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1. [Introduction—In the course of several important researches in
elementary number theory A. Selberg! proved some months ago the
following asymptotic formula:

S (log p)2 + D log plog g = 2x log x + O(x), (1)
pE=z pg =x
where p and ¢ run over the primes. This is of course an immediate conse-
quence of the prime number theorem. The point is that Selberg’s in-
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genious proof of (1) is completely elementary. Thus (1) can be used as
a starting point for elementary proofs of various theorems in analytical
number theory, which previously seemed inaccessible by elementary
methods,

Using (1) I proved that $,41/p, — 1 as # — «. In fact, I proved the
following slightly stronger result: To every ¢ there exists a positive 8(c),
so that for x sufficiently large we have

7lx(1 + ¢)] — w(x) > 6(c)x/log x (2

where 7 (x) is the number at primes not exceeding x.
I communicated this proof of (2) to Selberg, who, two days later, using
(1), (2) and the ideas of the proof of (2), deduced the prime number theorem
lim w(x)log x

r— @ x

= 1 or, equivalently?

lim o) _ 1, where #(x) = Y log p. (3)

z—3w X p =z
In a few more days, Selberg simplified my proof of (2}, and later we jointly
simplified the proof of the prime number theorem. The new proof no
longer required (2}, but used the same ideas as in the proof of (2) and (3).
I was also able to prove the prime number theorem for arithmetic pro-
gressions. My proof of the latter was helped by discussions with Selberg
and it utilizes ideas of Selberg’s previous elementary proof of Dirichlet’s
theorem,? according to which every arithmetic progression whose first
term and difference are relatively prime contains infinitely many primes,
This proof will be given in a separate paper.

Selberg has now a more direct proof of (3), which is not yet published.
It is possible, therefore, that the present method may prove to be only of
historical interest.

I now proceed to give the proofs as they occurred in chronological order.
(It should be remarked that we never utilize the full strength of (1), indeed
an error term o(x log x) is all that is used in the following proofs.)

We introduce the following notation:

A = lim supg(i),a = lim infﬁ—(ﬂ.
r— @ x z— @ X
First, we state a few elementary facts about primes which will be used
subsequently. Of these, I, IT and IV are well known in elementary prime
number theory, while III is shown to be a simple consequence of (1).

I. a> 0.

I, zl"ipf’ — [ Y

PEz
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III. Let x: > x1. Then
Hxs) — Hxr) < 2(w — x1) + o(xa).

Thus, in particular, if x; = 0, we obtain 4 £ 2.
Putin (1) x = x2and x = x; and subtract. Then we obtain
Y. (log p)* £ 2xs log %2 — 2x; log %1 + o(x log %) =

x1 <P S a2

2(xy — x1)log x2 + o(x; log x2).  (4)

We distinguish two cases: (A) x1 = x3/(log x2)%.  Then clearly log x; =
(1 + o(1))log x2 and III follows from (4) on dividing both sides by log xs.
(B) %1 < x2/(log x2)2. Then we have by (A)

8(xs) — (1) < 3(x) — S(xa/(log %2)?) + —2— log 22 <
(log x2)?
2(3:2 — V4 oo(w) = 2 — %) + o(x), q. e d.
(log xs)?

IV. 4 < 1.5. This is a consequence of the known result ¢#(x) < 1.5x.

2. Proof of (2).—It is equivalent to prove that to every positive ¢ there
exists a positive 8(c) such that #[(1 + c)x] — #(x) > 8(c)x for x sufficiently
large.

Suppose this not true, then there exist positive constants ¢’ and corre-
sponding arbitrarily large x so that

Fx(l + ¢)] — dx) = olx). (5)

Put C = sup ¢’. It easily follows from I and the finiteness of 4 that
C< o,

First we show that C satisfies (5), in other words, that there are arbi-
trarily large values of x for which

#x(l + C)] — #x) = o(x). (6)
Choose ¢ > C — /s and let x — o through values satisfying (5).
Then by III we have
3x(1 + O)] — () = 8[x(1 + O] — ¢lx(1 + "] + 3[x(1 +¢')] —
Hx) £ 2(C — Nx + olx) < ex + olx),
which (since e can be chosen arbitrarily small) proves (6).

Now we shall show that (6) leads to a contradiction. From (1) we
obtain by subtraction

(log )* + ¥, log p log ¢ = 2Cx log x + o(x log x).
t<p=x{1+0C) x<pg==x(1+0C)

From (6) we have for suitable x since > (log )% = o(x log x)
s<p=2(140)
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> _log p(é‘ [Jf(l — C)] — ¢ G))= 2Cx log x + ofx log x) (7)
PETTREY ;) P

Now we deduce the following fundamental lemma.
LemMMA 1. Let x — o« through values satisfying (6), then for all primes
p = x(I + C), except possibly for a set of primes for which

Z%ﬁ = aliog#) ®

[oro]-)-e) o

Suppose the lemma is not true. Then there exist two positive constants
b, and b, so that for arbitrarily large x (satisfying (6)) we have for a set of

primes satisfying > OB log x
p2x(1+0)

0[;—:(1 + C)] - a(";—;) & (26 — 521;. (10)

But then from II, IIT and (10), since (9) holds at best for a set of primes
satisfying Y, Mﬂw (1 — &) log x we have

>, log p(ﬂ[;,(l + C}] = aeﬁ) < bi(2C — b)v log x +
p2x(l+C)
2C(1 — by)x log x + o(x log x) = (2C — bibs)x log & + o(x log x)

we have

But this contradicts (7), hence the lemma is established.

The primes satisfying (9) we shall call good primes, the other primes
we shall call bad primes (of course the goodness and badness of a prime
depends on x).

We shall prove the existence of a sequence of good primes p1 < p2 < ... 5%
satisfying the following conditions:

1091 < pr < 100py, (1 + CY(1 + 6% > petr1 >

(14 pyi=12 ..,k—1 (11)
where ! is a small but fixed number (small compared to C). Since
(1 4+ )% < 100 it is clear that k < k, with constant k, = k,(f).

Suppose we already established the existence of a sequence satisfying
(11). Then we prove (2) as follows: Consider the two intervals
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x x X x
Za+0) [Z2a+0] (2
[Pﬁ-l Pir1 P Py )
If they overlap, then by (11)

-ﬂ1+z< =L
D+ ( ) P P&l( 2

IR EC BRSO I
D) -oG)<e-9 - 2)

with ¢; > 0 and we would have from (9)

ﬂ[zfﬂ a+ C)jl - (pi) > @+ .g,)[p:l 1+ - ;J

which contradicts III. Adding (13) and (9) with 2 = p; we obtain

froso]- o)z o] - - Q) oo

If the intervals (12) do not overlap we obtain by a simple calculation
(using (9) and the fact that ¢ is small)

fjove]-sG) u[E0- 2] oo

Adding all the equations (14) and (15) (for ¢ = 1, 2, ..., k) we clearly

obtain
a[pfla + C)] _ @Gﬁ) > 1.9 [ﬁ 1+ C) — g;] (16)

Since p > 1041 we obtain from (16)

Clearly

0£1+C]>1.63C-1+C}, 17

But (17) contradicts IV.

Thus to complete the proof of (2) it will suffice to show the existence of a
sequence of good primes satisfying (11).

Consider the intervals
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I, = (B¥, B¥*),r = 0,1, -‘-*[Iogx :l -1
2 log B

where B is a fixed, sufficiently large number. Clearly all the intervals

I, lie in the interval (0, x). First we show that with the exception of %
0’ (log x) r's the interval I; contains good primes. From I and IV it easily

follows that for sufficiently large B we have (since #(Bx) — #(x)} > ex)

5 logp o ei{er > 0 independent of 7)
pinl,

Thus if there were ¢ log x with ¢ > 0 of the /,'s without good primes, we
would have

log £ > ccs log %
# bad
which contradicts (8). ol
Let now £, be the smallest good prime in h{if it exists), and suppose
that a sequence p,?, p,®, .. ., p,” satisfying (11) exists, but no pu1®

satisfying (11) can be found. Thus, all the primes in
J@ = [p& (14 0, 5201 + ° + O]
are bad. We have, by the definition of C,
ST log p > 97 (1 + D1 + C), (n absolute constant).

pin T
Thus
log # > g (18)
pins® P
Clearly for B > 100 we have p,”(1 + £*(1 + C) < B¥*% Thusthe
intervals J;", J,7, ... do not overlap. Hence from (18), since the
number of 7's with p;” existing is > logs .
4 log B

log p - 7 log x
pbad P 4log B

which contradicts (8) and establishes (2).

3. Selberg’s deduction of the prime number theorem from (2).—Assume
a < A. First we prove the following lemmas.

LemMMa2, a+ A =2.

Choose x — © so that #(x) = Ax + o(x). Then a simple computation
(as in the proof of III) shows that

Y. (log p)? = Axlog x + o(x log x).
PE=x
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Thus from (1)
> (log p)ﬂ(;) = (2 — A)xlog x + o(x log x).

==z

By the definition of @ and by II we obtain by a simple computation

> (log p)é‘@) =ax Y, I_Oi_}'? + o(x log x) = ax log x + o(x log x)
5=

(19)

P ==
Thus from (19), 2 =2 a + A. We obtain ¢ + 4 = 2 similarly, by choos-
ing x so that #(x) = ax 4 o(x). Thus lemma 2 is proved.
LevMa 3. Let x — o so that 9(x) = Ax + o(x). Then for any prime

by £ x except possible for a set of primes satisfying
Zl"%” — olog %) (20)

we have
0@-)=af+o(§) (21)
i P
Suppose the lemma is false. Then as in the proof of lemma 1 there
exist two positive constants b, and b so that for arbitrarily large x, satisfy-
ing %(x) = Ax + o(x), and for a set of primes satisfying 3 Ia% > bylog x,

a(g)> G B
»

But then we have from (22), lemma 2, (19) and II (as in the proof of

we have
(22)

lemma 1)
axlogx + o(xlogx) = >, (log p)t?(;—i) > bi(a + b)xlogx + (1 — bax
P==x
log x + o(x log x) = ax log x + bibax log x + o(x log x),

an evident contradiction. This proves lemma 3.
LeMMA 4. Let p, be the smallest prime satisfying (21). Then py < x5,
and for all primes p; < x/p1 excepi possible for a set of primes satisfying

% 222 = oftog (23)

we have
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(p ) A% o2 ) (24)
19 Dy 195

1 < «° follows immediately from (20) and II:" The second part of lemma
4 follows by applying the argument of lemma 3 to x/p; instead of x and

interchanging 4 and a.
Now the deduction of the prime number theorem. Let p; be any prime

satisfying (21). Assume ;x; < ; Then (since #(x) is non-decreasing)
1y i

ai+o(§)gft—+ (p’ )
PR VY 2

or p, cannot lie in the interval

- Bae-o)
P P \e

where § > 0 is an arbitrary fixed number. Hence all primes in [, must
be “bad,” i.e., they do not satisfy (24). But it immediately follows from
(2) that

from (21) and (24)

log 2,
pinli P
To obtain a contradiction to (23) it suffices to construct ¢ log x disjoint
intervals I,. This can be accomplished in the same way as in the end of the
proof of (2) (where the disjoint intervals J,* were constructed). This
completes the first elementary proof of the prime number theorem.
4. Skeich of Selberg’s simplification of the proof of (2).—If we can find
two good primes satisfying

A+p>p> A+ Dpr, ¢> —+—£ (25)

then (2) follows easily. The intervals I:;'? —(1+4c )] [— -—-(1 + c)]
1

overlap. Thus (13), with ¢ = 1, holds. But then exactly as in lemma 1
there exists a prime p so that

o[i ol +c)] - a(;ji) = a(pi).
P 2P 2]
But this is impossible (by the definition of C) since

B g gyt BTy g L@

1P 1
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Thus we only have to show that good primes satisfying (24) exist, and this

can be accomplished by using III (a contradiction with logp P _
# good

[1 4 o(1)]log x can be established similatly as in the previous proof).

5. The jount simplified proof of the prime number theorem.—

LeMMa 5. Let xp > xy and xy — . Assume that 3(x)) = Axy + o(x1)
and $(xs) = axa + o(xs), or 3(xy) = axy + o(xy) and #(x2) = Axa + 0(xa).

Then
xafx g Afa + o(1).
Since #(x) is non-decreasing we have in the first case
axs + o(xa) ?Axl + o(x1) or xz/xlk Aja + o(1)
In the second case we have by III #(x2) — #(x1) = 2(2 — x1) + 0(x2)
axy + 2(xs — %1) %Axn + o(xq) or (2 — A.)xga‘ (2 — a)xs + o(xy).

Hence by lemma 2, ax; é Ax, + o(x2). Thus again xg/xla A/ja + o(1).
q.e.d.

Putl+ D = é + & where § is sufficiently small, and will be determined
a

later. Next we prove the following result.
LeMMA 6.

log p

> #(n independent of y).
ySr=Q0Q+Dy P

First we show that

log p > n(1 + D)y. (26)
ysp (14 Dy

If (26) is false then for a suitable sequence of y's we have #[(1 + D)y] —
#(y) = o(y). But then for these y’s

3[(1 + D)yl _ 80) + o(y) o Ay + oy)

= < a — &,
1+ D)y (1 + D)y 1+ D)y
which contradicts the definition of . Thus (26) holds and lemma 6 follows
immediately.

Choose now x so that #(x) = Ax + o(x). Then by lemmas 3 and 4
we obtain (p;, p; and p, having the same meaning as in lemmas 3 and 4)

a(p—;,) ~d o (pzp, (11) ~ug b (m)

From lemma 5 we obtain that for any fixed ¢ and sufficiently large x (satis-
fying ¢(x) = Ax + o(x))
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either i > (f-iﬂe)—x— orf < (E+ e)—jf—
i a bip; b A Diby

Hence p, cannot lie in the interval

A 4
Ij': E‘I‘ )P((—‘— )—-i-].
[(A A F>
Now if & is small enough then 1 4 D = (‘i — e)/(%1 + e). Hence by
a

lemma 6

log p >
pinli P

But by what has been said before all the primes in I, are bad (i.e., they do
not satisfy (24)). Thug to arrive at a contradiction with (23) it will
suffice as in the proof of (2) to construct ¢ log x disjoint intervals ;. This
can be accomplished as in the proof of (2), which completes the proof of the
prime number theorem.

6. Perhaps this last step can be carried out slightly more easily as
follows: Put

log p log ¢
S = b 7! - 27
2 5 p%‘ P @7

where p, runs through the primes satisfying (21). As stated before all
the primes in I; are bad (i.e., they do not satisfy (24)). Thus we have
from (27)

S>n213i——p">glogx (28)

i

1
since by II and (20) Z E%& > 1/, log x for large x.

i
On the other hand by interchanging the order of summation we obtain

log p log p:
5= et =E 3¢ s ki
x P » E:JP j2F

where p runs through all the primes of all the intervals /; (each p is, of
course, counted only once) and p; runs through the primes satisfying (21)
of the interval

sl ]
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We evidently have from 4 < =
log P{ adig
piin Jp P‘

Hence
SIE2s 5/
P
or from (27)

logp_ =
2L > 4 ,
23 % 5 og x

which contradicts (22) and completes the proof.

1 Selberg’s proof of (1) is not yet published.

2 See, for example, Landau, E., Handbuch der Lehre von der Verieilung der Primzahlen,
§ 19, or Ingham, A. E., The Distribution of Prime Numbers, p. 13.

3 An analogous result is used in Selberg’s proof of Dirichlet’s theorem.

4 See, for example, Landau, E., op. cit., §§18 and 26, or Ingham, A. E., op. cit., pp.
14, 15 and 22.




