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The cyclotomic polynomial F„ (x) is defined as the polynomial of
highest coefficient 1 whose roots are the primitive nth roots of unity .
It is well known that the degree of F n (x) is ? (n) and all its coeffi-
cients are integers . Further it is well known that F„ (,x) is given by
the following formula

Fn (x) = U (x"Id --1) PA W),
d!n

Denote by A,, the greatest coefficient of F n (x) (in absolute value) .
For -n<10i7,A,,-l . For n=105,Án =2 . I . Schur proved that
lim A„=oo . Emma Lehmer1 proved that A,,>cn 1 / 3 for infinitely many
n, and I proved that A„>exp ((log n) 4 3) , for infinitely many n . 2

Bateman 3 found a very simple proof that for a suitable c 1 and all n

(1) Ali < exp (n I,/log log' 11) , (exp z = e") .

In the present note I prove that for suitable c 2 we have for infinitely
many n
(2)

	

A,,, > exp ()1,2/ log log n) .

Thus (1) and (2) determine the right order of magnitude of log log A n .
The proof of (2) will be very similar to that of A,,>exp ((log n)4/ 3 ) ,
but the present paper can be read without reference to the previous one .

I Bull. Amer. Math . Soc . vol . 42 (1936) pp . 389-392 .
2 Bull. Amer. Math . Soc ., vol . 52 (1946) pp . 179-184 .
3 To be published in Bull . Amer. Math . Soc .



64

	

P. ERDöS

Since
in ax I F,, (z) G A,, (J (a) ; 1)
1 ..1 -1

	

-

(2) will immediately follow from the following

THEOREM . For infinitely many n

relax I F,,, (u) I > exp (v IA11g toe az) .

-, I =1

Let m be large ; denote by P1<p2, . . . the consecutive primes
m . Define

n ° p1 p2 . . . Pk , k _ [111 1 10] .

A well known theorem of Ingham 1 states that the number of primes in
(m , an

	

m1 í 8) is greater than m 5 3/(2 lob )n )> k . Thus
(3)

	

-P < nt.

Hence

(4)

	

an'° < 71 < (na + '01 1 / 1 ) Or -n - (1 + o (1)) an'° (since Ic Z m 1 1 1o) .

By ~ (x, n) we denote the number of integers Z- x which are relati-

vely prime to as . Put t =	 h

	

Then for )-<2t we evidently have
10 5

(5)

Put

h. / 1 1

	

h-r 1 > 49999 .

whore the summation extends over all distinct sets of primes taken r
at a time from p1 , P2 , • , • , pio

Now we have to prove a few lemmas

LEMMA 1 . Let 1 / s Gp'1 1 10 , define the interval 1, as

(s+ 1/4)h E-1 ~x-(s+3 4)áa t-1 . Then if x is in I, we have

? (x 7a) > x
Y (aa)

	

1

	

1, ;
'

	

n

	

10 2t-1,

We have by the Sieve of Eratosthenes

(X 7 t) - x - V 1 (x) I 12 (x)

	

u21-1 (x )

1 Quart. J. Math, Oxford Ser ., vol. 8 (1937) pp . 255-266 .

I
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6,5

(since 12t (x) =12t+1 ( )

	

= 0) . NoNw as in (4) (if pl> ri is suffi-
ciently large)

pi t-l < pz . . .

	

1 < t- < pit-~ (1

Hence trivially

(sincesp • • • p .

p~t~o
1 <rllt-I 1-;0 (P-1 11% .

x

	

x

	

1
p . . . - 2E 1

	

[Pi
. . . p, I ,

- spi
t-i
+ (1 )1 l 1p1 s) - spit-i + o (pit-i ) .

Thus by omitting the square brackets we evidently have

.
(x,n)>x(1- i -- ú+ 2 - . . .- ú2t-i) -- 5+ (2t`1)

	

(2t
/
-
c
2) -

k

	

1

	

Ie
-(2t-4)

	

>x(1-~~ 12 - . . .)+,x1a+I(2t-1)

since ~1 > Y,z >

	

and by (a)

(21 2) + ~2t lc 4) +
. . . < 2 (2

/L 2)
<

(2t1~1)/30
.

Further

úa <
(2t)/pi < t (2t /'

-1)/1~tt
<

	

10° (2t
lc

1)/
plt

Thus finally

m (x, n) > x(1z) - lOs (0
10

)/p l '10+
1
G ~(9t

k
- 1

) > x n + 1

10 ~.,,(9t k- 1
)

~t - 1

for sufficiently large p, , which proves lemma 1 .
LEMMA 2. Define the internal IS as ((s-114) • p of Zx_(s+ 114) p 2 t - i)

1ZsZpt1 10 . Then if x is in -IS

	

- -

o(x,n)>xL(L) -3( k
)

7a

	

2t-2

We have for the x in L (as in the proof of lemma 1)

(x,-,z)=x-Ill (x) . . . -121-I (x)>x(1 -ú1+ . . . -121 ;)-
k

	

1

	

(n)

	

ú

	

`~

	

k

	

>
-

(2t-2) - (2 -4)

	

> n -
x 2s

- ` (2t-2)
>xcp(n)-3 (2t k

n

	

-2)
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since as in the proof of lemma 1

x u2t < x (91)/plt < 2 ( k
2t)/p1'i0 < (2t 1-̀9)

which proves lemma 2.

LEMMA 3. Let p2,,`'ZxZp2," . Theta

? (x , n) > x y (n) -2n

	

(2t)
k.

We have for p 2 -1 ZXG p ' (as in the proof of lemma 1)

? (x , n) = x - ú1(x) +

	

(x) > x (1 - ~ t }

k

	

k

	

? (n)

	

2

	

k•

	

>x	-xl >
(2r-2)

-
(2r-4) --

	

as

	

9r-2i
9 n

	

2, . / k

	

2,.

	

k

	

ro n

	

k
>x ' 7a - ? 1 )

	

1

	

9 -

	

> x' n

	

9

	

q. e . d .( )

	

~ 1)/P

	

o (2r 2)

	

9
(2?

LEMMA 4. Let p 2,*-2ZxZp1 1 . Then

(x, n) > x ,ro(n)--2
(2r

l
-2n

	

) .
~

We have for p2,'-2ZXGp2r-1 (as in the proof of lemma 1) .

(x , n) = x - t (x) +

	

+ 12,•-2 (x) > X ( 1 - 1 + . . . + 2-2) -

10

	

k-(

	

\'

	

. . > x(1 - ~ 1 + . . .)- 2

	

k '

(2r-2)

	

\2r-4/

	

(2r-2J

= x T('a) 2 (
2r

k
~~

	

9-2)

	

q. e . d .

Let 1=a 1 <a 2< • • • <ay(„) / 2 be the integers .<n/2 relatively prime
to n . The roots of F n (z) are clearly of the form

x; = exp (2 n i ai/n) , x ; = exp (- 2 7z i a;/n) .

Put A = ( pi 110 --I-- 3/4) p 2 t-1 and denote by 1, the are

1 = ;exp (21,;i A/n) , exp (- 21cí A/n) f .

Let xi , x i 1 , 2, U be the roots of F,, (z) in I . These xi
clearly correspond to the a i satisfying 1Z-ai ,~ (p11 10 +3/4)plt -1 . In
other words

U = [(p1110

	

3/4) p2E-1 ,

	

(A, n) .

t

t
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Define the polynomial G,,(z) of highest coefficient 1 and degree
?(TI) as follows

Gn [exp (+ 21r jil? (n))] = 0 for 1 Z j U ,

G,, [exp (-i- 2Tr a; i/n)] = 0

	

for j > U .

A theorem of TURÁN-RIESS 1 states that if a polynomial of degree
m assumes its absolute maximum in the unit circle at z o and xo is
the closest of its root on the unit circle, then the are (zo , xo) is

equality only for z'1-ei" , a neal .
Now we estimate

(6)

where yi , yi denote the roots of G,, (z) . (6) is evident since all but
the first U roots of F„ (z) and G, ti (z) coincide . Next we write

U
11
i-1

1-yi
1-xi

where in 11, , i is such that ai is in one of the intervals 1, 1 zsz pí1 10
(for the definition of 1, see lemma 1), in 11 2 , ai is in one of the I; (see
lemma 2), in 11 3 , p2'i 1_Zai< p2 r 2z2r Z 2t-2 , and in 17 4 , pi'_2G
Lai<p 2 r-1 ,1Z2r-1Z2í-1 . Further we write

II1 =,111 . 11121 . . . TJ[Pljt lu ]

where in 111x1 , ai is in one of the I S . It follows from lemma 1 that
if ai is in any of the I, then yi is farther from 1 than xi and in
fact the length of the are (xi , yi) is greater than

2 T;

	

k v

	

2 -,~

	

k
10y(n) (2t -li > 10n (2t-1)

A very simple calculation then shows that (since in I„ 1-x i<
<2T-~ (s+1) p2í -1 /n)

1-yi
1- xi

1
1-yi I2

F,, (1)

	

i=1 1-XI

2
= Il1 • 112 • 113 • Il4

k l

> 1 + \2t-1I
30 (8+1) p111-1

The number of the x i in I, is clearly greater than

1

	

'° 1

	

1
9 pit-1 (1 - ú

	

> -
pi t-1

.i=1 pi

	

3

1 M . Riesz, Jber. Deutsehen Math, Verein . vol . 23 (1914) pp . 354-368 ; P . TURÁN,
Acta Univ . Szeged. vol . 11 (1946) pp . 106-113 .
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Thus

Hence

(7)

since

Thus from (7)

(8)

1 --~(

1 % IC

	

2/3 P~ 1 -111 ()

	

(1

	

-

	

)/
;(s + 1)1'ít-' ~)

	

'
30 \2t-1

lob (II(s)

	

9
) > --p--

3 3

	

í30(s+1)pit-1

>

	

+1
30 (2t-1)/

k \

	

k

	

2

C2t-1/

	

(2t-1)
30 (s+ 1) pit-i

(

I,;

	

j~2t-i

	

p it-i

2t-1)

	

(2t-1) !

	

(2t 1 1) !

lob (Hi) > I lob (n(,))

	

log p1

KP ,a

	

G00 (2t-

Now we estimate IL . We write

Ih =

	

11

	

(III' ) )
ono

	

'1GsG ~,

where in I12 , a t is in L . From lemma 2 we obtain (as in the esti-
mation of 17 (1 y)) for the a i in T/

4 k
>1- 1t

	

'since	
ra)

	

1 _

	

1
>

3
(s-114) p t-1

	

92.

	

7-1 p t

	

4)

1
The number of the a t 's in I/ in evidently < p~ -1

4 k
2t-2)

(s-1/4) pit-1

or (as in the estimation of lob II1' ))

lob [l 2
>- 5 (2t-2

1̀ )

	

1/4 .

Hence finally

P . ERDÖS

Now we estimate II 3 . We write
c-1

H3 = n (n3')) 7
-1

(9)

	

lob (II z )

	

lob (II(2'))

	

(2tk'
A IOb

-2/

	

p1 .

1Gs<p;i'~

Hence
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where in II (3' ) , pi'-1 Zaz,4p,'' . Now
p,-1

11 3 = 11 ( 113 (t)) ,
E=1

where in W3") (t) , t pi''-iZa,~(t 1 1)1~i i • For the a i in II(") (t) we
have from lemma 3 (as in the estimation of II, and l12)

( k \
1-y i

	

3
\2 r/

1-Xi

	

tp2,-1

and the number of a's in tp2 -1 ,_ a, -.,~(t+J) pi'
(as in the estimation of II 1 and 11 2 )

lob (11(' ) (t)) > - 4 (2 )/t
and hence

lob (n(" )) > - 5 (
k-

lo-P,

Thus finally

(10)

	

log(fl3) >- 5logp,
C (2t

	

+k
-2) (2t

k
-4

6

	

op, .
(2t

k
-2

lo

In the same way we obtain

(11)

	

leg (11 4)>-6(
2t k- 2)

loge, .

Thus we obtain from (8), (9), (10) and (11)

log (11 1) + 10r") (11 2) + lob (n 3) + 109 J14) > logp,
L (2t

I
-1)

600 -

-13(9t1``2)
]>

	

1-
)log -p,11000,,

or
k

	

~

(12)

	

1 Gn (1) 1 > exp
(2t-1i

logp,

1000

i is

	

Thus
1

since n has more than one distinct prime factor, and thus F,, (1) -I .
Assume now that G,, (z) assumes its absolute maximum in the unit

circle at z o . Without loss of generality we can assume that the real
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part of zo is positive. By the previously quoted theorem of TURÁN-
-RIESZ 1 zo cannot lie on the are

exp (- 2riU), exp (2 T;i U
/

.
? ( 11)

	

'P ( a)
Now we estimate G,, (zo)/F7, (zo ) . We have

Now we make use of the well known and elementary result that
(zo-z) (zo-z) increases as z moves away from z o towards 1 . Hence

P;/10
Gn (zo) < II
Fn (zo)

	

s=1

1 Reference 1, p. 67 .

ai in 1 3

a ; in 1,

Gn (zo)

Fa (zo)
= II

(zo-yi)(zo-Yi)
ai in 1 (ZO-xi) (ZO- xi)

(zp-A (zo- yi)

(Zo-xi)
(Z O-Xi)

since for the a i in L and the a;Gplt-1 we cannot assume that
farther from 1 (i . e. closer to z o) than x i . Further trivially

G.a(z p)

	

H
Fa (zo)

< s=l 1 ?/i -xi
zo-xi

11 (zo-yi) (zo- .7i)
(zo-x;) (zo--x i )

li 1

	

y ; -xi
a 2t-f \

+
zo-xi

9

yi is

The are (yi , x ;) may (by lemma 2) be assumed to be less than
677

	

1̀

	

(n) and since z o is not on the are, exp (-21rí U/? (n)) ,
2t- 2

exp (2,r iU/? (n)), the are (z o , x i) is greater than 2,r p C -1 ([p1I 10]-s+
+1/2)ín , if ai is in I,. . Thus for the a i in IS (by a simple calculation)

k l
y i -xi <

	

4(2t-21

ZO-Xi ([p'110]-s-+--1/2) pit-1 .

The number of the a i with x; in I ;v is clearly less than 1pí 1-1 . Thus
A/t0

yi-xi

	

k

	

1

	

k l
log (1 + zo -x,) <

4

Cot --2/ s< /'0 s-1/2 < (2t -2J
log p 1 .

a, in 1s

Similarly for the a i< p2tl-1
~

yi-x/

< 10

	

k
(2t--2)/

p 2t1 -1+ 1
~
10 (by

Zo
- xi

lemmas 3 and 4) . Thus

log (1 -}- yi-x

	

< 10
(2t

k

	

/pi/10 (2t k

	

.ai<PD-,

	

zo-xi

	

-2

	

<

	

-2

P



Hence finally

(13)

	

log G„ (z o) - log I F„ (za) I < 2

	

k

	

log p, .
(2t -`~

In fact it is very likely that I G,, (z (,) I < I F,, (zo ) , but (13) suffices
for our purpose .

Now we can prove our theorem . We obtain from G,, (zo) I>IG,, (1) ,
(12) and (13)

log I F,, (zo) I > log I G,, (zo) - 2 (2t k ))log p, > log G,, (1) -
-- :

-
2 (2t á-2) lob pl >

log p, 1 (2t 1~1/1000 -
2 (2t 1L-2) >

k

	

logp,

	

I

	

2t- 1 log p,

	

1, 21
>	 > _ > e k/sooo

(2t-1 2000 > (2t-1

	

2000

	

2 ,t)
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7 1

k

	

(1+o(1))loggM=(1+o(0))lO
log

10 gi 10

r nlog n

	

log
k = (1 i o (1))10 loglog n > 20 loglog n

log I F,t (zo) I > elog n/(1P` loglog al = n/(10" 1 091 1)9 11)

	

Cl . e . d .

By the same method we could prove that there exist two consecu-
tive roots of F,, (z) , x i and xi} 1 , so that everywhere on (xi , xi + ,)

log I F,, (zo) I <- nc/100og'z .
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