SUPPLEMENTARY NOTE

P. ERDÖS.

[Received 15 November, 1949.]

Theorem 2 of the above paper runs as follows: Let

$$a_{k} \ge 0, \sum_{k=1}^{n} a_{k} (s_{n-k}+k) = n^{2} + O(n) (s_{m} = \sum_{k=1}^{m} a_{k}).$$
(1)
$$s_{k} = n + O(1).$$
(2)

Then

I dealt with this result in a lecture at the University of Illinois this summer and several remarks were made by the audience which I propose to discuss here.

Reiner asked whether anything more can be deduced if in (1) we assume that the error term is o(n). If we put

$$a_1 = 3/2, a_{2k+1} = 2$$
 for $k > 1, a_{2k} = 0$, then $\sum_{k=1}^{n} a_k(s_{n-k}+k) =$

 $n^2+o(1)$, but $s_n \neq n+o(1)$. On the other hand if we assume that there exists an $\epsilon > 0$ so that for $k > k_0, a_k < \infty$

$$2-\epsilon$$
, then indeed $\sum_{k=1}^{k} a_k (s_{n-k}+k) = n^2 + o$ (n) implies $s_n = 0$

n+o(1). We do not give the proof since it follows that of the original theorem closely.

Hua raised the following questions: What can be deduced if we assume that $a_k \ge 0$ and $\sum_{k=1}^{n} k a_k = \frac{1}{2}n^2 + O(n)$,

also $a_k \ge 0$, and $\sum_{k=1}^n a_k (s_{n-k}+k) = \frac{1}{2} n^2 + O(n)$? Here I prove

> THEOREM I. Let $a_k \ge 0$ and $\sum_{k=1}^n k \cdot a_k = \frac{1}{2}n^2 + O(n)$, then $s_n = n + O(\log n)$. (3)

and (3) is best possible.

To prove (3) put $s_n = n + A_n$. Denote $\max_{m \le n} |A_n| = \overline{A}_n$. We can assume that $\overline{A}_n \to \infty$ (for otherwise (3) holds and there is nothing to prove). Since $\overline{A}_n \to \infty$ we can choose arbitrarily large values of n so that $\overline{A}_n = |A_n|$, and in fact it will be clear from the proof that without loss of generality we can assume $\overline{A}_n = A$. We have

$$\sum_{k=1}^{n} k a_{k} = n s_{n} - \sum_{k=1}^{n-1} s_{k} = n \ (n + \overline{A}_{n})$$
$$- \sum_{k=1}^{n-1} (k + A_{k}) \ge \frac{1}{2} n^{2} + O(n) + \frac{n}{2} (\overline{A}_{n} - \overline{A}_{n/2})$$
(4)

(if $n/2 < k \leq n$ we replace A_k by \overline{A}_n , if $k \leq n/2$ we replace A_k by $\overline{A}_{n/2}$). If (3) does not hold then clearly $\lim \overline{A}_{n/\log n}$ = ∞ , or for every *C* there exist infinitely many *n* so that $\overline{A}_n - \overline{A}_{n/2} > C$. But then from (4)

$$\sum_{k=1}^{n} k.a_k > \frac{1}{2}n^2 + \frac{C}{2}n + O(n),$$

which contradicts the assumptions of Theorem 1 (since C can be chosen arbitrarily large), which proves (3).

The fact that (3) cannot be improved is immediately clear by putting $a_k = 1+1/k$.

THEOREM 2. Let
$$a_k \ge 0$$
, $\sum_{k=1}^{n} a_k s_{n-k} = \frac{1}{2}n^2 + O(n)$. Then
 $s_n = n + o(n)$. (5)

The error term cannot be $o(n^{1/2})$.

To prove this it suffices to assume that
$$a_k \ge 0$$

and $\sum_{\substack{k=1\\\infty}}^{n} a_k s_{n-k} = \frac{1}{2}n^2 + o(n^2)$. Put $F(x) = \sum_{\substack{k=1\\k=1}}^{\infty} a_k x^k$, $F(x)^2$
 $= \sum_{\substack{k=1\\k=1}}^{\infty} b_k x^k$. Clearly

$$\sum_{k=1}^{n} b_{k} = \sum_{k=1}^{n} a_{k} s_{n-k} = \frac{1}{2}n^{2} + o(n^{2}).$$

Thus

 $\lim_{x \to 1} (1-x)^2 F(x)^2 = 1 \text{ or } \lim_{x \to 1} (1-x) F(x) = 1.$

Hence by the well-known Tauberian theorem of Hardy and Littlewood $s_n = n + o(n)$.

By putting $a (n!)^2 = n!$, $a_m = o$ if $(n!)^2 < m \le (n!)^2 + n!$, $a_m = 1$ otherwise, we immediately obtain that the error term in (5) cannot be $o(n^{1/2})$.

Let f(x) be an increasing function satisfying $f(x) \leq x$, $f'(x) \leq 1$. $f^{-1}(x)$ is defined by $f[f^{-1}(x)] = x$. Then we have

THEOREM 3. Let $a_k \ge 0$ and

 $S_{n} = \sum_{k=1}^{n} a_{k} \left[s_{f^{-1}[f(n) - f(k)]} + f(k) \right] = f(n)^{2} + O(f(n)).$ (6) Then

$$s_n = f(n) + O(1). \tag{7}$$

REMARK: If f(x) = x we obtain our original theorem that (1) implies (2), also $f(x) = x^{\alpha}$, $0 < \alpha \leq 1$, $f(x) = \log x$ satisfy the conditions of Theorem 3.

PROOF OF THEOREM 3. Denote $[f(n)] = \mathcal{N}_s$,

$$(\text{i.e.} f^{-1}(\mathcal{N}) = n + \delta, |\delta| < 1) \sum_{r < f(n) < r+1} a_k = A_r. \text{ We have}$$

from (6)

 $S_{f^{-1}(N+1)} - S_{f^{-1}(N)} = O(\mathcal{N}) \ge \mathcal{N}A_N \text{ or } A_N < c.$ Thus from (6) by a simple computation, we have

$$\sum_{r=1}^{\infty} A_r(A_1 + \ldots + A_{N-k_r} + k_r) = \mathcal{N}^2 + O(\mathcal{N})$$

eriets at that is the second to the second differentiation

which by our theorem clearly implies (7).