is
strictly positive. We shall show that a lower bound on K is given by
62/ (1 + 8) where 8 is the positive root of 8 (2 + 8) '1-1 = 1 . For A = 2,
this can be improved to .1925 ; the same method will yield better values for
other choices of A. For lower density, the following is true .

THEOREM 2 . As A ) oc, D(Ex) =o (k - 1) .

It might be conjectured that this also holds for the upper density, and
for the numbers K = K (A) .

We first prove that A-1 is an upper bound for D(Ex) . Consider the
integral

I = (1/27r) 5{logM(r)
2r

-log f f (reti 5 ) ) d6 .
a

Let f(z) = zpg(z), g(0)	0 . Then, by Jensen's theorem
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I = log M (r) - p log r - (1/2ar)
J

2rlog I g (retie) I dO
0

log M(r) -p log r- log i g(0) .

Let Hr,% be the set of values of 0 for which log f (react) I is less than

(1- A) log M (r) . By applying to the integral I the identity f 0 (x) dx

-
f

;(r)dr where (p (x) > 0 and ~(r) is the measure of the set on which
0

	

00

0(x) > r, the integral I may also be expressed as

f 'm(Hr.)dA .I = (27r) - ' log M(r)

	

A

Hence, writing C = log I g (0) I, we have

(1)

	

(1/2ir) fo~m(Hr.x)dA ~ 1 - pllog ;	r	 C .
.41g ()

Choose Ro so that M(r) > 1 for r .? R0 ; then

R
m(zaE,R

(,
z ~ c R) = f m(Hr,x)rdr.

.l Ro

Integrating this with respect to A and using (1), we have

R
o

(p log r + C) r dr(2)

	

DR (Ex*)dA< 1-Roe/R2 - ( 2/R2f D0

	

)
fR

	

log M(r)o

where EX* is & with the circle I z I < Ro deleted .

We may suppose that f (z) is not a polynomial. (In this case, it is
easily seen that D (Ex) = 0 for all A > 0 .) Since log M (r) is convex in
log r, it follows that log r = o (log M (r) ) as r tends to infinity, and hence
that the right side of (2) is 1 + o (1) as R - co . As A increases, the sets
Ex* decrease and DR(Ex*) is monotone for fixed R . Thus, ADR(Ex*)

J D
R (E~,*) dA and letting R increase, we have AD (Ex) = AD (Ea*) < 1 .

0

The proof of Theorem 2 also falls out of the inequality (2) . Letting
R tend to infinity, we have

J D(Ex)dA~ 1

and since the integrand is monotonic, lim AD(Ex ) = 0 .

To obtain a lower bound on K, the least upper bound of D (Ex) for all
functions f (z), we investigate a special function . Consider the product
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00
f(z) =11 (1-z/an) 11,n=1

which defines an entire function of order log b/log a . Put

$ (z) = I f (z) I M (r) X-1 = II{ 11- z/ak I ( 1 + r/ak) X - : ) b'.
k=1

Suppose that z lies in the region S described by

(3)

	

11 - z/an I (1 + r/an) N-1 < Q < 1 .

Let r/an be less than y for all z in S. Then,

-P (z) c H (1 + r/ak)I"'#b" II (1 + r/ak)I"

and

k<n

	

6>n
C (Aya -i)Xb(Xyan-2)Xb . . .(Aya) Xbn-1 3 ' exp (),yanI (b/a) k }

k>n

logo (z) - bn A log Ay + Ab log a ` +	 Aby
+, log a~

	

~ .
b-1

	

(b-1)

	

a-b

As b and a tend to infinity in such a manner that b -1 log a and b/a approach
zero (e . g., a = b'), the bracket approaches log /3 which is negative . Thus,
for any ,(3 < 1 and for suitable a and b, 0(z) < 1 for all z in S, and for the
special function that we have constructed, S C E\ .

There is a set of type S enclosing each of the points z = an . We now
estimate the upper density of the union of these sets, and hence the upper
density of E,, . We may take R = 1 . Put w = z/an = pe""S ; the set S
corresponds to the set S* bounded by the curve 11 - w j (1 + p) k-' = 1.
The circle I w - 1 I < S where 8 (2 + 8)x_

1 = 1 lies in S* . The ratio
D,,6 (S*) is at least 81/(1 +S)2 and since this is independent of n, this
number is a lower bound for K (A) . A better bound can be obtained by
computing the radius p, for which Dp,(S'*) = m(w c S*, I w c p,,) /7r.p,,' is
greatest . This number is then the desired lower bound. In the special
case A = 2, numerical integration gives the value .1925 for this ratio .

With reference to generalizations, we observe that the relations (1) and
(2) hold with p = 0 with any subharmonic function v (z) replacing the
function log ~ f (z) , and with ,u(r) =max 0 v(rei9 ) replacing log M(r),
provided that C = v (0) is finite . In addition, there is equality instead of
inequality in (1) and (2) if v(z) is a harmonic function without singularities .
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