SUPPLEMENTARY NOTE

BY
P. ERDOXS.
[Received is November, 1949.]
Theorem 2 of the above paper runs as follows:
Let

$$
\begin{equation*}
a_{k} \geqslant 0, \sum_{k=1}^{n} a_{k}\left(s_{n-k}+k\right)=n^{2}+O(n)\left(s_{m}=\sum_{k=1}^{m} a_{k}\right) . \tag{I}
\end{equation*}
$$

I dealt with this result in a lecture at the University of Illinois this summer and several remarks were made by the audience which I propose to discuss here.

Reiner asked whether anything more can be deduced if in (1) we assume that the error term is $o(n)$. If we put $a_{1}=3 / 2, a_{2 k+1}=2$ for $k>1, a_{2 k}=0$, then $\sum_{k-1}^{n} a_{k}\left(s_{n-k}+k\right)=$ $n^{2}+o(\mathrm{I})$, but $s_{n} \neq n+o(\mathrm{I})$. On the other hand if we assume that there exists an $\epsilon>0$ so that for $k>k_{0}, a_{k}<$ 2-є, then indeed $\sum_{k=1}^{n} a_{k}\left(s_{n-k}+k\right)=n^{2}+o(n)$ implies $s_{n}=$ $n+o(\mathrm{I})$. We do not give the proof since it follows that of the original theorem closely.

Hua raised the following questions: What can be deduced if we assume that $a_{k} \geqslant 0$ and $\sum_{k=1}^{n} k a_{h}=\frac{1}{2} n^{2}+O(n)$, also $a_{k} \geqslant 0$, and $\sum_{k=1}^{n} a_{k}\left(s_{n-k}+k\right)=\frac{1}{2} n^{2}+O(n)$?

Here I prove
Theorem I. Let $a_{k} \geqslant 0$ and $\sum_{k=1}^{n} k . a_{k}=\frac{1}{2} n^{2}+O(n)$, then

$$
\begin{equation*}
s_{n}=n+O(\log n) \tag{3}
\end{equation*}
$$

and (3) is best possible.

To prove (3) put $s_{n}=n+A_{n}$. Denote $\max _{m<n}\left|A_{n}\right|$ $=\bar{A}_{n}$. We can assume that $\bar{A}_{n} \rightarrow \infty$ (for otherwise (3) holds and there is nothing to prove). Since $\bar{A}_{n} \rightarrow \infty$ we can choose arbitrarily large values of n so that $\bar{A}_{n}=\left|A_{n}\right|$, and in fact it will be clear from the proof that without loss of generality we can assume $\bar{A}_{n}=A$. We have

$$
\begin{align*}
\sum_{k=1}^{n} k a_{k}= & n s_{n}-\sum_{k=1}^{n-1} s_{k}=n\left(n+\bar{A}_{n}\right) \\
& -\sum_{k=1}^{n-1}\left(k+A_{k}\right) \geqslant \frac{1}{2} n^{2}+O(n)+\frac{n}{2}\left(\bar{A}_{n}-\bar{A}_{n / 2}\right) \tag{4}
\end{align*}
$$

(if $n / 2<k \leqslant n$ we replace A_{k} by \bar{A}_{n}, if $k \leqslant n / 2$ we replace A_{k} by $\bar{A}_{n / 2}$). If (3) does not hold then clearly $\varlimsup_{\lim } \bar{A}_{n / \log n} n$ $=\infty$, or for every C there exist infinitely many n so that $\bar{A}_{n}-\bar{A}_{n / 2}>C$. But then from (4)

$$
\sum_{k=1}^{n} k \cdot a_{k}>\frac{1}{2} n^{2}+\frac{C}{2} n+O(n)
$$

which contradicts the assumptions of Theorem I (since C can be chosen arbitrarily large), which proves (3).

The fact that (3) cannot be improved is immediately clear by putting $a_{k}=1+1 / k$.

ThEOREM 2. Let $a_{k} \geqslant 0, \sum_{k=1}^{n} a_{k} s_{n-k}=\frac{1}{2} n^{2}+O(n)$. Then

$$
\begin{equation*}
s_{n}=n+o(n) . \tag{5}
\end{equation*}
$$

The error term cannot be o $\left(n^{1 / 2}\right)$.
To prove this it suffices to assume that $a_{k} \geqslant 0$
and $\sum_{\substack{k=1 \\ \infty}}^{n} a_{k} s_{n-k}=\frac{1}{2} n^{2}+o\left(n^{2}\right)$. Put $F(x)=\sum_{k=1}^{\infty} a_{k} x^{k}, F(x)^{2}$ $=\sum_{k=1}^{\infty} b_{k} x^{k}$. Clearly

$$
\sum_{k=1}^{n} b_{k}=\sum_{k=1}^{n} a_{k} s_{n-k}=\frac{1}{2} n^{2}+o\left(n^{2}\right)
$$

Thus

$$
\lim _{x=1}(\mathrm{I}-x)^{2} F(x)^{2}=1 \text { or } \lim _{x=1}(\mathrm{I}-x) F(x)=\mathrm{I} .
$$

Hence by the well-known Tauberian theorem of Hardy and Littlewood $s_{n}=n+o(n)$.

By putting $a(n!)^{2}=n!, a_{m}=0$ if $(n!)^{2}<m \leqslant(n!)^{2}+n!$, $a_{m}=1$ otherwise, we immediately obtain that the error term in (5) cannot be $o\left(n^{1 / 2}\right)$.

Let $f(x)$ be an increasing function satisfying $f(x) \leqslant x$, $f^{\prime}(x) \leqslant \mathrm{I} . \quad f^{-1}(x)$ is defined by $f\left[f^{-1}(x)\right]=x$. Then we have

Theorem 3. Let $a_{k} \geqslant 0$ and
$S_{n}=\sum_{k=1}^{n} a_{k}\left[s_{f-1}^{[f(n)-f(k)]}+f(k)\right]=f(n)^{2}+O(f(n))$.
Then

$$
\begin{equation*}
s_{n}=f(n)+O(\mathrm{I}) . \tag{7}
\end{equation*}
$$

Remark: If $f(x)=x$ we obtain our original theorem that (1) implies (2), also $f(x)=x^{\alpha}, 0<\alpha \leqslant \mathrm{I}, f(x)=\log x$ satisfy the conditions of Theorem 3.

Proof of Theorem 3. Denote $[f(n)]=\mathcal{N}_{s}$,
(i.e. $\left.f^{-1}(\mathcal{N})=n+\delta,|\delta|<1\right) \sum_{r<f(n)<r+1} a_{k}=A_{r}$. We have from (6)

$$
S_{f^{-1}(N+1)}-S_{f-1(N)}=O(\mathcal{N}) \geqslant \mathcal{N} A_{N} \text { or } A_{N}<c .
$$

Thus from (6) by a simple computation, we have

$$
\sum_{r=1}^{N} A_{r}\left(A_{1}+\ldots+A_{N-k_{r}}+k_{r}\right)=\mathcal{N}^{2}+O(\mathcal{N})
$$

which by our theorem clearly implies (7).

