ON THE STRONG LAW OF LARGE NUMBERS

BY
 P. ERDÖS

In the present note $f(x),-\infty<x<\infty$, will denote a function satisfying the following conditions: (1) $f(x+1)=f(x),(2) \int_{0}^{1} f(x)=0, \int_{0}^{1} f(x)^{2}=1$. By $n_{1}<n_{3}$ $<\cdots$ we shall denote an arbitrary sequence satisfying $n_{k+1} / n_{k}>c>1$, and by $S_{n}(f)$ the nth partial sum of the Fourier series of $f(x)$.

In a recent paper Kac, Salem, and Zygmund (1) prove (among others) that if for some $\epsilon>0$

$$
\begin{equation*}
\int_{0}^{1}\left(f(x)-\phi_{n}(f)\right)^{2}=O\left(\frac{1}{(\log n)^{e}}\right) \tag{1}
\end{equation*}
$$

then for almost all x

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left(\sum_{k=1}^{N} f\left(n_{k} x\right)\right)=0 \tag{2}
\end{equation*}
$$

or roughly speaking the strong law of large numbers holds for $f\left(n_{k} x\right)$ (in fact the authors prove that $\sum f\left(n_{k} x\right) / k$ converges almost everywhere).

The question was raised whether (2) holds for any $f(x)$. This was known for the case $n_{k}=2^{k}\left({ }^{2}\right)$. In the present paper it is shown that this is not the case. In fact we prove the following theorem.

Theorem 1. There exists an $f(x)$ and a sequence n_{k} so that for almost all x

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup \frac{1}{N}\left(\sum_{k=1}^{N} f\left(n_{k} x\right)\right)=\infty \tag{3}
\end{equation*}
$$

Further we prove the following sharpening of the result of Kac-SalemZygmund:

Theorem 2. Assume that for some $\epsilon>0$

$$
\begin{equation*}
\int_{0}^{1}\left(f(x)-\phi_{n}(f)\right)^{2}=O\left(\frac{1}{(\log \log n)^{2+\varepsilon}}\right), \tag{4}
\end{equation*}
$$

then (2) holds.
By a slight modification of the construction of the $f(x)$ of Theorem 1 it is easy to construct an $f(x)$ and a sequence n_{k} for which (3) holds and for which

Presented to the Society, February 28, 1948; received by the editors January 28, 1948.
$\left.{ }^{(2}\right)$ Trans. Amer. Math. Soc. vol. 63 (1948) pp. 235-243.
$\left.{ }^{(}{ }^{2}\right)$ This result is due to Raikov. See F. Riesz, Comment. Math. Helv, vol. (17) (1944) p. 223.

$$
\begin{equation*}
\int_{0}^{1}\left(f(x)-\phi_{n}(f)\right)^{2}<\frac{1}{(\log \log \log n)^{e}} \tag{5}
\end{equation*}
$$

There is clearly a gap between (4) and (5). It seems probable that, in Theorem 2 , (4) can be replaced by $1 /(\log \log \log n)^{\text {q, but much sharper methods would }}$ be needed than used here.

The following problem also seems of some interest: By an easy modification in the construction of the $f(x)$ of Theorem 1 we can show the existence of an $f(x)$ and a sequence n_{k}, so that for almost all x

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N(\log \log N)^{1 / 2-1}}\left(\sum_{i=1}^{N} f\left(n_{k} x\right)\right)=\infty . \tag{6}
\end{equation*}
$$

On the other hand we can show that for almost all x

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{N(\log N)^{1 / 2++}}\left(\sum_{i=1}^{N} f\left(n_{k} x\right)\right)=0 . \tag{7}
\end{equation*}
$$

Again there is a gap between (6) and (7). (6) seems to give the right order of magnitude, but I can not prove this.

One final remark. The $f(x)$ of Theorem 1 is unbounded. The possibility that (2) holds for all bounded functions $f(x)$ remains open.

Proof of Theorem 1. Let u_{k}, v_{k}, and A_{k} tend to infinity sufficiently fast (their growth will be specified later). $r_{\mathrm{m}}(x)$ denotes the m th Rademacher function ${ }^{3}$). Put

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} \sum_{m=x_{k}+1}^{v_{k}=} \frac{v_{m}(x)}{\left(A_{k}\left(v_{k}-u_{k}\right)\right)^{1 / 2}}, \quad \sum_{k=1}^{\infty} \frac{1}{A_{k}}=1 . \tag{8}
\end{equation*}
$$

Clearly the series for $f(x)$ converges almost everywhere and $\int_{0}^{1} f(x)=0$, $\int_{a}^{2} f(x)^{2}=1$. Now we define the n_{k}. Put $j_{k}=\left[e^{A_{k}^{k}}\right]$. Denote by $I_{k}^{(k)}$ the interval

$$
\left((2 t-1) v_{k},(2 t-1) v_{k}+l_{t}^{(a)}\right), \quad t=1,2, \cdots, j_{k}
$$

where $l_{t}^{(\alpha)}=2 l_{i-1}^{(0)}$ and $l_{1}^{(0)}$ is very large compared to $v_{2-1}, A_{i-1}, l_{j_{-1}^{(\alpha-1)}}^{(\alpha)}$, and will be specified later. If we choose $v_{k}>l_{j_{k}}^{(k)}$ then the $I_{i}^{(k)}$ don't overlap. The n_{k} are the integers of the form 2^{m} where $m \subset I_{t}^{(x)}, k=1,2, \cdots ; t=1,2, \cdots, j_{k}$.

Order the l 's according to their size. Clearly each l is greater than the sum of all previous l 's. Thus a simple argument shows that to prove (3) it will be sufficient to show that for every fixed c and almost all x

$$
\begin{equation*}
\lim \sup \frac{1}{l_{i}^{\alpha)}}\left(\sum_{m \prod_{n}^{a}} f\left(2^{m} x\right)\right)>c, \quad k=1,2, \cdots ; t=1,2, \cdots, j_{k} . \tag{9}
\end{equation*}
$$

[^0](Since if $m_{r+1}>2 m_{r}$, and for every $c \lim$ sup $\left(1 /\left(m_{r+1}-m_{r}\right)\right) \sum_{m_{r}+1}^{m_{r}} a_{u}>c$, then $\lim \sup (1 / u) \sum_{k=1}^{u} a_{k}=\infty$. Let now m_{r}, be the sum of the r first l 's, then clearly (3) is a consequence of (9).)

Hence it will suffice to show that for every ϵ and sufficiently large k the measure of the set in x satisfying at least one of the inequalities

$$
\begin{equation*}
\frac{1}{l_{i}^{(2)}}\left(\sum_{m C I_{i} \omega^{(w)}} f\left(2^{m} x\right)\right)>c, \quad t=1,2, \cdots, j_{k} \tag{10}
\end{equation*}
$$

is greater than $1-\boldsymbol{\epsilon}$.
Put

$$
f(x)=f_{1}(x)+f_{2}(x)+f_{3}(x)
$$

where

$$
\begin{gathered}
f_{1}(x)=\sum_{k=1}^{k-1} \sum_{m=w_{k}+1}^{v_{s}} \frac{r_{m}(x)}{\left(A_{s}\left(v_{s}-u_{k}\right)\right)^{1 / 2}}, \quad f_{2}(x)=\sum_{m=u_{k}+1}^{v_{k}} \frac{r_{m}(x)}{\left(A_{k}\left(u_{k}-v_{k}\right)\right)^{1 / 2}}, \\
f_{3}(x)=\sum_{\gg k} \sum_{m=u_{s}+1}^{v_{k}} \frac{r_{m}(x)}{\left(A_{k}\left(v_{s}-u_{s}\right)\right)^{1 / 2}} .
\end{gathered}
$$

A simple calculation shows that

$$
\begin{align*}
\sum_{m \subset T_{1}^{(k)}} f_{2}\left(2^{m} x\right) & =\frac{l_{t}^{(k)}}{\left(A_{k}\left(v_{k}-u_{k}\right)\right)^{1 / 2}} \sum r_{\mathrm{m}}(x)+\sum_{1}+\sum \mathrm{z} \tag{11}\\
& =\sum+\sum_{1}+\sum_{2}
\end{align*}
$$

where m runs in the interval

$$
\left(u_{k}+(2 t-1) v_{k}+l_{t}^{(k)}, 2 t v_{k}\right)
$$

and

$$
\begin{gathered}
\sum_{\mathrm{I}}=\sum_{\alpha=1}^{l^{(k)}} \frac{l_{t}^{(k)}-a}{\left(A_{k}\left(v_{k}-u_{k}\right)\right)^{1 / 2}} r_{k-a}(x), \quad y=u_{k}+(2 t-1) v_{k}+l_{t}^{(k)}, \\
\sum_{2}=\sum_{k=1}^{l_{k}^{(k)}} \frac{l_{t}^{(k)}-a}{\left(A_{k}\left(v_{k}-u_{k}\right)\right)^{1 / 2}} r_{2 t_{k}+\alpha}(x) .
\end{gathered}
$$

Now $\sum r_{m}(x)$ is the sum of

$$
v_{k}-u_{k}-l_{k}^{(k)}>v_{k} / 2
$$

Rademacher functions (we choose $v_{k}>2\left(u_{k}+l_{k}^{(k)}\right)$). It is well known (${ }^{4}$) that
${ }^{4}$) See, for example, P. Erdös, Ann. of Math. vol. 43 (1942) p. 420, formula (0.7). Incidentally the formula in question should read $c_{1}\left(x^{2} / n\right) e^{-2 x^{2} / n}<\operatorname{Pr}\left(A_{n}(x)\right)<c_{2}\left(x^{2} / n\right) e^{-1 x^{2} / n}$.
the measure of the set in x for which

$$
\sum r_{m}(x)>4 c\left(A_{k}\right)^{1 / 2}\left(v_{k}\right)^{1 / 2}
$$

is greater than

$$
c_{1} A_{k} e^{-32 e^{2} A_{1}}>e^{-A_{1 k}^{2}}
$$

for sufficiently large A_{k}. Thus the measure of the set in x for which

$$
\begin{equation*}
\sum=\frac{l_{t}^{(k)}}{\left(A_{k}\left(\nu_{k}-u_{k}\right)\right)^{1 / 2}} \sum r_{m}(x)>4 c l_{k}^{(k)} \tag{12}
\end{equation*}
$$

is greater than $e^{-A_{k}^{2}}$. Clearly for all x

$$
\begin{equation*}
\left|\sum_{1}+\sum_{2}\right|<\frac{2\left(l_{t}^{(k)}\right)^{2}}{\left(A_{k}\left(v_{k}-u_{k}\right)\right)^{1 / 2}}<\frac{4\left(l_{t}^{(k)}\right)^{2}}{\left(v_{k}\right)^{1 / 2}}<1 \tag{13}
\end{equation*}
$$

if we choose $v_{k}>16\left(l_{i}^{(k)}\right)^{4}$. Thus finally from (11), (12), and (13) the measure of the set in x for which

$$
\begin{equation*}
\sum_{m<\Gamma_{t}^{(k)}} f_{2}\left(2^{m} x\right)>4 c l_{t}^{(k)}-1>3 c l_{t}^{(k)} \tag{14}
\end{equation*}
$$

is greater than $e^{-A / k^{3}}$.
If $v_{k}>2 l_{i}^{(k)}$ for all t, then the functions

$$
\sum_{m<I_{t}=0} f_{2}\left(2^{m} x\right), \quad t=1,2, \cdots j_{k}
$$

are independent (since the same $r_{m}(x)$ does not appear in two different sums). Thus the measure of the set in x for which one of the j_{k} inequalities

$$
\begin{equation*}
\sum_{m C t_{t}^{(k)}} f_{2}\left(2^{m} x\right)>3 c l_{k}^{(k)}, \quad t=1,2, \cdots, j_{k} \tag{15}
\end{equation*}
$$

holds, is greater than

$$
\begin{equation*}
1-(1-1 / y)^{2}>1-\epsilon / 2\left(y=e^{A_{k}^{2}, z}=e^{A_{k}^{3}}\right) . \tag{16}
\end{equation*}
$$

Further if $l_{i}^{(k)}>v_{k-1}$

$$
\int_{0}^{1}\left(\sum_{m \subset 1_{t}^{(k)}} f_{1}\left(2^{m} x\right)\right)^{2}<v_{k-1}^{2}\left(l_{t}^{(k)}+v_{k-1}\right)<2 v_{k-1}^{2} l_{k}^{(k)}
$$

since only the r_{m} 's with $m \leqq l_{l}^{(x)}+v_{k-1}$ occur and the coefficients of all of them are not greater than v_{k-1}. Thus from Tchebychef's inequality we obtain that the measure of the set in x for which one of the j_{n} inequalities

$$
\begin{equation*}
\sum_{m C t_{t}^{(k)}} f_{1}\left(2^{m} x\right)>c l_{t}^{(k)}, \quad t=1,2, \cdots, j_{k} \tag{17}
\end{equation*}
$$

holds is less than

$$
\begin{equation*}
\sum_{h=1}^{x_{i}} \frac{2 v_{n-1}^{2}}{c^{2} l_{i}^{\left(v_{2}\right.}}<\frac{4 v_{n-1}^{2}}{c l_{i}^{(2)}}<\frac{\epsilon}{4}, l_{1}^{(2)}>16 v_{k-1}^{2} / c e . \tag{18}
\end{equation*}
$$

Finally we have by a simple computation

$$
\int_{0}^{1}\left(\sum_{m T_{t}^{a 0}} f_{3}\left(2^{m} x\right)\right)^{2}<4\left(l_{t}^{(a)}\right)^{2} \sum_{r>k} \frac{1}{A_{r}}<1
$$

if A_{k+1}, \cdots are sufficiently large. Thus the measure of the set in x for which one of the inequalities

$$
\begin{equation*}
\sum_{m C I_{1}^{(k)}} f_{x}\left(2^{m} x\right)>d l_{t}^{(k)}, \quad t=1,2, \cdots, j_{k} \tag{19}
\end{equation*}
$$

holds is less than

$$
\begin{equation*}
\sum_{t=1}^{t_{k}} \frac{1}{\left(c_{t}^{\omega_{n}}\right)^{2}}<\frac{\epsilon}{4} \tag{20}
\end{equation*}
$$

Thus finally from (15), (16), (17), (18), (19), and (20) we obtain (10) and this completes the proof of Theorem 1.

Sketch of the Proof of Theorem 2. Put $j-i=r$, then $n_{j} / n_{i}>c$. Denote by $a_{1}, b_{1}, a_{2}, b_{2}, \cdots$ the Fourier coefficients of $f(x)$. By (4) we evidently have

$$
\begin{aligned}
\int_{0}^{1} f\left(n_{i} x\right) f\left(n_{i} x\right)=\sum_{n_{i} w=n_{j} \cdot}\left(a_{u} a_{v}+b_{u} b_{v}\right) \leqq & \left(\sum_{k=1}^{\infty} a_{k}^{2} \sum_{k>\circ^{r}} a_{k}^{2}\right)^{1 / 2} \\
& +\left(\sum_{k=1}^{\infty} b_{k}^{2} \sum_{n>0} b_{k}^{2}\right)^{1 / 2}<\frac{c_{1}}{(\log r)^{1+k / 2}} .
\end{aligned}
$$

Hence

$$
\int_{0}^{1}\left(\sum_{1}^{++N} f\left(n_{k} x\right)\right)^{2}=O\left(\frac{N^{2}}{(\log N)^{1++/ 2}}\right)
$$

or the measure of the set $M(z, N, A)$ in x for which

$$
\left|\sum_{t}^{+N} f\left(n_{k} x\right)\right|>A \cdot N
$$

is less than

$$
\begin{equation*}
\epsilon / A^{2}(\log N)^{1+\epsilon / 2} \tag{21}
\end{equation*}
$$

Consider the sets

$$
\begin{align*}
& M\left(1,2^{n}, \delta\right) ; M\left(2^{n}, 2^{n-1}, 26 / 2^{n}\right) ; \tag{22}\\
& M\left(2^{n}, 2^{n-2}, 48 / 3^{n}\right), M\left(2^{n}+2^{n-1}, 2^{n-2}, 48 / 3^{2}\right) ; \cdots
\end{align*}
$$

There are 2^{k-1} sets of order k, that is, sets of the form

$$
\begin{equation*}
M\left(2^{n}+2 u 2^{n-k}, 2^{n-k}, \delta 2^{k} /(k+1)^{2}\right), 0 \leqq u<2^{k-1} . \tag{23}
\end{equation*}
$$

From (21) it follows that the measure of any set of order k does not exceed

$$
c(k+1)^{4} / \delta^{2} 2^{2 k}(n-k)^{1+\omega / 2} .
$$

Thus the measure of all the sets in (23) is less than $c(k+1)^{4} / \delta^{2} 2^{k}(n-k)^{1+\varepsilon / 2}$, and the measure of all the sets M_{n} in (22) does not exceed

$$
\sum_{k=0}^{n} \frac{c(k+1)^{4}}{\delta^{3} 2^{k}(n-k)^{1+\epsilon / 2}}<\frac{c_{1}}{\delta^{2} n^{1+\epsilon / 2}} .
$$

Thus

$$
\begin{equation*}
\sum_{n=1}^{\infty} M_{n}<\infty . \tag{24}
\end{equation*}
$$

But if x does not belong to any of the sets (22) we have by a simple argument for all $2^{n} \leqq m<2^{n+1}$ (every m is the sum of powers of 2)

$$
\begin{equation*}
\left|\sum_{k=1}^{m} f\left(n_{k} x\right)\right|<\delta 2^{n}+\frac{\delta 2^{n}}{2^{2}}+\frac{\delta 2^{n}}{3^{2}}+\cdots+\frac{\delta 2^{n}}{k^{2}}+\cdots<2 \delta 2^{n} \leqq 2 \delta m . \tag{25}
\end{equation*}
$$

(24) and (25) clearly prove theorem $2\left({ }^{5}\right)$.

Syracuse University,
Syracuse, N, Y.
(b) The method used here is due to Hobson-Plancherel-Rademacher-Menchof. (See, for example, Rademacher, Math. Ann. vol. 87 (1922) p. 117-121.)

[^0]: ${ }^{\left({ }^{3}\right)}$ Instead of $r_{m}(x)$ I originally used $\cos 2^{* *} x$. The advantage of uaing Rademacher functions was pointed out to me by Kac.

