N. G. de Bruijn and P. Erdös: Sequences of points on a circle.
(Communicated at the meeting of December 18, 1948.)

1. Introduction. We consider sequences $\{a\}$ of points $a_{1}, a_{2}, a_{3} \ldots$ on a circle with radius $1 / 2 \pi$, in other words numbers mod 1 . The numbers $a_{1}, a_{2}, \ldots, a_{n}$ define n intervals with total length 1 ; denote by $M_{n}^{1}(\mathrm{a})$ and $m_{n}^{1}(\mathrm{a})$ the largest and the smallest length. Clearly

$$
n M_{n}^{1}(a) \geqslant 1 \geqslant n m_{n}^{1}(a) .
$$

Analogously $M_{n}^{r}(a)$ and $m_{n}^{r}(a)$ denote the maximum and minimum length of the sum of r consecutive intervals, so that $n M_{n}^{r}(a) \geqslant r \geqslant n m_{n}^{r}(a)$. We put

$$
\begin{gathered}
\underset{n \rightarrow \infty}{\limsup _{n} n M_{n}^{r}(a)=\Lambda_{r}(a)} \\
\liminf _{n \rightarrow \infty} n m_{n}^{r}(a)=\lambda_{r}(a) \\
\limsup _{n \rightarrow \infty} M_{n}^{r}(a) / m_{n}^{r}(a)=\mu_{r}(a)
\end{gathered}
$$

and

$$
\Lambda_{r}=\text { g.l.b. } \Lambda_{r}(a) \quad, \quad \lambda_{r}=\text { l.u.b. } \lambda_{r}(\text { a }) \quad, \quad \mu_{r}=\text { g.1.b. } \mu_{r}(a) .
$$

We are able to determine

$$
\Lambda_{1}=1 / \log 2 \quad, \quad \lambda_{1}=1 / \log 4 \quad, \quad \mu_{1}=2
$$

The problem of $\Lambda_{r}, \lambda_{r}, \mu_{r}$ is closely related to a problem concerning "just distributions" solved by Mrs van Aardenne-Ehrenfest ${ }^{1}$). All we can prove is that $\mu_{r} \geqslant 1+1 / r$ (and analogus inequalities for Λ_{r} and λ_{r}); we conjecture that $r\left(\mu_{r}-1\right)$ is unbounded. From this the theorem of Mrs van Aardenne-Ehrenfest would follow.
2. A sequence which gives the best possible values of $\Lambda_{1}(a)$, $\lambda_{1}(a), \mu_{1}(a)$. Take $a_{k}={ }^{2} \log (2 k-1)$, reduced mod 1 . We show that a_{1}, \ldots, a_{n} occur in the following order

$$
\begin{equation*}
{ }^{2} \log n,{ }^{2} \log (n+1), \ldots,{ }^{2} \log (2 n-1) . \tag{2.1}
\end{equation*}
$$

Namely, no two of the a_{k} 's and no two of the numbers (2.1) are congruent mod 1, but each number in (2.1) is congruent to just one a_{k}.

It follows from (2.1) that the lengths of the intervals defined by a_{1}, \ldots, a_{n} are

$$
{ }^{2} \log \frac{n+1}{n},{ }^{2} \log \frac{n+2}{n+1}, \ldots,{ }^{2} \log \frac{2 n-1}{2 n-2},{ }^{2} \log \frac{2 n}{2 n-1},
$$

[^0]and so
$$
n M_{n}^{1}(a)=\frac{n \log \left(1+\frac{1}{n}\right)}{\log 2}, n m_{n}^{1}(a) \frac{n \log \left(1-\frac{1}{2 n}\right)^{-1}}{\log 2} .
$$

For $n \rightarrow \infty, n M_{n}^{1}(a)$ increases to the limit $1 / \log 2 ; n m_{n}^{1}(a)$ decreases to the limit $1 / \log 4 ; M_{n}^{1}(\mathrm{a}) / m_{n}^{1}(\mathrm{a})$ increases to the limit 2 . It follows that $\Lambda_{1}(a)=1 / \log 2, \lambda_{1}(a)=1 / \log 4, \mu_{1}(a)=2$.
3. Lower bound for $A_{r}(a)$.

Let $\{a\}$ be a sequence, n a natural number, and suppose that ϱ is such that

$$
\begin{equation*}
k M_{n}^{1}(a)<\varrho . \quad(n \leqslant k<2 n) . \tag{3.1}
\end{equation*}
$$

Let the intervals determined by a_{1}, \ldots, a_{n} be I_{1}, \ldots, I_{n}, arranged in descending order of length. Denote the length of I_{j} by α_{j}; so that

$$
\begin{equation*}
a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n} ; \quad a_{1}+\ldots+a_{n}=1 \tag{3.2}
\end{equation*}
$$

Now put in the points $a_{n+1}, a_{n+2}, \ldots, a_{2 n-1}$. Since any point "destroys" one I at most, there remains at least one interval of length $\geqslant a_{p}$ undisturbed after $a_{n+1}, \ldots, a_{n+p-1}$ have been put in ($1 \leqslant p \leqslant n$). Hence

$$
M_{n}^{1}(a) \geqslant a_{1}, M_{n+1}^{1}(\mathrm{a}) \geqslant a_{2}, \ldots, M_{2 n-1}^{1}(\mathrm{a}) \geqslant a_{n}
$$

consequently, by (3.1) and (3.2),

$$
\varrho\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2 n-1}\right)>1
$$

It follows that for at least one $k(n \leqslant k<2 n)$ we have

$$
k M_{k}^{1}(a) \geqslant\left(\frac{1}{n}+\ldots+\frac{1}{2 n-1}\right)^{-1}=\sigma_{n}
$$

We have $\sigma_{n}<1 / \log 2, \sigma_{n} \rightarrow 1 / \log 2$, and so $\Lambda_{1}(\mathrm{a}) \geqslant 1 / \log 2$. This holds for any $\{a\}$; the lower bound is attained for the sequence of section 2.

Similarly we can prove that for at least one $k(r n \leqslant k<(r+1) n)$ we have

$$
k M_{k}^{r}(\mathrm{a}) \geqslant\left(\frac{1}{r n}+\frac{1}{r n+1}+\ldots+\frac{1}{r n+n-1}\right)^{-1}
$$

and so

$$
\Lambda_{r}(a) \geqslant 1 / \log \left(1+\frac{1}{r}\right)>r
$$

4. Upper bound for $\left.\lambda_{r}(a)^{2}\right)$.

Let $\{a\}$ be a sequence, n a natural number, tand suppose that ϱ is such that

$$
\begin{equation*}
k m_{k}^{1}(a)>\varrho \quad(n<k \leqslant 2 n) . \tag{4.1}
\end{equation*}
$$

[^1]Let $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{2 n}}$ be the cyclic order of the points $a_{1}, \ldots, a_{2 n}$ on the circle ($k_{1}, \ldots, k_{2 n}$ is a permutation of $1, \ldots, 2 n$); put $k_{2 n+1}=k_{1}$. If $k_{i}^{*}=\operatorname{Max}\left(k_{i}, k_{i+1}, n+1\right)$, then the interval $a_{k_{i}}, a_{k_{i+1}}$ is one of the intervals determined by $a_{1}, \ldots, a_{k_{i}^{*}}$. It follows that its length is less than ϱ / k_{i}^{*}. Hence

$$
\begin{equation*}
1>\varrho \sum_{i=1}^{2 n} 1 \mid k_{i}^{*} \tag{4.2}
\end{equation*}
$$

We have $n<k_{i}^{*} \leqslant 2 n$, and any $k(n+1<k \leqslant 2 n)$ occurs ε_{k} times as a $k^{*} ; \varepsilon_{k}=0,1$ or 2 . It follows that

$$
\sum_{i=1}^{2 n} 1 / k_{i}^{*}=\sum_{n+1}^{2 n} \frac{2}{k}+\sum_{n+2}^{2 n}\left(2-\varepsilon_{k}\right)\left\{\frac{1}{n+1}-\frac{1}{k}\right\} \geqslant \sum_{n+1}^{2 n} \frac{2}{k} .
$$

Finally, by (4.1) and (4.2) we infer that at least for one ($n<k \leqslant 2 n$) we have

$$
k m_{k}^{1}(a) \leqslant\left(\frac{2}{n+1}+\frac{2}{n+2}+\ldots+\frac{2}{2 n}\right)^{-1}=\tau_{n}
$$

We have $\tau_{n}>1 / \log 4, \tau_{n} \rightarrow 1 / \log 4$, and so $\lambda_{1}(a) \leqslant 1 / \log 4$. The example of section 2 again shows that $1 / \log 4$ is best possible.

Similarly we can show that for at least one $k(r n<k \leqslant(r+1) n)$ we have

$$
k m_{k}^{r}(a) \leqslant r\left(\frac{r+1}{n r+1}+\ldots+\frac{r+1}{n r+n-1}\right)^{-1}
$$

and so

$$
\begin{equation*}
\lambda_{r}(a) \leqslant \frac{r}{r+1} / \log \left(1+\frac{1}{r}\right)<r \tag{4.3}
\end{equation*}
$$

5. Lower bound for μ_{r}.

Let $\{a\}$ be a sequence. We first prove that, for $r \geqslant 1, n \geqslant 1$ we have

$$
\begin{equation*}
M_{n}^{r}(\mathrm{a}) / m_{n+1}^{r}(\mathrm{a}) \geqslant 1+\frac{1}{r} \tag{5.1}
\end{equation*}
$$

We first suppose that $r>1$. Let $I_{1}, I_{2}, \ldots, I_{n}$ be the intervals of the n-th stage, i.e. the intervals determined by a_{1}, \ldots, a_{n}. Let $I_{k_{0}}$ be the one into which a_{n+1} falls, and let

$$
\begin{equation*}
I_{k_{-r+1}}, I_{k_{-r+2}}, \ldots, I_{k_{0}}, I_{k_{1}}, \ldots, I_{k_{r-1}} \tag{5.2}
\end{equation*}
$$

be consecutive on the circle ${ }^{3}$).
Put $M=M_{n}^{r}(\mathrm{a}), m=m_{n+1}^{r}(\mathrm{a})$ and denote by M_{1} the maximum length of the sum of r consecutive intervals from the set (5.2). Denote the length of $I_{k_{i}}$ by β_{i}. Let γ_{1} and γ_{2} be the lengths of the parts into which $I_{k_{0}}$ is divided by a_{n+1}.

[^2]Clearly at least one of the numbers $\beta_{-r+1}, \ldots, \beta_{-1}, \beta_{1}, \ldots, \beta_{r-1}\left(\beta_{j}\right.$ say $)$ is $\geqslant\left(M_{1}-\beta_{0}\right) /(t-1)$; we may suppose that $j>0$. Now we have

$$
m \leqslant \beta_{j-r+1}+\ldots+\beta_{-1}+\gamma_{1}+\gamma_{2}+\ldots+\beta_{j-1}
$$

and hence

$$
\begin{equation*}
m \leqslant M_{1}-\beta_{j} \leqslant \frac{r-2}{r-1} M_{1}+\frac{\beta_{0}}{r-1} \tag{5.3}
\end{equation*}
$$

On the other hand it follows from

$$
\begin{gathered}
m \leqslant \gamma_{2}+\beta_{1}+\ldots+\beta_{r-1} \leqslant M_{1}-\gamma_{1} \\
m \leqslant \beta_{-r+1}+\ldots+\beta_{-1}+\gamma_{1} \leqslant M_{1}-\gamma_{2}
\end{gathered}
$$

that

$$
\begin{equation*}
m \leqslant M_{1}-\frac{1}{2} \beta_{0} . \tag{5.4}
\end{equation*}
$$

Trivially we have $M_{1} \leqslant M$. If $\beta_{0} \leqslant 2 M_{1} /(r+1)$ we infer $m \leqslant M_{1} r /(1+r) \leqslant M r /(1+r)$ from (5.3); if $\beta_{0} \geqslant 2 M_{1} /(r+1)$ we deduce the same result from (5.4). This proves (5.1) for $r>1$.

If $r=1$, (5.1) immediately follows from

$$
m \leqslant \operatorname{Min}\left(\gamma_{1}, \gamma_{2}\right) \leqslant \frac{1}{2} \beta_{0} \leqslant \frac{1}{2} M .
$$

Now suppose that n is a natural number and that for $n r \leqslant k \leqslant n(r+1)$ we have

$$
\begin{equation*}
M_{k}^{r}(\mathrm{a}) / m_{k}^{r}(\mathrm{a})<\left(1+\frac{1}{r}\right) /\left(1+\frac{1}{k}\right)^{2} . \tag{5.5}
\end{equation*}
$$

It follows, by (5.1) that

$$
m_{k+1}^{r} / m_{k}^{r}<k^{2} /(k+1)^{2} \quad(n r \leqslant k<n r+n)
$$

and also

$$
\begin{equation*}
m_{r n+n}^{r} \mid m_{r n}^{r}<r^{2} /(1+r)^{2} . \tag{5.6}
\end{equation*}
$$

Trivially we have $m_{r n}^{r} \leqslant 1 / n$; on the other hand, by (5.5)

$$
m_{r n+n}^{r}>\frac{t}{1+\tau} M_{r n+n}^{r} \geqslant \frac{t}{1+t} \cdot \frac{t}{r n+n-1} \gg \frac{r^{2}}{(r+1)^{2}} \cdot \frac{1}{n} .
$$

This contradicts (5.6). Hence for at least one $k(n t \leqslant k \leqslant n r+n)$ (5.5) is not true. It follows that

$$
\begin{equation*}
\mu_{r} \geqslant 1+\frac{1}{r} \tag{5.7}
\end{equation*}
$$

6. The inequalities (3.3), (4.3) and (5.7) are probably not best possible if $r \geqslant 2$. We conjecture that the expressions

$$
r\left(\Lambda_{r}-1\right), r\left(1-\lambda_{r}\right), \quad r\left(\mu_{r}-1\right)
$$

tend to infinity if $r \rightarrow \infty$.
We owe some useful remarks to Mrs. T. van Aardenne-Ehrenfest and Mr. J. Korevaar with whom we first discussed the above problems.

[^0]: ${ }^{1)}$ Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam 48, 266-271 (1945) $=$ Indagationes Mathematicae, 7, 71-76 (1946).

[^1]: ${ }^{2}$) The proof presented in this section was found by Mrs. van Aardenne-Ehrenfest independently.

[^2]: ${ }^{3}$) If $2 r-1>n$ the k_{i} are not all different.

