P. Erdös and J. F. Koksma: On the uniform distribution modulo 1 of sequences ($(n, \theta))$.
(Communicated at the meeting of June 25, 1949.)
I. Introduction. In a former paper 1) we treated lacunary sequences. Now, using an other method, we consider general sequences. For notation and definitions, see ${ }^{1}$). We prove

Theorem 1. Let $f(1, \theta), f(2, \theta), \ldots$ be a sequence of real numbers. defined for each value of θ of the segment $\alpha \leq \theta \leq \beta$. such that $f(n, \theta)$ for $n=1,2, \ldots$ as a function of θ, has a continuous derivative $\left[_{1}^{\prime \prime}\right.$ and such that the expression

$$
f_{i}^{\prime}\left(n_{1}, \theta\right)-f_{\prime \prime}^{\prime}\left(n_{2}, \theta\right)
$$

for each couple of positive integers $n_{1} ; \boldsymbol{n}_{2}$, is either a non-decreasing or a non-increasing function of 0 on $a \leq 0 \leq \beta$, the absolute value of which is $\geqq \delta$, where δ denotes a positive number which does not depend on n_{1}, n_{13}. or θ. Then for almost all θ the discrepancy $D(N, \theta)$ of the sequence satisfies the inequality

$$
\begin{equation*}
N D(N, \theta)=\mathrm{O}\left(N^{1} \log { }^{+5} N\right) \quad(F>0) \tag{1}
\end{equation*}
$$

Theorem 1 is a special case of the more general
Theorem 2. Let $f(n, \theta)$ for $n=1,2, \ldots$ denote a real continuous. function of θ on $\alpha \leqq \theta \leqq \beta$ and let

$$
\phi\left(n_{1}, n_{2}, \theta\right)=f\left(n_{1}, \theta\right)-f\left(n_{2}, \theta\right) \text { for } n_{1} \neq n_{2}
$$

have a continutus derivative Φ_{0}^{\prime} which is $\neq 0$ and either non-decreasing or non-increasing on $a \leqq \theta \leqq \beta$. Put
and assume that for some constant $\gamma \geq 1$

$$
N A(M, N) \leqq K_{0} \log ^{r} N
$$

for all couples of positive integers M, N where K_{0} is a positive constant.
Then for almost all numbers θ in $\alpha \leqq \theta \leqq \beta$ the discrepancy $D(N, \theta)$ of the sequence $f(1, \theta), f(2, \theta), \ldots$ satisfies the inequality

$$
N D(N)=O\left(N^{\frac{1}{2}} \log \quad 2 \quad N\right) \quad(\varepsilon>0)
$$

[^0]Remarks. 1. It is clear that the functions $f(n, \theta)$ of Theorem 1 satisfy the assumptions of Theorem 2. For if one ranges the N numbers

$$
f(M+1, \theta), f(M+2, \theta), \ldots, f(M+N, \theta)
$$

in order of magnitude, these numbers at each step increase with at least the amount δ and we find

$$
\sum_{n_{z}=M+1}^{n_{1}-1}\left|f_{i \prime}^{\prime}\left(n_{1}, \theta\right)-f_{i \prime}^{\prime}\left(n_{2}, \theta\right)\right|<2 \sum_{\mu=1}^{N} \quad 1 \quad{ }_{\mu \delta}<{ }_{\delta}^{2} \log 3 N .
$$

hence

$$
N A(M, N) \leqq{ }_{\delta}^{2} \log 3 N=\mathrm{O}\left(\log ^{r} N\right) \text { for } \gamma=1 .
$$

2. As Mr J. W. S. Cassels has shown us, he also proved Theorem 1. His very interesting method is different from ours. The proofs are completely independent from each other.
II. Some lemma's.

Lemma 1. Let $f(n, \theta)$ for $n=1,2, \ldots$ denote a real continuous function of θ on $a \leqq \theta \leqq \beta$ and let

$$
\phi\left(n_{1}, n_{2}, \theta\right)=f\left(n_{1}, \theta\right)-f\left(n_{2}, \theta\right) \text { for } n_{1} \neq n_{2}
$$

have a continuous derivative Φ_{1}^{\prime}, which is $\neq 0$ and either non-decreasing or non-increasing on $\alpha \leqq \theta \leqq \beta$. Finally put

$$
A_{N}=\frac{1}{N^{2}} \sum_{n_{1}=2}^{N} \sum_{n_{2}=1}^{n_{1}-1} \operatorname{Max}\left(\frac{1}{\left|\Phi_{g}^{\prime}\left(n_{1}, n_{2}, \alpha\right)\right|} \cdot \frac{1}{\left|\Phi_{0}^{\prime}\left(n_{1}, n_{2}, \beta\right)\right|}\right)
$$

Then we have for $N \geq 2, h>0$ (h not depending on n and θ)

$$
\int_{\alpha}^{\beta}\left|\sum_{n=1}^{N} \mathrm{e}^{2 \pi i h f(n,())}\right|^{2} d \theta \leqq(\beta-\alpha) N+\frac{A_{N}}{h} N^{2}
$$

The proof of this lemma has been given by Koksma ${ }^{3}$).
Lemma 2. If u_{1}, u_{2}, \ldots is a real sequence and if $D(N)$ denotes its discrepancy then for each integer $m \geqq 1$, we have

$$
N D(N) \leqq K\left(\begin{array}{c}
N \\
m+1
\end{array}+\sum_{h=1}^{m} \frac{1}{h}\left|\sum_{n=1}^{N} e^{2 \pi i h n_{n}}\right|\right)
$$

where K denotes a numerical constant.
This lemma is an improvement proved by Erdös-Turán 4) of the onedimensional case of a theorem of van der Corput-Koksma 5).

[^1]Lemma 3. If $f(n, \theta)$ denotes the function of Lemma 1, and if $D(N, \theta)$ denotes the discrepancy of the sequence $[(1,0), f(2,0), \ldots$, then

$$
\int_{\alpha}^{3} N^{2} D^{2}(N, \theta) d \theta \leqq K_{1}\left(N \log ^{2} N+A_{N} N^{2} \log N\right) .
$$

where K_{1} depends on $\beta-$ o only.
Proof. Putting $m=\left[\|^{\prime} N\right]$, we have by Lemma 2

Hence
and by the Cauchy-Scimarz inequality for integrals
by Lemma 1. Hence by the Cauciry-Schwarz-inequality for sums
where K_{2} only depends on K and $\beta-\alpha$.
Now if

$$
l \bar{A}_{N} N>A_{N} N^{2} \log N
$$

we should have

$$
1>\prime^{\prime} A_{N} l^{\prime} N \log N
$$

$$
\begin{aligned}
& \int_{\alpha}^{3} N^{2} D^{2}(N, \theta) d \theta \leqq K^{2}\left(N(\beta-\alpha)+2\left|N \int_{h=1}^{\sum_{h}^{\prime} \beta-a}\right| \bar{N}+\sum_{h=1}^{N} \frac{|\beta-\alpha| h}{h \mid} A_{N} \cdot N\right\}+ \\
& \left.\left.\left.+\left\{\sum_{h=1}^{N} \sum_{k=1}^{N} \frac{1}{h k}\right\}(\beta-\cdots) N+{ }_{h}^{1} A_{N} \cdot N^{2}!\cdot \sum_{h=1}^{N} \sum_{k=1}^{N} h_{h k}(\beta-a) N+{ }_{k}^{1} A_{N} \cdot N^{2} i\right\}\right\}^{\prime}\right) \\
& \leqq K_{2}\left(N+N \log N+\sqrt{ } \bar{A}_{N} N^{2}+N \log ^{2} N+A_{N} N^{2} \log N\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \leqq K^{2}\left(N(\beta-\alpha)+2 \mid N \underset{\sum_{n=1}^{[1 N]} 1}{h}\left\{\int_{\alpha}^{\beta} 1^{2} d \theta \cdot \prod_{\alpha}^{\beta}\left|\sum_{n=1}^{N} e^{2 \cdot \pi i h f(n, \theta)}\right|^{2} d \theta\right\}^{\prime}\right)+ \\
& +K^{2} \sum_{h=1}^{[1 N] \mid i N} \sum_{k=1}^{N} \frac{1}{h k}\left\{\left.\left.\prod_{\alpha}^{B}\right|_{n=1} ^{N} e^{2 \pi i h f(n, 1)}\right|^{2} d \theta \cdot \int_{\alpha}^{B} \mid \sum_{n=1}^{N} \mathrm{e}^{2:\left.\pi i k j(n, n)\right|^{2}} d \theta\right\}^{\dagger} \\
& \left.\left.\leqq K^{2}\left(N(\beta-\alpha)+2 \sqrt{\prime} N \sum_{h=1}^{|N|} \frac{1}{h}\right\}(\beta-\alpha)^{2} N+\beta-\alpha A_{N} \cdot N^{2}\right\}^{\prime!}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\alpha}^{\beta} N^{2} D^{2}(N, \theta) d \theta \leqq K^{2}\left(N(\beta-\alpha)+2\left|N \sum_{h=1}^{[1 N]} 1 \int_{\dot{\alpha}}^{n}\right| \sum_{n=1}^{N} e^{2, i h f(n,())} \mid d \theta\right)+ \\
& +K^{2} \sum_{h=1}^{[1 N]} \sum_{k=1}^{[1 \tilde{N}]} 1 \sum_{\alpha}^{i}\left|\sum_{n=1}^{N} e^{2 \pi i h f(n, g)}\right|\left|\sum_{n=1}^{N} e^{2 \pi i k f(n, n)}\right| d \theta
\end{aligned}
$$

$$
\begin{aligned}
& N^{2} D^{2}(N, \theta) \leqq K^{2}\left(N+2\left|N \sum_{n-1}^{|I N|} h\right| \underset{n=1}{N} e^{2: i(h f(n, \eta)} \mid\right)+
\end{aligned}
$$

hence

$$
A_{N} N^{2} \log N<\sqrt{A_{N}} N:<N
$$

Therefore

$$
\int_{\alpha}^{\beta} N^{2} D^{2}(N, \theta) d \theta \leqq K_{1}\left(N \log ^{2} N+A_{N} N^{2} \log N\right)
$$

Lemma 4. Let $F(M, N)=F(M, N, \theta)$ denote a function of θ on a segment $\alpha \leq \theta \leq \beta$ for each couple of positive integers M and N, such that

$$
\begin{equation*}
|F(M, N)| \leqq\left|F\left(M, N_{1}\right)\right|+\left|F\left(M+N_{1}, N-N_{1}\right)\right| \tag{3}
\end{equation*}
$$

for each triple M, N and $N_{1} \leq N$ and such that F belongs to the class L^{2} over the segment. Let further

$$
\int_{\alpha}^{\beta}|F(M, N, \theta)|^{2} d \theta \leqq K_{3} N \log ^{\sigma} N
$$

$K_{3}>0$ and σ, being real constants. Then for almost all θ in $\alpha \leq \theta \leq \beta$ we have

$$
|F(0, N, \theta)|=O\left(N^{\prime} \log ^{\frac{g+3+5}{2}} N\right) \quad(s>0)
$$

This lemma is a special case of a theorem of GÁL-Koкsma, the proof of which will appear before long ${ }^{6}$).
III. We now prove Theorem 2.

Let M denote an arbitrary integer $\geqq 1$ and consider the functions

$$
\begin{equation*}
f(M+1, \theta), f(M+2, \theta), \ldots ; \tag{4}
\end{equation*}
$$

these functions satisfy the assumptions of Lemma 1 and the corresponding number A_{N} is exactly identical with the number $A(M, N)$ which we have defined in Theorem 2. Denoting the discrepancy of the sequence (4) by $D(M, N, \theta)$, we have by Lemma 3, applied to the sequence (4),
$\int_{\alpha}^{3} N^{2} D^{2}(M, N, \theta) d \theta \leqq K_{1}\left(N \log ^{2} N+A(M, N) N^{2} \log N\right) \leqq K_{4} N \log ^{1+\gamma} N$
because of (2). Now it is easily seen from the definition of $D(N)$, that if we put

$$
F(M . N, \theta)=N D(M, N, \theta)
$$

the relation (3) is satisfied. Hence Theorem 2 follows immediately from Lemma 4 with $\sigma=1+\gamma$.

[^2]
[^0]: 1) P. Erdös and J. F. Korsma, On the uniform distribution modulo 1 of lacunary sequences. Proc. Kon. Ned. Akad. v. Wetensch.. Amsterdam. 52, 264-273 (1949). ($=$ Indag. Math. 11, 79-88 (1949).)
[^1]: ${ }^{2}$) For litt. see ${ }^{1}$) and also ${ }^{5}$).
 ${ }^{3}$) J. F. KOKSMA, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins. Comp. Math. 2, 250-258 (1935).
 ${ }^{1}$) P. ERDÖS and P. TURÁN, On a problem in the theory of uniform distribution. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 51, 1146-1154, 1262-1269 (1948). ($=$ Indag. Math. 10. 370-378, 406-413 (1948).)
 $\left.{ }^{5}\right)$ See J. F. Koksma, Diophantische Approximationen, Erg. d. Math. IV, 4 (1936), Kap. IX.

[^2]: ${ }^{6}$) Cf. I. S. GAL et J. F. Koksma, Sur l'ordre de grandeur des fonctions sommables. C. R. Acad. d. Sc. Paris, 227, 1321-1323 (1948).

