ON THE COEFFICIENTS OF THE CYCLOTOMIC POLYNOMIAL

by P. Erdōs (at Syracuse, N. Y.)

(Recebito em 1949, Novembro, 8)

The cyclotomic polynomial $F_{n}(x)$ is defined as the polynomial of highest coefficient 1 whose roots are the primitive nth roots of unity. It is well known that the degree of $\mathrm{F}_{n}(x)$ is $p(n)$ and all its coefficients are integers. Further it is well known that $\mathrm{F}_{n}(x)$ is given by the following formula

$$
\mathrm{F}_{n}(x)=\Pi_{d\{n}\left(x^{n / d}-1\right)^{\mu(d)}
$$

Denote by A_{n} the greatest coefficient of $\mathrm{F}_{n}(x)$ (in absolute value). For $n<105, A_{n}=1$. For $n=105, A_{n}=2$. I. Schur proved that $\overline{\lim } \mathrm{A}_{n}=\infty$. Emma Lehmer ${ }^{1}$ proved that $\mathrm{A}_{n}>c n^{1 / 3}$ for infinitely many n, and I proved that $A_{n}>\exp \left((\log n)^{4 / 3}\right)$, for infinitely many $n .{ }^{2}$ Bateman ${ }^{3}$ found a very simple proof that for a suitable c_{1} and all n

$$
\begin{equation*}
\Lambda_{n}<\exp \left(n^{\varepsilon, / \log \log n}\right), \quad\left(\exp \pi=e^{*}\right) . \tag{1}
\end{equation*}
$$

In the present note I prove that for suitable c_{9} we have for infinitely many n

$$
\begin{equation*}
A_{n}>\exp \left(n^{\varepsilon_{2} / \log \log n}\right) \tag{2}
\end{equation*}
$$

Thus (1) and (2) determine the right order of magnitude of $\log \log A_{n}$. The proof of (2) will be very similar to that of $\mathrm{A}_{n}>\exp \left((\log n)^{4 / 3}\right)$, but the present paper can be read without reference to the previous one.

1 Bull. Amer. Math. Soc. vol. 42 (1936) pp. 389-399.

* Bull. Amer. Math. Soc., vol. 52 (1946) pp. 179-184.
\& To be published in Bull. Amer. Math. Soc.

Since

$$
\max _{|=|-1}\left|\mathrm{~F}_{n}(\eta)\right| \leqslant \mathrm{A}_{n}(p(n)+1),
$$

(2) will immediately follow from the following

Theorem. For infiuritely many n

$$
\max _{|=|=1}\left|\mathrm{~F}_{n}(z)\right|>\exp \left(n^{\text {n } N \log \log n}\right) .
$$

Let m be large; denote by $p_{1}<p_{2}, \cdots$ the consecutive primes $\geq m$. Define

$$
n=p_{1} p_{1} \cdots p_{k}, k=\left[m^{1 / 10}\right] .
$$

A well known theorem of Ingham ${ }^{2}$ states that the number of primes in $\left(m, m+m^{5 / 8}\right)$ is greater than $m^{5 / 3} /(2 \log m)>k$. Thus

$$
\begin{equation*}
p_{k}<m+m^{58} \tag{3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
m^{k}<n<\left(m+m^{5.8}\right)^{1} \text { or } n=(1+o(1)) m^{k}\left(\text { since } k \leqslant m^{1 / 10}\right) \text {. } \tag{4}
\end{equation*}
$$

By $\rho(x, n)$ we denote the number of integers $\leqslant x$ which are relatively prime to n. Put $t=\left[\frac{k}{10^{5}}\right]$. Then for $r<2 t$ we evidently have

$$
\begin{equation*}
\binom{k}{r} /\binom{k}{r-1}=\frac{k-r+1}{r}>49999 . \tag{5}
\end{equation*}
$$

Put

$$
\mathbf{\Sigma}_{r}=\boldsymbol{\Sigma} \frac{1}{p_{i_{1}} \cdots p_{i_{r}}}, \boldsymbol{\Sigma}(x)=\boldsymbol{\Sigma}\left[\frac{x}{p_{i_{1}} \cdots p_{i_{r}}}\right]
$$

where the summation extends over all distinct sets of primes taken r at a time from $p_{1}, p_{2}, \cdots, p_{k}$.

Now we have to prove a few lemmas :
Lemma 1. Let $1 \leqslant s \leqslant p_{1}^{1 / 10}$, define the interval $I_{\text {, }}$ as $(s+1 / 4) p_{1}^{2 /-1}<x \leq(s+3 / 4) p_{1}^{2 /-1}$. Then if x is in I_{s} we have

$$
q(x, n)>x \frac{q(n)}{n}+\frac{1}{10}\binom{k}{2 t-1} .
$$

We have by the Sieve of Eratosthenes

$$
\varphi(x, n)=x-\Sigma_{1}(x)+\Sigma_{g}(x)-\cdots-\boldsymbol{\Sigma}_{2 l-1}(x),
$$

1 Quart. J. Math. Oxford Ser., vol. 8 (1937) pp. 255-266.
(since $\Sigma_{\boxed{2}}(x)=\boldsymbol{\Sigma}_{\Psi+1}(x)=\cdots=0$). Nowt as in (4) (if $p_{1}>m^{2}$ is sufficiently large)
 Hence trivially

$$
\frac{x}{p_{i,} \cdots p_{i_{2-1}}}-\left[\frac{x}{p_{i_{1}} \cdots p_{i_{w-1}}}\right]>\frac{1}{5}
$$

(since s $p_{i} \cdots p_{i_{z-1}}=s p_{1}^{2 l-1}+O\left(p_{1}^{2 t-1} / p_{1}^{1 / 8}\right)=s p_{1}^{2 t-1}+o\left(p_{1}^{2(-1}\right)$.
Thus by omitting the square brackets we evidently have

$$
\begin{aligned}
& P(x, n)>x\left(1-\boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{z}-\cdots-\boldsymbol{\Sigma}_{2 t-1}\right)+\frac{1}{5}\binom{k}{2 t-1}-\binom{k}{2 t-2}- \\
& \quad-\binom{k}{2 t-4}-\cdots>x\left(1-\mathbf{\Sigma}_{1}+\mathbf{\Sigma}_{2}-\cdots\right)+x \boldsymbol{\Sigma}_{2}+\frac{1}{6}\binom{k}{2 t-1}
\end{aligned}
$$

since $\boldsymbol{\Sigma}_{1}>\mathbf{\Sigma}_{2}>\cdots$, and by (5)

$$
\binom{k}{2 t-2}+\binom{k}{2 t-4}+\cdots<2\binom{k}{2 t-2}<\binom{k}{2 t-1} / 30 .
$$

Further

$$
\mathbf{\Sigma}_{\vartheta t}<\binom{k}{2 t} / p_{1}^{2 t}<\frac{k}{t}\binom{k}{2 t-1} / p_{1}^{2 t}<2 \cdot 10^{5}\binom{k}{2 t-1} / p_{1}^{2 t}
$$

Thus finally

$$
\varphi(x, n)>x \frac{\rho(n)}{n}-10^{6}\binom{k}{2 t-1} / p_{1}^{n / 10}+\frac{1}{6}\binom{k}{2 t-1}>x \frac{\rho(n)}{n}+\frac{1}{10}\binom{k}{2 t-1}
$$

for sufficiently large p_{1}, which proves lemma 1 .
Lemana 2. Define the interval I , as $\left((s-1 / 4) \cdot p_{1}^{s-1} \leq x \leq(s+1 / 4) p_{1}^{2(-1}\right)$, $1 \leqslant s \leqslant p_{1}^{1 / 5}$. Then if x is in I s,

$$
\Phi(x, n)>x \frac{\rho(n)}{n}-3\binom{k}{2 t-2} .
$$

We have for the x in $\mathrm{F}_{\text {s }}$ (as in the proof of lemma 1)

$$
\begin{aligned}
& \rho(x, n)=x-\boldsymbol{\Sigma}_{1}(x)+\cdots-\boldsymbol{\Sigma}_{u t-1}(x)>x\left(1-\boldsymbol{\Sigma}_{1}+\cdots-\boldsymbol{\Sigma}_{a t j}\right)- \\
&-\binom{k}{2 t-2}-\binom{k}{2 t-4}-\cdots>x \frac{\rho(n)}{n}-x \boldsymbol{\Sigma}_{s}-2\binom{k}{2 t-2}> \\
&>x \frac{\rho(n)}{n}-3\binom{k}{2 t-2}
\end{aligned}
$$

since as in the proof of lemma 1

$$
x \boldsymbol{\Sigma}_{z t}<x\binom{k}{2 t} / P_{1}^{* t}<2\binom{k}{2 t} / p_{1}^{2 n 10}<\binom{k}{2 t-2},
$$

which proves lemma 2.
Leama 3. Let $p_{1}^{4 /-1} \leqslant x \leqslant p_{1}^{2 \%}$. Then

$$
?(x, n)>x \frac{\rho(n)}{n}-2\binom{k}{2 t} .
$$

We have for $p_{1}^{8 n-1} \leqslant x \leqslant p_{1}^{4 \prime}$ (as in the proof of lemma 1)

$$
\begin{aligned}
& \rho(x, n)=x-\mathbf{\Sigma}_{1}(x)+\cdots-\Sigma_{r-t}(x)>x\left(1-\mathbf{\Sigma}_{1}+\cdots-\Sigma_{y_{r-1}}\right)- \\
& \quad-\binom{k}{2 r-2}-\binom{k}{2 r-4}-\cdots>x \frac{\varphi(n)}{n}-x \mathbf{\Sigma}-2\binom{k}{2 r-2}> \\
& \quad>x \frac{\rho(n)}{n}-p_{1}^{2 r}\binom{k}{2 r} / p_{1}^{* r}-2\binom{k}{2 r-2}>x \frac{\rho(n)}{n}-2\binom{k}{2 r} \quad \text { q. e. d. }
\end{aligned}
$$

Lemma 4. Let $p_{1}^{2 r-1} \leqslant x \leqslant p_{1}^{2 r-1}$. Then

$$
\varphi(x, n)>x \frac{\rho(n)}{n}-2\binom{k}{2 r-2} .
$$

We have for $p_{1}^{2+-2} \leqslant x \leqslant p_{1}^{2+-1}$ (as in the proof of lemma 1).

$$
\begin{gather*}
?(x, n)-x-\Sigma_{1}(x)+\cdots+\Sigma_{2 r-2}(x)>x\left(1-\Sigma_{1}+\cdots+\Sigma_{2 n-9}\right)- \\
-\binom{k}{2 r-2}-\binom{k}{2 r-4}-\cdots>x\left(1-\Sigma_{1}+\cdots\right)-2\binom{k}{2 r-2}= \\
-x \frac{q(n)}{n}-2\binom{k}{2 r-2}
\end{gather*}
$$

Let $1=a_{1}<a_{2}<\cdots<a_{\uparrow(\omega) / 2}$ be the integers $<n / 2$ relatively prime to n. The roots of $F_{u}(z)$ are clearly of the form

$$
x_{j}=\exp \left(2 \pi i a_{j} / n\right), \bar{x}_{i}=\exp \left(-2 \pi i a_{j} / n\right) .
$$

Put $\mathrm{A}=\left(p_{1}^{1 / 10}+3 / 4\right) p_{\mathrm{i}}^{3 /-1}$ and denote by I_{k} the are

$$
\mathrm{I}=|\exp (2 \pi i \mathrm{~A} / n), \exp (-2 \pi i \mathrm{~A} / n)| .
$$

Let $x_{i}, \bar{x}_{i}, i=1,2, \cdots, \mathrm{U}$ be the roots of $\mathrm{F}_{\mathrm{n}}(z)$ in I. These x_{i} clearly correspond to the a_{i} satisfying $1 \leqslant a_{i} \leqslant\left(p_{1}^{1 / 10}+3 / 4\right) p_{1}^{\operatorname{tin}-1}$. In other words

$$
\mathrm{U}=\rho\left[\left(p_{1}^{1 / 20}+3 / 4\right) p_{1}^{2(-1}, n\right)=\varphi(\mathrm{A}, n) .
$$

Define the polynomial $G_{n}(z)$ of highest coefficient 1 and degree $\varphi(n)$ as follows :

$$
\begin{array}{lll}
\mathrm{G}_{n}[\exp (\pm 2 \pi j i / \rho(n))]=0 & \text { for } & 1 \leqslant j \leqslant \mathrm{U}, \\
\mathrm{G}_{n}[\exp (\pm 2 \pi \alpha ; i / n)]=0 & \text { for } & j>\mathrm{U} .
\end{array}
$$

A theorem of Turás-Riesza ${ }^{1}$ states that if a polynomial of degree m assumes its absolute maximum in the unit circle at z_{0} and x_{0} is the closest of its root on the unit circle, then the arc $\left(z_{0}, x_{0}\right)$ is $\geq \pi / n$, equality only for $z^{n}-e^{i x}, \alpha$ neal.
Now we estimate

$$
\begin{equation*}
\left|\frac{\mathrm{G}_{n}(1)}{\mathrm{F}_{n}(1)}\right|=\prod_{p 1}^{\mathrm{U}}\left|\frac{1-y_{i}}{1-x_{i}}\right|^{2} \tag{6}
\end{equation*}
$$

where y_{i}, \bar{y}_{i} denote the roots of $\mathrm{G}_{n}(z)$. (6) is evident since all but the first U roots of $\mathrm{F}_{\mathrm{n}}(z)$ and $\mathrm{G}_{n}(z)$ coincide. Next we write

$$
\prod_{i-1}^{0}\left|\frac{1-y_{i}}{1-x_{i}}\right|^{2}=\Pi_{1} \cdot \Pi_{2} \cdot \Pi_{3} \cdot \Pi_{4}
$$

where in Π_{1}, i is such that a_{i} is in one of the intervals $\mathrm{I}_{,} 1 \leqslant s \leqslant p_{1}^{1 / 10}$ (for the definition of I_{s} see lemma 1), in Π_{2}, a_{i} is in one of the I_{3}^{\prime} (see lemma 2), in $\Pi_{3}, p_{1}^{2,-1} \leqslant a_{i}<p_{1}^{2} \quad 2 \leqslant 2 r \leqslant 2 t-2$, and in $\Pi_{4}, p_{1}^{2 r-2} \leqslant$ $\leqslant a_{i}<p_{1}^{2 r-1}, 1 \leqslant 2 r-1 \leqslant 2 t-1$. Further we write

$$
\Pi_{1}=\Pi_{i}^{(1)} \cdot \Pi_{i}^{(2)} \ldots \Pi_{i}^{\left[p_{1}^{1 / 20]}\right]}
$$

where in $\Pi_{1}^{(i)}, a_{i}$ is in one of the I_{s}. It follows from lemma 1 that if a_{i} is in any of the I_{s} then y_{i} is farther from 1 than x_{i} and in fact the length of the are $\left(x_{i}, y_{i}\right)$ is greater than

$$
\frac{2 \pi}{10 \varphi(n)}\binom{k}{2 t-1}>\frac{2 \pi}{10 n}\binom{k}{2 t-1}
$$

A very simple calculation then shows that (since in $\mathrm{I}_{s}, 1-x_{i}<$ $\left.<2 \pi(s+1) p_{1}^{s i-1} / u\right)$

$$
\left|\frac{1-y_{i}}{1-x_{i}}\right|>1+\frac{\binom{k}{2 t-1}}{30(s+1) p_{1}^{2 /-1}}
$$

The number of the a_{i} in I_{n} is clearly greater than

$$
\frac{1}{2} p_{1}^{e q-1}\left(1-\sum_{i=1}^{k} \frac{1}{p_{i}}\right)>\frac{1}{3} p_{1}^{2 i-1}
$$

1 M. Rresz, Jber. Deutschen Math. Verein, vol. 23 (1914) pp. 354-368; P. Turís, Aota Univ. Szeged. vol. 11 (1946) pp. 106-113.

Thus

$$
\Pi_{1}^{(0)}>\left(1+\frac{1}{30}\binom{k}{2 t-1} /\left|(s+1) p_{1}^{2 t-1}\right|\right)^{2 / 3 p_{1}^{2 /-1}-1} .
$$

Hence
(7) $\log \left(\Pi_{i}^{(t)}\right)>\frac{2}{3} p_{1}^{2 t-1}\left[\frac{\binom{k}{2 t-1}}{30(s+1) p_{1}^{2(-1}}-\frac{1}{2}\left(\frac{\binom{k}{2 t-1}}{30(s+1) p_{1}^{z t-1}}\right)^{2}\right\}>$

$$
>\frac{1}{50}\binom{k}{2 t-1} / s+1
$$

since

$$
\binom{k}{2 t-1}<\frac{k^{2 l-1}}{(2 t-1)!}<\frac{p_{1}^{z /-1}}{(2 t-1)!}
$$

Thus from (7)

$$
\begin{equation*}
\log \left(\Pi_{1}\right)>\sum_{\kappa \leq p_{1}^{10}} \log \left(\Pi_{1}^{(t)}\right)>\frac{\log p_{1}}{600}\binom{k}{2 t-1} . \tag{8}
\end{equation*}
$$

Now we estimate Π_{2}. We write

$$
\Pi_{2}=\prod_{1 \leq \pi \leq p_{1}^{10}}\left(\Pi_{i}^{\left(v^{\prime}\right)}\right),
$$

where in $\Pi_{2}^{()}$, α_{i} is in I_{6}. From lemma 2 we obtain (as in the estimation of $\Pi_{1}^{(i)}$) for the α_{v} in $\mathrm{I}_{\text {, }}$

$$
\left|\frac{1-y_{i}}{1-x_{i}}\right|>1-\frac{4\binom{k}{2 t-2}}{(s-1 / 4) p_{1}^{u-1}}\left(\text { since } \frac{\Phi(n)}{n}>1-\sum_{i=1}^{k} \frac{1}{p_{i}}>\frac{3}{4}\right) .
$$

The number of the a_{i} 's in I, in evidently $<\frac{1}{2} p_{1}^{3+1}$. Hence

$$
\mathrm{H}_{2}^{(v)}>\left(1-\frac{4\binom{k}{2 t-2}}{(8-1 / 4) p_{1}^{u l-1}}\right)^{p_{i}^{k i-1}}
$$

or (as in the estimation of $\log \Pi_{i}^{(v)}$)

$$
\log \Pi_{2}^{(s)}>-5\binom{k}{2 t-2} / 8-1 / 4 .
$$

Hence finally

$$
\begin{equation*}
\log \left(\Pi_{2}\right)=\sum_{1 \leq i \leq p\}^{\mu 0}}^{\sum} \log \left(\Pi_{2}^{(v)}\right)>-\binom{k}{2 t-2} \log p_{1} . \tag{9}
\end{equation*}
$$

Now we estimate Π_{3}. We write

$$
\Pi_{s}=\Pi_{n-1}^{t-1}\left(\Pi_{3}^{(\gamma)}\right),
$$

where in $\Pi_{3}^{()}, p_{1}^{9 n-1} \leq a_{i} \leq p_{1}^{\mathrm{gn}_{2}}$. Now

$$
\Pi_{3}^{(t)}=\prod_{t=1}^{p_{i}-1}\left(\Pi_{3}^{(t)}(t)\right),
$$

where in $\Pi_{3}^{(f)}(t), t p_{1}^{3 r-1} \leqslant a_{i} \leqslant(t+1) p_{1}^{9 n-1}$. For the a_{i} in $\Pi_{3}^{(t)}(t)$ we have from lemma 3 (as in the estimation of Π_{1} and Π_{2})

$$
\left|\frac{1-y_{i}}{1-x_{i}}\right|>1-\frac{3\binom{k}{2 r}}{t p_{1}^{2,-1}}
$$

and the number of a's in $t p_{1}^{2 r-1} \leqslant a_{i} \leqslant(t+1) p_{1}^{2 r-1}$ is $\leqslant p_{1}^{2 \gamma-1}$. Thus (as in the estimation of Π_{1} and Π_{2})

$$
\log \left(\Pi_{3}^{(t)}(t)\right)>-4\binom{k}{2 r} / t
$$

and hence

$$
\log \left(\Pi_{3}^{t\rangle}\right)>-5\binom{k}{2 r} \log p_{1}
$$

Thus finally

$$
\begin{align*}
\log \left(\Pi_{3}\right) & >-5 \log p_{1}\left[\binom{k}{2 t-2}+\binom{k}{2 t-4}+\cdots\right]> \tag{10}\\
& >-6\binom{k}{2 t-2} \log p_{1} .
\end{align*}
$$

In the same way we obtain

$$
\begin{equation*}
\log \left(\Pi_{4}\right)>-6\binom{k}{2 t-2} \log p_{1} . \tag{11}
\end{equation*}
$$

Thus we obtain from (8), (9), (10) and (11)

$$
\begin{gathered}
\log \left(\Pi_{1}\right)+\log \left(\Pi_{2}\right)+\log \left(\Pi_{3}\right)+\log \left(\Pi_{4}\right)>\log p_{1}\left[\binom{k}{2 t-1} / 600-\right. \\
\left.-13\binom{k}{2 t-2}\right]>\binom{k}{2 t-2} \log p_{4} / 1000,
\end{gathered}
$$

or

$$
\begin{equation*}
\left|\mathrm{G}_{n}(1)\right|>\exp \left[\frac{\binom{k}{2 t-1} \log p_{1}}{1000}\right] \tag{12}
\end{equation*}
$$

since n has more than one distinct prime factor, and thus $\mathrm{F}_{n}(1)=1$. Assume now that $G_{n}(z)$ assumes its absolute maximum in the unit circle at z_{0}. Without loss of generality we can assume that the real
part of z_{0} is positive. By the previously quoted theorem of Turán--Riesz ${ }^{1} z_{0}$ cannot lie on the are

$$
\left\{\exp \left(-2 \pi i \frac{\mathrm{U}}{\varphi(n)}\right), \quad \exp \left(2 \pi i \frac{\mathrm{U}}{\varphi(n)}\right)\right\} .
$$

Now we estimate $\mathrm{G}_{n}\left(z_{0}\right) / \mathrm{F}_{n}\left(z_{0}\right)$. We have

$$
\left|\frac{\mathbf{G}_{n}\left(z_{0}\right)}{\mathrm{F}_{n}\left(z_{0}\right)}\right|=\operatorname{\Pi n}_{\mathrm{a}_{i} \text { In }} \frac{\left(z_{0}-y_{i}\right)\left(z_{0}-\bar{y}_{i}\right)}{\left(z_{0}-x_{i}\right)\left(z_{0}-\bar{x}_{i}\right)}
$$

Now we make use of the well known and elementary result that $\left(z_{0}-z\right)\left(z_{0}-\bar{z}\right)$ increases as z moves away from z_{0} towards 1. Hence

$$
\left|\frac{\mathrm{G}_{n}\left(z_{0}\right)}{\mathrm{F}_{n}\left(z_{0}\right)}\right|<\prod_{\mathrm{a}_{i}=1 \mathrm{in} \mathrm{I}_{i}}^{p_{i}^{n o}}\left|\frac{\left(z_{0}-y_{i}\right)\left(z_{0}-\bar{y}_{i}\right)}{\left(z_{0}-x_{i}\right)\left(z_{0}-\bar{x}_{i}\right)}\right| \prod_{a_{i}<p_{i}^{2+1}}\left|\frac{\left(z_{0}-y_{i}\right)\left(z_{0}-\bar{y}_{i}\right.}{\left(z_{0}-x_{i}\right)\left(z_{0}-\bar{x}_{i}\right)}\right|,
$$

since for the a_{i} in I_{s}^{2} and the $a_{i} \leq p_{1}^{2-t}$ we cannot assume that y_{i} is farther from 1 (i. e. closer to z_{0}) than x_{i}. Further trivially

$$
\left|\frac{\mathrm{G}_{n}\left(z_{0}\right)}{\mathrm{F}_{n}\left(z_{0}\right)}\right|<\prod_{a_{i} \text { in } i_{i}^{\prime}}^{p_{1}^{p / n)}}\left(1+\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|\right)_{a_{i}<p_{j}^{j-1}}^{\Pi}\left(1+\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|\right)
$$

The are (y_{i}, x_{i}) may (by lemma 2) be assumed to be less than $6 \pi\binom{k}{2 t-2} / q(n)$ and since z_{0} is not on the arc, $\exp (-2 \pi i \mathrm{U} / \varphi(n))$, $\exp (2 \pi i \mathrm{U} / \rho(n))$, the arc $\left(z_{0}, x_{i}\right)$ is greater than $2 \pi p_{1}^{4 /-1}\left(\left[p_{1}^{1 / 10}\right]-s+\right.$ $+1 / 2) / n$, if a_{i} is in \mathbf{I}_{k}^{\prime}. Thus for the α_{i} in I_{k}^{\prime} (by a simple calculation)

$$
\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|<\frac{4\binom{k}{2 t-2}}{\left(\left[p_{1}^{1 / 10}\right]-s+1 / 2\right) p_{1}^{2 s-1}} .
$$

The number of the a_{i} with x_{i} in I_{v}^{\prime} is clearly less than $\frac{1}{2} p_{i}^{2-1}$. Thus

$$
\sum_{\substack{v_{i}=1 \\ a_{i} \operatorname{ton} x_{i}}}^{p_{1}^{f / 10}} \log \left(1+\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|\right)<4\binom{k}{2 t-2} \sum_{0 \leq p_{i}} \frac{1}{8-1 / 2}<\binom{k}{2 t-2} \log p_{i} .
$$

Similarly for the $a_{i}<p_{i}^{2 t-1},\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|<10\binom{k}{2 t-2} / p_{i}^{2 t-1+1 / 10}$ lemmas 3 and 4). Thus

$$
\sum_{a_{i}<p_{1}^{w /-1}} \log \left(1+\left|\frac{y_{i}-x_{i}}{z_{0}-x_{i}}\right|\right)<10\binom{k}{2 t-2} / p_{1}^{1 / 10}<\binom{k}{2 t-2} .
$$

[^0]Hence finally

$$
\begin{equation*}
\log \left|G_{n}\left(z_{0}\right)\right|-\log \left|F_{n}\left(z_{0}\right)\right|<2\binom{k}{2 t-2} \log p_{1} \tag{13}
\end{equation*}
$$

In faet it is very likely that $\left|\mathrm{G}_{n}\left(z_{0}\right)\right|<\left|\mathrm{F}_{\mathrm{a}}\left(z_{0}\right)\right|$, bat (13) suffices for our purpose.

Now we can prove our theorem. We obtain from $\left|G_{n}\left(z_{0}\right)\right|>\left|G_{n}(1)\right|$, (12) and (13)

$$
\begin{aligned}
& \log \left|\mathrm{F}_{n}\left(z_{0}\right)\right|>\log \left|\mathrm{G}_{n}\left(z_{0}\right)\right|-2\binom{k}{2 t-2} \log p_{1}>\log \left|\mathrm{G}_{n}(1)\right|- \\
& -2\binom{k}{2 t-2} \log p_{1}>\log p_{1}\left[\binom{k}{2 t-1} / 1000-2\binom{k}{2 t-2}\right]> \\
& >\binom{k}{2 t-1} \frac{\log p_{1}}{2000}>\left(\frac{k}{2 t-1}\right)^{2 t-1} \frac{\log p_{1}}{2000}>\left(\frac{k}{2 t}\right)^{2 t}>t^{2 / 5000}
\end{aligned}
$$

Now from (4)

$$
k=(1+o(1)) \frac{\log n}{\log m}=(1+o(1)) \frac{\log n}{10 \log k}
$$

or

$$
k=(1+o(1)) \frac{\log n}{10 \log \log n}>\frac{\log n}{20 \log \log n} .
$$

Hence finally

$$
\log \left|\mathrm{F}_{n}\left(z_{0}\right)\right|>e^{\log n(3)(20 \log \log n)}=n^{1 /(10 \cdot+\log \log (n)} \quad \text { q. e. d. }
$$

By the same method we could prove that there exist two consecutive roots of $\mathrm{F}_{\mathrm{s}}(z), x_{i}$ and x_{i+1}, so that everywhere on (x_{i}, x_{i+1})

$$
\log \left|F_{n}\left(z_{0}\right)\right|<-n^{\text {flogiog } n} .
$$

[^0]: ${ }^{1}$ Reference 1, p. 67.

