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1. Introduction.-In the course of several important researches in 
elementary number theory A. Selberg’ proved some months ago the 
following asymptotic formula: 

C (log pjz + $*;;log p log (1 = 2~ log x + O(X), 
PSX 

(1) 

where p and 4 run ovei the primes. This is of course an immediate conse- 
quence of the prime number theorem. The point is that Selberg’s in- 
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genious proof of (1) is completely elementary. Thus (1) can be used as 
a starting point for elementary proofs of various theorems in analytical 
number theory, which previously seemed inaccessible by elementary 
methods. 

Using (1) I proved that &+i/p, 4 1 as n 4 a. In fact, I proved the 
following slightly stronger result: To every c there exists a positive S(c), 
so that for x sufficiently large we have 

?f[x(l + c)] - a(x) > S(c)x/log N (2) 

where r(x) is the number at primes not exceeding x. 
I communicated this proof of (2) to Selberg, who, two days later, using 

(I), (2) and the ideas of the proof of (2)) deduced the prime number theorem 

lim a(x)1og ’ = 1 or, equivalently2 
z-SC0 X 

lim do = 1, where 29(x) = c log Q. 
2+m x PSZ 

(3) 

In a few more days, Selberg simplified my proof of (2), and later we jointly 
simplified the proof of the prime number theorem. The new proof no 
longer required (2), but used the same ideas as in the proof of (2) and (3). 
I was also able to prove the prime number theorem for arithmetic pro- 
gressions. My proof of the latter was helped by discussions with Selberg 
and it utilizes ideas of Selberg’s previous elementary proof of Dirichlet’s 
theorem, 3 according to which every arithmetic progression whose fast 
term and difference are relatively prime contains infinitely many primes. 
This proof will be given in a separate paper. 

Selberg has now a more direct proof of (3), which is not yet published. 
It is possible, therefore, that the present method may prove to be only of 
historical interest. 

I now proceed to give the proofs as they occurred in chronological order. 
(It should be remarked that we never utilize the full strength of (1) , indeed 
an error term O(X log X) is all that is used in the following proofs.) 

We introduce the following notation: 

A = lim supg(x),a = limhf’(x), 
z-+m x z-0) IX 

First, we state a few elementary facts about primes which will be used 
subsequently. Of these, I, II and IV are well known in elementary prime 
number theory, while III is shown to be a simple consequence of (I). 

I. a > 0. 

II. ,&l = [l + o(l)]logx. 
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III. Let xz > x1. Then 
8(x2) - 6(x1) < 2(x2 - Xl) + 4x2). 

Thus, in particular, if xi = 0, we obtain A 5 2. 
Put in (1) x = x2 and x = x1 and subtract. Then we obtain 

c uogP)2s 2 x2 0 x2 - 2x1 log x1 + 0(x2 log x2) S 1 g 
XI < P 5 ?a 

2(x2 - x1)log x2 + 0(x2 log x2). (4) 

We distinguish two cases: (A) xi 2 x2/(log ~2)~. Then clearly log xi = 
(1 + o(l))log x2 and III follows from (4) on dividing both sides by log x2. 
(B) xi < x2/(log x2)‘. Then we have by (,4) 

8(x2) - 8(x,) < 8(x2) - 2p(x2/(log X2)9 + -%-- log x2 < 
(log x2) 2 

+ 0(x2) = 2(x2 - xl) + 0(x2), q. e. d. 

IV. A 5 1.5. This is a consequence of the known result -S(x) 5 1.5x. 
2. Proof of (2).-It is equivalent to prove that to every positive c there 

exists a positive 6(c) such that ?9[(1 + c)x] - G(x) > S(c)x for x sufficiently 
large. 

Suppose this not true, then there exist positive constants t’ and corre- 
sponding arbitrarily large x so that 

zY[x(l + c’)] - 8(x) = o(x). (5) 

Put C = sup cl. It easily follows from I and the finiteness of A that 
c< *. 

First we show that C satisfies (5), in other words, that there are arbi- 
trarily large values of x for which 

-9[x(l $ C)] - 29(x) = o(x). (f-3 

Choose c’ > C - 1/2e and let x + 03 through values satisfying (5). 
Then by III we have 

6[x(l + C)] - G(x) = 29[x(l + C)] - 3[x(l + c’)] + ?Y[x(l + c’)] - 

9(x) 5 2(C - c’)x f o(x) < cx + o(x), 

which (since E can be chosen arbitrarily small) proves (6). 
Now we shall show that (6) leads to a contradiction. From (1) we 

obtain by subtraction 

r<,5~(1+c@gP)2 +x<pp~(l+cw%P = 2Cxlogx + 4xlwx)* 

From (6) we have for suitable x since c (log p)’ = 0(x log x) 
z<p5r(l+C) 
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Now we deduce the following fundamental lemma. 
LEMMA 1. Let x -+ 0~ through values satisfying (6)) then for all primes 

p 5 x(1 + C), except possibly for a set of primes for which 

1% P 

“7 = o(log x) 

we have 

a[;u++q) =2c;+o(;). (9) 

Suppose the lemma is not true. Then there exist two positive constants 
bl and bz so that for arbitrarily large x (satisfying (6)) we have for a set of 

primes satisfying C !?!i?-P- brlogx 
B5xu+c) p 

j-$1++8@<(2C-b$ (10) 

But then from II, III and (lo), since (9) holds at best for a set of primes 

satisfying c 3, (1 - bl) log x we have 1% 

I” 

c 
P 5 x(1 + Cl 

1% P(f$l + Cl] - $9) 5 bd2C - bdxlogx + 

ZC(1 - bdx log x + o(x log x) = (2C - blb2)x log x + o(x log X) 

But this contradicts (7), hence the lemma is established. 
The primes satisfying (9) we shall call good primes, the other primes 

we shall call bad primes (of course the goodness and badness of a prime 
depends on x). 

We shall prove the existence of a sequence of good primes pi < PZ < , . . p, 
satisfying the following conditions: 

lOPI -c Pk c 1oop1, (1 + C)(l + VPi> pt+1> 

(1 + t)p,, i = 1, 2, . . ., k - 1 (11) 

where t is a small but fixed number (small compared to C). Since 
(1 + t)* < 100 it is clear that K < k, with constant k0 = k,(t). 

Suppose we already established the existence of a sequence satisfying 
(11). Then we prove (2) as follows: Consider the two intervals 
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If they overlap, then by (11) 

p; (1 + 0 < Zf < +& (1 + C) 
1 

Clearly 

since otherwise 

with cl > 0 and we would have from (9) 

tY fi$lu+c) 
[ 1 0 --zp ;. > (2+cz) ;i(l+c) -- % [ Pil 

which contradicts II I. Adding (13) and (9) with p = pi we obtain 

s[~(l+c)]-~~~~=2[~~(1+c)] --&+0@ (14) 

If the intervals (12) do not overlap we obtain by a simple calculation 
(using (9) and the fact that t is small) 

B[i(l + C)] - GE) > 1.9[x(ll c, - k] (15) 

Adding all the equations (14) and (15) (for i = 1, 2, . . ., k) we clearly 
obtain 

fFl(l + c)] - fi($) > I.,[; (1 + c) - ;A (16) 

Since p, > 1Ofii we obtain from (16) 

B[;l(l + Cl]> 1.6&(1 + Cl. 

But (17) contradicts IV. 

(17) 

Thus to complete the proof of (2) it will suffice to show the existence of a 
sequence of good primes satisfying (11). 

Consider the intervals 
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I, = (By BZTfl), r = 0, 1, . . , $J$ [ 1 
where B is a fixed, sufficiently large number. Clearly 

- 1, 

all the intervals 
1, lie in the interval (0, x). First we show that with the exception of & 

#(log X) r’s the interval I, contains good primes. From I and IV it easily 
follows that for sufficiently large B we have (since C+(Bx) - 29(x) $ cx) 

log P c- 
P inI, p 

> C~(CI > 0 independent of r) 

Thus if there were c2 log x with c2 > 0 of the 1;‘s without good primes, we 
would have 

1% P c- 
P bad p 

> GlCZ log x 

which contradicts (8). 
/* Let now plct) be the smallest good prime in *(If it exists}, and suppose 

that a sequence p,cr), Pz”), . , pi(‘) satisfying (11) exists, but no pf+l(‘) 
satisfying (11) can be found. Thus, all the primes in 

Ji(r) = [p,(r) (1 + t), pz(t)(l + t)?(l + Cj] 

are bad. We have, by the definition of C, 

c log $ > @t(r)(l + t)*( 1 + C), (11 absolute constant). 
p in Jcr) 

Thus 

Clearly for B > 100 we have pier) (1 4 t) “( 1 -/- C) < B2’+2. Thus the 
intervals Jil”, JilrS, . . . do not overlap. Hence from (18), since the 

log x 
number of r’s with plcr) existing is > -, 

4 log .B 

c- ~ 
log P > rl 1% x 

P bad p 4 log B 

which contradicts (8) and establishes (2). 
3. Setberg’s deduction of the prime number theorem from (2).-Assume 

a < A. First we prove the following lemmas. 
LEMMA 2. a+A=2. 
Choose x -+ 03 so that a(x) = Ax + O(X). Thea a simple computation 

(as in the proof of III) shows that 

C (log p)’ = Ax log x + O(X log x). 
$52 
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Thus from (1) 

,I& (log PP x = (2 0 - A)x log x + 0(x log x). (19) 

By the definition of a and by II we obtain by a simple computation 

c (log P)S 5 
fisr c1> 

2 axp $-,lY + 0(x log x) = ax log x + 0(x log x) 

Thus from (19), 2 2 a + A. We obtain a + A 5 2 similarly, by choos- 
ing x so that 8(x) = ax + o(x). Thus lemma 2 is proved. 

LEMMA 3. Let x + 00 so that 6(x) = Ax + o(x). Then for any prime 
pi 5 x except possible for a set of primes satisfyiq 

wo 

we have 

?3x 
6) 

CUE+* x 
i Pi 6) f 

(20 

Suppose the lemma is false. Then as in the proof of lemma 1 there 
exist two positive constants bi and bz so that for arbitrarily large x, satisfy- 

ing 29(x) = Ax + o(x), and for a set of primes satisfying c log P -> brlogx, 
P 

we have 

(22) 

But then we have from (22), lemma 2, (19) and II (as in the proof of 
lemma 1) 

axlogx + o(x logx) = C (1ogp)b > bl(a + bz)xlogx + (1 - b&x 
9sr 

logx + o(xlogx) = uxlogx + blbzxlogx + o(xlogx), 

an evident contradiction. This proves lemma 3. 
LEMMA 4. Let p1 be the smallest prime satisfying (21). Then $1 < x’, 

and for all primes p, < x/f11 except possible for a set of primes satisfying 

(23) 

we have 
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(24) 

pi < x’ follows immediately from (20) and II:’ The second part of lemma 
4 follows by applying the argument of lemma 3 to x/pi instead of x and 
interchanging A and a. 

Now the deduction of the prime number theorem. Let Pr be any prime 

satisfying (21), Assume 5 < 5. Then (since 9(x) is non-decreasing) 
PlPj Pi 

from (21) and (24) 

or p, cannot lie in the interval 

I*=[spi)], 
where 6 > 0 is an arbitrary fixed number. Hence all primes in It must 
be “bad,” i.e., they do not satisfy (24). But it immediately follows from 
(2) that 

=, 
log P > rl 

pinli 

To obtain a contradiction to (23) it sufices to construct c log x disjoint 
intervals I,. This can be accomplished in the same way as in the end of the 
proof of (2) (where the disjoint intervals Jf(‘) were constructed). This 
completes the tirst elementary proof of the prime number theorem. 

P. Sketch of Selberg’s simpl&ation of the proof of (2).-If we can find 
two good primes satisfying 

c 
(1 -I- C>Pl > p2 > (1 + m c > - 

1+t 

then (2) follows easily. The intervals [;, 5 (1 + cl], [;; gu + c)], 
1 1 

overlap. Thus (13), with i = 1, holds. But then exactly as in lemma 1 
there exists a prime p so that 

But this is impossible (by the definition of C) since 

-5 (1 + c’/p5 = “‘(‘pf c, > 1 + c. 
PIP 2 
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Thus we only have to show that good primes satisfying (24) exist, and this 

log P can be accomplished by using III (a contradiction with c - = 
fi good p 

[l + o(l)]log x can be established similarly as in the previous proof). 
5. The joint simpli$ed proof of the @ime number theorem- 
LEMMA 5. Let x2 > x1 artd x1 + m. Assume that 9(x1) = Axl + 0(x1) 

and 8(x2) = ax2 + 0(x2), or 8(x1) = ax1 + 0(x1) and 9(x2) = Ax2 + 0(x2). 

Then 
x2/x1&4/u + o(l). 

Since 8(x) is non-decreasing we have in the first case 

ax2 -I- 0(x2) 3 As + 0(x1) or x~Jxr$ A/a + o(1) 

In the second case we have by III 6(x2) - b(xi) 6 2(x2 - XI) + 0(x2) 

ax1 4 2(x2 - Xl) 3 Ax2 + 0(x2) or (2 - 4x2) (2 - a>x1+ 4x2). 

Hence by lemma 2, ax2 & Ax1 $ 0(x2). Thus again x2/x12 A/a + o(1). 
q.e.d. 

Put 1 + D = 4 + 6 where 6 is sufficiently small, and will be determined 
a 

later. Next we prove the following result. 
LEMMA& 

1% P 
c - > q(~ independent of y). 

Y 5 P s cl+ mr p 

First we show that 

c log P > d1 + D)Y. (26) 
Y 5 P 5 (1 + WY 

If (26) is false then for a suitable sequence of y’s we have G[(l + D)y] - 
b(y) = o(y). But then for these y’s 

Gt(l + D)rl = b(Y) + O(Y) 5 AY + O(Y) < u _ c1 
(1 + WY (1 + D>Y - (1 -I- D)y ’ 

which contradicts the detiition of a. Thus (26) holds and lemma 6 follows 
immediately. 

Choose now x so that S(x) = Ax + o(x). Then by lemmas 3 and 4 
we obtain (pl, pe and pj having the same meaning as in lemmas 3 and 4) 

62 
( ) PlP, 

=.-&+o(--)3 qpJ;i+o@ 

From lemma 5 we obtain that for any iixed B and sufficiently large x (satis- 
fying 9(x) = AX + O(X)) 
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Hence p, cannot lie in the interval 

Now if 6 is small enough then 1 + D 5 ($-E)/(~+E). Henceby 

But by what has been said before all the primes in I, are bad (i.e., they do 
not satisfy (24)). Thug to arrive at a contradiction with (23) it will 
suffice as in the proof of (2) to construct c log x disjoint intervals IS. This 
can be accomplished as in the proof of (2), which completes the proof of the 
prime number theorem. 

6. Perhaps this last step can be carried out slightly more easily as 
follows: Put 

(27) 

where p1 runs through the primes satisfying (21). As stated before all 
the primes in If are bad (i.e., they do not satisfy (24)). Thus we have 
from (27) 

s>&$ > ; logx (28) 

since by II and (20) 2 
1% Pf ___ > l/z log x for large x. 

PZ 
On the other hand by interchanging the order of summation we obtain 

where p runs through all the primes of all the intervals rr (each p is, of 
course, counted only once) and PI runs through the primes satisfying (21) 
of the interval 
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We evidently have from A < 03 

log Pf < c 
=i $i in Jp 

Hence 

or from (27) 

1% P 
CT > ;c log x, 

which contradicts (22) and completes the proof. 

1 Selberg’s proof of (1) is not yet published. 
2 See, for example, Landau, E,, Handbzsch der Lehre van der Verteilung der Primzahlela, 

Q 19, or Ingham, A. E,, The Distribution of Prime Numbers, p. 13. 
3 An analogous result is used in Selberg’s proof of Dirichlet’s theorem. 
* See, for example, Landau, E., op. cit., $518 and 26, or Ingham, A. E., op. cit., pp. 

14, 15 and 22. 


